函數知識點(diǎn)總結(20篇)
總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,它能夠使頭腦更加清醒,目標更加明確,因此我們要做好歸納,寫(xiě)好總結。但是卻發(fā)現不知道該寫(xiě)些什么,以下是小編幫大家整理的函數知識點(diǎn)總結,希望對大家有所幫助。
函數知識點(diǎn)總結1
一:函數及其表示
知識點(diǎn)詳解文檔包含函數的概念、映射、函數關(guān)系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等
1. 函數與映射的區別:
2. 求函數定義域
常見(jiàn)的用解析式表示的函數f(x)的定義域可以歸納如下:
、佼攆(x)為整式時(shí),函數的定義域為R.
、诋攆(x)為分式時(shí),函數的定義域為使分式分母不為零的實(shí)數集合。
、郛攆(x)為偶次根式時(shí),函數的定義域是使被開(kāi)方數不小于0的實(shí)數集合。
、墚攆(x)為對數式時(shí),函數的定義域是使真數為正、底數為正且不為1的實(shí)數集合。
、萑绻鹒(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合,即求各部分有意義的實(shí)數集合的交集。
、迯秃虾瘮档亩x域是復合的各基本的.函數定義域的交集。
、邔τ谟蓪(shí)際問(wèn)題的背景確定的函數,其定義域除上述外,還要受實(shí)際問(wèn)題的制約。
3. 求函數值域
(1)、觀(guān)察法:通過(guò)對函數定義域、性質(zhì)的觀(guān)察,結合函數的解析式,求得函數的值域;
(2)、配方法;如果一個(gè)函數是二次函數或者經(jīng)過(guò)換元可以寫(xiě)成二次函數的形式,那么將這個(gè)函數的右邊配方,通過(guò)自變量的范圍可以求出該函數的值域;
(3)、判別式法:
(4)、數形結合法;通過(guò)觀(guān)察函數的圖象,運用數形結合的方法得到函數的值域;
(5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進(jìn)而求出值域;
(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點(diǎn)的函數值來(lái)求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;
(8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;
(9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。
函數知識點(diǎn)總結2
。ㄒ唬┖瘮
1、變量:在一個(gè)變化過(guò)程中可以取不同數值的量。常量:在一個(gè)變化過(guò)程中只能取同一數值的量。
2、函數:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對于x的每一個(gè)確定的值,y都有唯一確定的值與其對應,那么我們就把x稱(chēng)為自變量,把y稱(chēng)為因變量,y是x的函數。一個(gè)X對應兩個(gè)Y值是錯誤的x判斷Y是否為X的函數,只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對應;
3、定義域:一般的,一個(gè)函數的自變量允許取值的范圍,叫做這個(gè)函數的定義域。
4、確定函數定義域的方法:
。1)關(guān)系式為整式時(shí),函數定義域為全體實(shí)數;
。2)關(guān)系式含有分式時(shí),分式的分母不等于零;
。3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數大于等于零;
。4)關(guān)系式中含有指數為零的式子時(shí),底數不等于零;
。5)實(shí)際問(wèn)題中,函數定義域還要和實(shí)際情況相符合,使之有意義。
5、函數的解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做函數的解析式
6、函數的圖像(函數圖像上的點(diǎn)一定符合函數表達式,符合函數表達式的點(diǎn)一定在函數圖像上)
一般來(lái)說(shuō),對于一個(gè)函數,如果把自變量與函數的每對對應值分別作為點(diǎn)的橫、縱坐標,那么坐標平面內由這些點(diǎn)組成的圖形,就是這個(gè)函數的圖象;
運用:求解析式中的參數、求函數解釋式;
7、描點(diǎn)法畫(huà)函數圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數值);函數表達式為y=3X-2-1-20xx-6-3-6036
第二步:描點(diǎn)(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點(diǎn));
第三步:連線(xiàn)(按照橫坐標由小到大的順序把所描出的各點(diǎn)用平滑曲線(xiàn)連接起來(lái))。
8、函數的表示方法
列表法:一目了然,使用起來(lái)方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。
解析式法:簡(jiǎn)單明了,能夠準確地反映整個(gè)變化過(guò)程中自變量與函數之間的'相依關(guān)系,但有些實(shí)際問(wèn)題中的函數關(guān)系,不能用解析式表示。
圖象法:形象直觀(guān),但只能近似地表達兩個(gè)變量之間的函數關(guān)系。
。ǘ┮淮魏瘮1、一次函數的定義
一般地,形如ykxb(k,b是常數(其中k與b的形式較為靈活,但只要抓住函數基本形式,準確找到k與b,根據題意求的常數的取值范圍),且k0)的函數,叫做一次函數,其中x是自變量。當b0時(shí),一次函數ykx,又叫做正比例函數。
、乓淮魏瘮档慕馕鍪降男问绞莥kxb,要判斷一個(gè)函數是否是一次函數,就是判斷是否能化成以上形式;
、飘攂0,k0時(shí),ykx仍是一次函數;
、钱攂0,k0時(shí),它不是一次函數;
、日壤瘮凳且淮魏瘮档奶乩,一次函數包括正比例函數;
2、正比例函數及性質(zhì)
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零
當k>0時(shí),直線(xiàn)y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當k0時(shí),圖像經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當b0,y隨x的增大而增大();k4、一次函數y=kx+b的圖象的畫(huà)法.
在實(shí)際做題中只需要倆點(diǎn)就可以確定函數圖像,一般我們令X=0求出阿Y的值再令Y=0求出X的值.如圖
y=kx+b(0,b)解析:(兩點(diǎn)確定一條直線(xiàn),這兩點(diǎn)我們一般確定在坐標軸上,因為X軸上所有坐標點(diǎn)的縱坐標為0即(x,0)Y軸上所有點(diǎn)的
(-b/k,0)橫坐標為0即(0,y)這樣作圖既快又準確
5、正比例函數與一次函數之間的關(guān)系
一次函數y=kx+b的圖象是一條直線(xiàn),它可以看作是由直線(xiàn)y=kx平移|b|個(gè)單位長(cháng)度而得到(當b>0時(shí),向上平移;當b0時(shí),直線(xiàn)經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;(從左向右上升)k0時(shí),將直線(xiàn)y=kx的圖象向上平移b個(gè)單位;b。
函數知識點(diǎn)總結3
當h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h
當h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k
當h0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a
3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時(shí),y隨x的.增大而減小;當x≥-b/2a時(shí),y隨x的增大而增大.若a
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個(gè)交點(diǎn);
當△0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y>0;當a
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.
函數知識點(diǎn)總結4
一、函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開(kāi)方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實(shí)際意義確定的解析式,應依據自變量的實(shí)際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法
三、函數的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法
四、函數的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法
五、函數單調性的.常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個(gè)區間上也為增(減)函數
2、若f(x)為增(減)函數,則-f(x)為減(增)函數
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱(chēng)區間上的單調性相同,偶函數在對稱(chēng)區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個(gè)奇函數在x=0處有定義,則f(0)=0,如果一個(gè)函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)
2、兩個(gè)奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個(gè)奇函數與一個(gè)偶函數的積(商)為奇函數。
4、兩個(gè)函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個(gè)是偶函數,那么該復合函數就是偶函數;當兩個(gè)函數都是奇函數時(shí),該復合函數是奇函數。
5、若函數f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數和一個(gè)偶函數的和。
函數知識點(diǎn)總結5
1、變量與常量
在某一變化過(guò)程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有確定的值與它對應,那么就說(shuō)x是自變量,y是x的函數。
2、函數解析式
用來(lái)表示函數關(guān)系的數學(xué)式子叫做函數解析式或函數關(guān)系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個(gè)表來(lái)表示函數關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關(guān)系的方法叫做圖像法。
4、由函數解析式畫(huà)其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點(diǎn):以表中每對對應值為坐標,在坐標平面內描出相應的點(diǎn)
(3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。
初中怎樣學(xué)好數學(xué)
學(xué)好初中數學(xué)培養運算能力
初中數學(xué)涉及到大量的`運算內容,比如有理數的運算、因式分解、根式的運算和解方程,這些都是初中數學(xué)涉及到的知識內容,如果初中生數學(xué)運算能力不過(guò)關(guān),那么成績(jì)怎么能提高呢?所以運算是學(xué)好初中數學(xué)的基本功,這個(gè)基本功一定要扎實(shí),不然以后的初中數學(xué)就可以不用學(xué)習了。
初中生在解答運算題的時(shí)候,不要急躁,靜下心來(lái)。初中數學(xué)運算的過(guò)程是很重要的,這也是初中生對于數學(xué)邏輯和思維的培養過(guò)程,結果要準確;同時(shí)初中生還有要絕對的自信,不要求速度可以慢一點(diǎn)的,盡量一次做對。
學(xué)好初中數學(xué)做題的數量不能少
不可否認,想要學(xué)好初中數學(xué),就要做一定量的數學(xué)題。不贊同大量的刷題,那樣沒(méi)有什么意義。初中生做數學(xué)題主要是以基礎題的練習為主,將初中數學(xué)的基礎題弄懂的同時(shí),反復的做一些比較典型的題,這樣才是初中生正確的學(xué)習數學(xué)方式。
在初中階段,學(xué)生要鍛煉自己數學(xué)的抽象思維能力,最好的結果是在不用書(shū)寫(xiě)的情況下,就能夠得到正確的答案,這也就是我們常說(shuō)的熟能生巧。同時(shí)也是初中生數學(xué)基礎知識牢固的體現。相反的,有的初中生在做練習題的時(shí)候,比較盲目和急躁,這樣的結果就是粗心大意,馬虎出錯。
課上重視聽(tīng)講課下及時(shí)復習
初中生數學(xué)能力的培養一部分在于平時(shí)做題的過(guò)程中,另一部分就在課堂上。所以初中生想要學(xué)好數學(xué),就要重視課內的學(xué)習效率,在課上的時(shí)候要跟緊老師的思路,大膽的推測老師下一步講課的知識,尤其是基礎知識的學(xué)習。在課后初中生還要對學(xué)習的數學(xué)知識點(diǎn)及時(shí)復習。對于每個(gè)階段初中數學(xué)的學(xué)習要進(jìn)行知識點(diǎn)歸納和整理。
初中數學(xué)多項式知識點(diǎn)
1、幾個(gè)單項式的和叫做多項式。
2、多項式中的每一個(gè)單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個(gè)多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式?jīng)]有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個(gè)多項式的次數。
函數知識點(diǎn)總結6
一次函數:一次函數圖像與性質(zhì)是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
、贂(huì )畫(huà)一次函數的圖像,并掌握其性質(zhì)。
、跁(huì )根據已知條件,利用待定系數法確定一次函數的解析式。
、勰苡靡淮魏瘮到鉀Q實(shí)際問(wèn)題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
、僬_理解掌握一次函數的概念,圖像和性質(zhì)。
、谶\用數學(xué)結合的思想解與一次函數圖像有關(guān)的問(wèn)題。
、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。
、茏鲆恍┚C合題的訓練,提高分析問(wèn)題的能力。
函數性質(zhì):
1.y的變化值與對應的x的.變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時(shí),b為函數在y軸上的點(diǎn),坐標為(0,b)。
3當b=0時(shí)(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個(gè)一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時(shí),兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時(shí),兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時(shí),兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時(shí),兩一次函數圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱(chēng)y是x的一次函數圖像性質(zhì)
1、作法與圖形:通過(guò)如下3個(gè)步驟:
。1)列表.
。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線(xiàn)即可。
正比例函數y=kx(k≠0)的圖象是過(guò)坐標原點(diǎn)的一條直線(xiàn),一般。0,0)和(1,k)兩點(diǎn)。(3)連線(xiàn),可以作出一次函數的圖象一條直線(xiàn)。因此,作一次函數的圖象只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
2、性質(zhì):
。1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。
。2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過(guò)原點(diǎn)。
3、函數不是數,它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
4、k,b與函數圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當k>0時(shí),直線(xiàn)必通過(guò)第一、三象限,y隨x的增大而增大;當k0,b>0,這時(shí)此函數的圖象經(jīng)過(guò)第一、二、三象限;當k>0,b
函數知識點(diǎn)總結7
一、函數對稱(chēng)性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱(chēng)
f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱(chēng)f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對稱(chēng)f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對稱(chēng)
f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對稱(chēng)y=f(x)與y=f(-x)關(guān)于x=0對稱(chēng)y=f(x)與y=-f(x)關(guān)于y=0對稱(chēng)y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對稱(chēng)
例1:證明函數y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱(chēng)。
【解析】求兩個(gè)不同函數的對稱(chēng)軸,用設點(diǎn)和對稱(chēng)原理作解。
證明:假設任意一點(diǎn)P(m,n)在函數y=f(a+x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即證得對稱(chēng)軸為x=(b-a)/2.
例2:證明函數y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱(chēng)。
證明:假設任意一點(diǎn)P(m,n)在函數y=f(a-x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即證得對稱(chēng)軸為x=(a+b)/2.
二、函數的周期性
令a,b均不為零,若:
1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a|
2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a|
3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a|
4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a|
5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a|
這里只對第2~5點(diǎn)進(jìn)行解析。
第2點(diǎn)解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……
、賔(x)=-f(x+a)……
、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數最小正周期T=|2a|
第4點(diǎn)解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函數最小正周期T=|2a|
第5點(diǎn)解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函數最小正周期T=|4a|
擴展閱讀:函數對稱(chēng)性、周期性和奇偶性的規律總結
函數對稱(chēng)性、周期性和奇偶性規律總結
。ㄒ唬┩缓瘮档暮瘮档钠媾夹耘c對稱(chēng)性:(奇偶性是一種特殊的對稱(chēng)性)
1、奇偶性:
。1)奇函數關(guān)于(0,0)對稱(chēng),奇函數有關(guān)系式f(x)f(x)0
。2)偶函數關(guān)于y(即x=0)軸對稱(chēng),偶函數有關(guān)系式f(x)f(x)
2、奇偶性的拓展:同一函數的對稱(chēng)性
。1)函數的軸對稱(chēng):
函數yf(x)關(guān)于xa對稱(chēng)f(ax)f(ax)
f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)
若寫(xiě)成:f(ax)f(bx),則函數yf(x)關(guān)于直線(xiàn)x稱(chēng)
。╝x)(bx)ab對22證明:設點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),
即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對稱(chēng)。得證。
說(shuō)明:關(guān)于xa對稱(chēng)要求橫坐標之和為2a,縱坐標相等。
∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(ax)f(ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(x)f(2ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(x)f(2ax)
。2)函數的點(diǎn)對稱(chēng):
函數yf(x)關(guān)于點(diǎn)(a,b)對稱(chēng)f(ax)f(ax)2b
上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b
若寫(xiě)成:f(ax)f(bx)c,函數yf(x)關(guān)于點(diǎn)(abc,)對稱(chēng)2證明:設點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱(chēng)。得證。
說(shuō)明:關(guān)于點(diǎn)(a,b)對稱(chēng)要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。
。3)函數yf(x)關(guān)于點(diǎn)yb對稱(chēng):假設函數關(guān)于yb對稱(chēng),即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對應,顯然這不符合函數的定義,故函數自身不可能關(guān)于yb對稱(chēng)。但在曲線(xiàn)c(x,y)=0,則有可能會(huì )出現關(guān)于yb對稱(chēng),比如圓c(x,y)x2y240它會(huì )關(guān)于y=0對稱(chēng)。
。4)復合函數的奇偶性的.性質(zhì)定理:
性質(zhì)1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。
性質(zhì)2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。
性質(zhì)3、復合函數y=f(x+a)為偶函數,則y=f(x)關(guān)于直線(xiàn)x=a軸對稱(chēng)。復合函數y=f(x+a)為奇函數,則y=f(x)關(guān)于點(diǎn)(a,0)中心對稱(chēng)。
總結:x的系數一個(gè)為1,一個(gè)為-1,相加除以2,可得對稱(chēng)軸方程
總結:x的系數一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數是為1,另一個(gè)為-1,存在對稱(chēng)中心。
總結:x的系數同為為1,具有周期性。
。ǘ﹥蓚(gè)函數的圖象對稱(chēng)性
1、yf(x)與yf(x)關(guān)于X軸對稱(chēng)。
證明:設yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)
∵(x1,y1)與(x1,y1)關(guān)于X軸對稱(chēng),∴y1f(x1)與yf(x)關(guān)于X軸對稱(chēng).注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿(mǎn)足f(x)g(x),即它們關(guān)于y0對稱(chēng)。
函數知識點(diǎn)總結8
余割函數
對于任意一個(gè)實(shí)數x,都對應著(zhù)唯一的角(弧度制中等于這個(gè)實(shí)數),而這個(gè)角又對應著(zhù)唯一確定的.余割值cscx與它對應,按照這個(gè)對應法則建立的函數稱(chēng)為余割函數。
記作f(x)=cscx
f(x)=cscx=1/sinx
1、定義域:{x|x≠kπ,k∈Z}
2、值域:{y|y≤-1或y≥1}
3、奇偶性:奇函數
4、周期性:最小正周期為2π
5、圖像:
圖像漸近線(xiàn)為:x=kπ ,k∈Z
其實(shí)有一點(diǎn)需要注意,就是余割函數與正弦函數互為倒數。
函數知識點(diǎn)總結9
1、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a
二次函數表達式的右邊通常為二次三項式。
2、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x-h)^2+k [拋物線(xiàn)的頂點(diǎn)p(h,k)]
交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
3、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
4、拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x = -b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)p。特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時(shí),p在y軸上;當δ= b^2-4ac=0時(shí),p在x軸上。
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab
5.常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數
δ= b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
δ= b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
δ= b^2-4ac
5、二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2+bx+c=0
此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。函數與x軸交點(diǎn)的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸:
當h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h
當h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x-h)^2 +k的.圖象;
當h>0,k
當h0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a
3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時(shí),y隨x的增大而減小;當x ≥ -b/2a時(shí),y隨x的增大而增大.若a
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離ab=|x-x|
當△=0.圖象與x軸只有一個(gè)交點(diǎn);
當△0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y>0;當a
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.
函數知識點(diǎn)總結10
一次函數的定義
一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變量。當b=0時(shí),一次函數y=kx,又叫做正比例函數。
1、一次函數的解析式的形式是y=kx+b,要判斷一個(gè)函數是否是一次函數,就是判斷是否能化成以上形式。
2、當b=0,k≠0時(shí),y=kx仍是一次函數。
3、當k=0,b≠0時(shí),它不是一次函數。
4、正比例函數是一次函數的特例,一次函數包括正比例函數。
一次函數的圖像及性質(zhì)
1、在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。
2、一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)。
3、正比例函數的圖像總是過(guò)原點(diǎn)。
4、k,b與函數圖像所在象限的關(guān)系:
當k>0時(shí),y隨x的增大而增大;當k<0時(shí),y隨x的增大而減小。
當k>0,b>0時(shí),直線(xiàn)通過(guò)一、二、三象限;
當k>0,b<0時(shí),直線(xiàn)通過(guò)一、三、四象限;
當k<0,b>0時(shí),直線(xiàn)通過(guò)一、二、四象限;
當k<0,b<0時(shí),直線(xiàn)通過(guò)二、三、四象限;
當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。
這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。
一次函數的圖象與性質(zhì)的口訣
一次函數是直線(xiàn),圖象經(jīng)過(guò)三象限;
正比例函數更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線(xiàn);
兩個(gè)系數k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來(lái)相見(jiàn),
k為正來(lái)右上斜,x增減y增減;
k為負來(lái)左下展,變化規律正相反;
k的絕對值越大,線(xiàn)離橫軸就越遠。
拓展閱讀:一次函數的解題方法
理解一次函數和其它知識的聯(lián)系
一次函數和代數式以及方程有著(zhù)密不可分的聯(lián)系。如一次函數和正比例函數仍然是函數,同時(shí),等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區別。首先,一次函數和正比例函數都只能存在兩個(gè)變量,而代數式可以是多個(gè)變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。
掌握一次函數的解析式的特征
一次函數解析式的結構特征:kx+b是關(guān)于x的一次二項式,其中常數b可以是任意實(shí)數,一次項系數k必須是非零數,k≠0,因為當k = 0時(shí),y = b(b是常數),由于沒(méi)有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。
應用一次函數解決實(shí)際問(wèn)題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的'變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數;
3、在實(shí)際問(wèn)題中,一般存在著(zhù)三種量,如距離、時(shí)間、速度等等,在這三種量中,當且僅當其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數;
4、求一次函數與正比例函數的關(guān)系式,一般采取待定系數法。
數形結合
方程,不等式,不等式組,方程組我們都可以用一次函數的觀(guān)點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線(xiàn)上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線(xiàn)來(lái)認識,直線(xiàn)交點(diǎn)的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線(xiàn),方程組的解就是直線(xiàn)的交點(diǎn),結合圖形可以認識兩直線(xiàn)的位置關(guān)系也可以把握交點(diǎn)個(gè)數。
如果一個(gè)交點(diǎn)時(shí)候兩條直線(xiàn)的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數平移的問(wèn)題可以化歸為對應點(diǎn)平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。
函數知識點(diǎn)總結11
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的`三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
函數知識點(diǎn)總結12
一次函數
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數。
特別地,當b=0時(shí),y是x的正比例函數。
即:y=kx (k為常數,k0)
二、一次函數的性質(zhì):
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數b取任何實(shí)數)
2、當x=0時(shí),b為函數在y軸上的截距。
三、一次函數的圖像及性質(zhì):
1、作法與圖形:通過(guò)如下3個(gè)步驟
。1)列表;
。2)描點(diǎn);
。3)連線(xiàn),可以作出一次函數的圖像一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。
3、k,b與函數圖像所在象限:
當k0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;
當k0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。
當b0時(shí),直線(xiàn)必通過(guò)一、二象限;
當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)
當b0時(shí),直線(xiàn)必通過(guò)三、四象限。
特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。
這時(shí),當k0時(shí),直線(xiàn)只通過(guò)一、三象限;當k0時(shí),直線(xiàn)只通過(guò)二、四象限。
四、確定一次函數的表達式:
已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。
。1)設一次函數的表達式(也叫解析式)為y=kx+b。
。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個(gè)二元一次方程,得到k,b的值。
。4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。
2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2
4、求任意線(xiàn)段的長(cháng):(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
。╝,b,c為常數,a0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a0)
頂點(diǎn)式:y=a(x—h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的性質(zhì)
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x= —b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時(shí),P在y軸上;當= b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a0時(shí),拋物線(xiàn)向上開(kāi)口;當a0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
= b^2—4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
= b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
= b^2—4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
V、二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),
即ax^2+bx+c=0
此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。
函數與x軸交點(diǎn)的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
解析式頂點(diǎn)坐標對稱(chēng)軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了、這給畫(huà)圖象提供了方便、
2、拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x —b/2a時(shí),y隨x的增大而減;當x —b/2a時(shí),y隨x的增大而增大、若a0,當x —b/2a時(shí),y隨x的增大而增大;當x —b/2a時(shí),y隨x的增大而減小、
4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
。2)當△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的`x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|
當△=0、圖象與x軸只有一個(gè)交點(diǎn);
當△0、圖象與x軸沒(méi)有交點(diǎn)、當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y0;當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0、
5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值、
6、用待定系數法求二次函數的解析式
。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、
。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現、
反比例函數
形如y=k/x(k為常數且k0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。
當K0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(xm)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
函數知識點(diǎn)總結13
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點(diǎn):
(1)對映射定義的理解。
(2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射
2、函數
構成函數概念的.三要素:
、俣x域
、趯▌t
、壑涤
兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義;
(3)對數函數的真數必須大于零;
(4)指數函數和對數函數的底數必須大于零且不等于1;
三、函數的值域
1求函數值域的方法
、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數;
、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);
、輪握{性法:利用函數的單調性求值域;
、迗D象法:二次函數必畫(huà)草圖求其值域;
、呃脤μ柡瘮
、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數
四、函數的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。
如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇
函數。
2.性質(zhì):
、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng),
、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0
、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)]
3.奇偶性的判斷
、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)
、诳磃(x)與f(-x)的關(guān)系
函數知識點(diǎn)總結14
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量?jì)鐬橐蜃兞,指數為常量的函數稱(chēng)為冪函數。
定義域和值域:
當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根[據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。當x為不同的數值時(shí),冪函數的值域的不同情況如下:在x大于0時(shí),函數的值域總是大于0的實(shí)數。在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。而只有a為正數,0才進(jìn)入函數的值域
性質(zhì):
對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是r,如果q是偶數,函數的.定義域是[0,+∞),工作總結《冪函數知識點(diǎn)總結》。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;
排除了為0這種可能,即對于x0的所有實(shí)數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數?偨Y起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:
如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;
如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。
在x大于0時(shí),函數的值域總是大于0的實(shí)數。
在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。
而只有a為正數,0才進(jìn)入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。
(3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。
(4)當a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數無(wú)界。
函數知識點(diǎn)總結15
當h>0時(shí),y=a(_-h)^2的圖象可由拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位得到,
當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當h>0,k>0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(_-h)^2+k的圖象;
當h>0,k<0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;
當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(_-h)^2+k的圖象;
當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)_=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時(shí),y隨_的增大而減小;當_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當_≤-b/2a時(shí),y隨_的增大而增大;當_≥-b/2a時(shí),y隨_的增大而減小.
4.拋物線(xiàn)y=a_^2+b_+c的`圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|
當△=0.圖象與_軸只有一個(gè)交點(diǎn);
當△<0.圖象與_軸沒(méi)有交點(diǎn).當a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數時(shí),都有y<0.
5.拋物線(xiàn)y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對對應值時(shí),可設解析式為一般形式:
y=a_^2+b_+c(a≠0).
(2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).
(3)當題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.
函數知識點(diǎn)總結16
1. 函數的奇偶性
。1)若f(x)是偶函數,那么f(x)=f(-x) ;
。2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);
。3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);
。4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;
。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;
2. 復合函數的有關(guān)問(wèn)題
。1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的.值域(即 f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。
。2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線(xiàn)的對稱(chēng)性)
。1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;
。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;
。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;
。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);
。6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x= 對稱(chēng);
4.函數的周期性
。1)y=f(x)對x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的周期函數;
。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;
。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;
。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2 的周期函數;
。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2 的周期函數;
。6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;
5.方程k=f(x)有解 k∈D(D為f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
。3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 );
8. 判斷對應是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個(gè)函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
11.處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;
12. 依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題
13. 恒成立問(wèn)題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;
函數知識點(diǎn)總結17
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化積
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
誘導公式
任意角α與-α的三角函數值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
設α為任意角,π+α的三角函數值與α的三角函數值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
利用公式二和公式三可以得到π-α與α的三角函數值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
π/2±α及3π/2±α與α的三角函數值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
拓展閱讀:三角函數常用知識點(diǎn)
1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。
2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B)
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的`余切值;任意銳角的余切值等于它的余角的正切值。
5、正弦、余弦的增減性:當0°≤α≤90°時(shí),sinα隨α的增大而增大,cosα隨α的增大而減小。
6、正切、余切的增減性:當0°<α<90°時(shí),tanα隨α的增大而增大,cotα隨α的增大而減小。
函數知識點(diǎn)總結18
本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的'圖象就迎刃而解了。
一、函數的單調性
1、函數單調性的定義
2、函數單調性的判斷和證明:
(1)定義法
(2)復合函數分析法
(3)導數證明法
(4)圖象法
二、函數的奇偶性和周期性
1、函數的奇偶性和周期性的定義
2、函數的奇偶性的判定和證明方法
3、函數的周期性的判定方法
三、函數的圖象
1、函數圖象的作法
(1)描點(diǎn)法
(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。
常見(jiàn)考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。
誤區提醒
1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。
2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。
3、在多個(gè)單調區間之間不能用“或”和“ ”連接,只能用逗號隔開(kāi)。
4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。
5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。
函數知識點(diǎn)總結19
∴當x1時(shí)函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2
4],求實(shí)數a的取值(1)若函數f(x)的遞減區間是(,4]上是減函數,求實(shí)數a的取值范圍(2)若函數f(x)在區間(,分析:二次函數的單調區間是由其開(kāi)口方向及對稱(chēng)軸決定的,要分清函數在區間A上是單調函數及單調區間是A的區別與聯(lián)系
解:(1)f(x)的對稱(chēng)軸是x可得函數圖像開(kāi)口向上
2(a1)21a,且二次項系數為1>0
1a]∴f(x)的單調減區間為(,∴依題設條件可得1a4,解得a3
4]上是減函數(2)∵f(x)在區間(,4]是遞減區間(,1a]的子區間∴(,∴1a4,解得a3
例5、函數f(x)x2bx2,滿(mǎn)足:f(3x)f(3x)
。1)求方程f(x)0的.兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的對稱(chēng)軸為x(3x)(3x)23
b3可得b62f(x)x26x2(x3)211
而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對稱(chēng)軸x3對稱(chēng)
x1x223,可得x1x26
第三章第32頁(yè)由二次項系數為1>0,可知拋物線(xiàn)開(kāi)口向上又134,132,431
∴依二次函數的對稱(chēng)性及單調性可f(4)f(1)f(1)(III)課后作業(yè)練習六
。á簦┙虒W(xué)后記:
第三章第33頁(yè)
擴展閱讀:初中數學(xué)函數知識點(diǎn)歸納
學(xué)大教育
初中數學(xué)函數板塊的知識點(diǎn)總結與歸類(lèi)學(xué)習方法
初中數學(xué)知識大綱中,函數知識占了很大的知識體系比例,學(xué)好了函數,掌握了函數的基本性質(zhì)及其應用,真正精通了函數的每一個(gè)模塊知識,會(huì )做每一類(lèi)函數題型,就讀于中考中數學(xué)成功了一大半,數學(xué)成績(jì)自然上高峰,同時(shí),函數的思想是學(xué)好其他理科類(lèi)學(xué)科的基礎。初中數學(xué)從性質(zhì)上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類(lèi)函數的定義、基本性質(zhì)、函數圖象及函數應用思維方式方法。
一、一次函數
1.定義:在定義中應注意的問(wèn)題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(zhì)(1)形狀、直線(xiàn)
函數知識點(diǎn)總結20
總體上必須清楚的:
1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。
2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個(gè)main函數。
3)計算機的數據在電腦中保存是以二進(jìn)制的形式.數據存放的位置就是他的地址.
4)bit是位是指為0或者1。 byte是指字節,一個(gè)字節=八個(gè)位.
概念?嫉降模
1、編譯預處理不是C語(yǔ)言的一部分,不占運行時(shí)間,不要加分號。C語(yǔ)言編譯的程序稱(chēng)為源程序,它以ASCII數值存放在文本文件中。
2、define PI 3.1415926;這個(gè)寫(xiě)法是錯誤的,一定不能出現分號。 -
3、每個(gè)C語(yǔ)言程序中main函數是有且只有一個(gè)。
4、在函數中不可以再定義函數。
5、算法:可以沒(méi)有輸入,但是一定要有輸出。
6、break可用于循環(huán)結構和switch語(yǔ)句。
7、逗號運算符的級別最低,賦值的級別倒數第二。
第一章C語(yǔ)言的基礎知識
第一節、對C語(yǔ)言的基礎認識
1、C語(yǔ)言編寫(xiě)的程序稱(chēng)為源程序,又稱(chēng)為編譯單位。
2、C語(yǔ)言書(shū)寫(xiě)格式是自由的,每行可以寫(xiě)多個(gè)語(yǔ)句,可以寫(xiě)多行。
3、一個(gè)C語(yǔ)言程序有且只有一個(gè)main函數,是程序運行的起點(diǎn)。
第二節、熟悉vc++
1、VC是軟件,用來(lái)運行寫(xiě)的C語(yǔ)言程序。
2、每個(gè)C語(yǔ)言程序寫(xiě)完后,都是先編譯,后鏈接,最后運行。(.c—.obj—.exe)這個(gè)過(guò)程中注意.c和.obj文件時(shí)無(wú)法運行的,只有.exe文件才可以運行。(?迹。
第三節、標識符
1、標識符(必考內容):
合法的要求是由字母,數字,下劃線(xiàn)組成。有其它元素就錯了。
并且第一個(gè)必須為字母或則是下劃線(xiàn)。第一個(gè)為數字就錯了
2、標識符分為關(guān)鍵字、預定義標識符、用戶(hù)標識符。
關(guān)鍵字:不可以作為用戶(hù)標識符號。main define scanf printf都不是關(guān)鍵字。迷惑你的地方If是可以做為用戶(hù)標識符。因為If中的第一個(gè)字母大寫(xiě)了,所以不是關(guān)鍵字。
預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶(hù)標識符。
用戶(hù)標識符:基本上每年都考,詳細請見(jiàn)書(shū)上習題。
第四節:進(jìn)制的轉換
十進(jìn)制轉換成二進(jìn)制、八進(jìn)制、十六進(jìn)制。
二進(jìn)制、八進(jìn)制、十六進(jìn)制轉換成十進(jìn)制。
第五節:整數與實(shí)數
1)C語(yǔ)言只有八、十、十六進(jìn)制,沒(méi)有二進(jìn)制。但是運行時(shí)候,所有的進(jìn)制都要轉換成二進(jìn)制來(lái)進(jìn)行處理。(考過(guò)兩次)
a、C語(yǔ)言中的八進(jìn)制規定要以0開(kāi)頭。018的數值是非法的,八進(jìn)制是沒(méi)有8的,逢8進(jìn)1。
b、C語(yǔ)言中的十六進(jìn)制規定要以0x開(kāi)頭。
2)小數的合法寫(xiě)法:C語(yǔ)言小數點(diǎn)兩邊有一個(gè)是零的話(huà),可以不用寫(xiě)。
1.0在C語(yǔ)言中可寫(xiě)成1.
0.1在C語(yǔ)言中可以寫(xiě)成.1。
3)實(shí)型數據的'合法形式:
a、2.333e-1就是合法的,且數據是2.333×10-1。
b、考試口訣:e前e后必有數,e后必為整數。請結合書(shū)上的例子。
4)整型一般是4個(gè)字節,字符型是1個(gè)字節,雙精度一般是8個(gè)字節:
long int x;表示x是長(cháng)整型。
unsigned int x;表示x是無(wú)符號整型。
第六、七節:算術(shù)表達式和賦值表達式
核心:表達式一定有數值!
1、算術(shù)表達式:+,-,*,/,%
考試一定要注意:“/”兩邊都是整型的話(huà),結果就是一個(gè)整型。 3/2的結果就是1.
“/”如果有一邊是小數,那么結果就是小數。 3/2.0的結果就是0.5
“%”符號請一定要注意是余數,考試最容易算成了除號。)%符號兩邊要求是整數。不是整數就錯了。[注意!!!]
2、賦值表達式:表達式數值是最左邊的數值,a=b=5;該表達式為5,常量不可以賦值。
1、int x=y=10:錯啦,定義時(shí),不可以連續賦值。
2、int x,y;
x=y=10;對滴,定義完成后,可以連續賦值。
3、賦值的左邊只能是一個(gè)變量。
4、int x=7.7;對滴,x就是7
5、float y=7;對滴,x就是7.0
3、復合的賦值表達式:
int a=2;
a*=2+3;運行完成后,a的值是12。
一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。
4、自加表達式:
自加、自減表達式:假設a=5,++a(是為6),a++(為5);
運行的機理:++a是先把變量的數值加上1,然后把得到的數值放到變量a中,然后再用這個(gè)++a表達式的數值為6,而a++是先用該表達式的數值為5,然后再把a的數值加上1為6,
再放到變量a中。進(jìn)行了++a和a++后在下面的程序中再用到a的話(huà)都是變量a中的6了。
考試口訣:++在前先加后用,++在后先用后加。
5、逗號表達式:
優(yōu)先級別最低。表達式的數值逗號最右邊的那個(gè)表達式的數值。
。2,3,4)的表達式的數值就是4。
z=(2,3,4)(整個(gè)是賦值表達式)這個(gè)時(shí)候z的值為4。(有點(diǎn)難度哦。
z= 2,3,4(整個(gè)是逗號表達式)這個(gè)時(shí)候z的值為2。
補充:
1、空語(yǔ)句不可以隨意執行,會(huì )導致邏輯錯誤。
2、注釋是最近幾年考試的重點(diǎn),注釋不是C語(yǔ)言,不占運行時(shí)間,沒(méi)有分號。不可以嵌套!
3、強制類(lèi)型轉換:
一定是(int)a不是int(a),注意類(lèi)型上一定有括號的。
注意(int)(a+b)和(int)a+b的區別。前是把a+b轉型,后是把a轉型再加b。
4、三種取整丟小數的情況:
。、int a =1.6;
。、(int)a;
。、1/2;3/2;
第八節、字符
1)字符數據的合法形式::
‘1’是字符占一個(gè)字節,”1”是字符串占兩個(gè)字節(含有一個(gè)結束符號)。
‘0’的ASCII數值表示為48,’a’的ASCII數值是97,’A’的ASCII數值是65。
一般考試表示單個(gè)字符錯誤的形式:’65’ “1”
字符是可以進(jìn)行算術(shù)運算的,記。骸0’-0=48
大寫(xiě)字母和小寫(xiě)字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。
2)轉義字符:
轉義字符分為一般轉義字符、八進(jìn)制轉義字符、十六進(jìn)制轉義字符。
一般轉義字符:背誦/0、、 ’、 ”、 。
八進(jìn)制轉義字符:‘141’是合法的,前導的0是不能寫(xiě)的。
十六進(jìn)制轉義字符:’x6d’才是合法的,前導的0不能寫(xiě),并且x是小寫(xiě)。
3、字符型和整數是近親:兩個(gè)具有很大的相似之處
char a = 65 ;
printf(“%c”, a);得到的輸出結果:a
printf(“%d”, a);得到的輸出結果:65
第九節、位運算
1)位運算的考查:會(huì )有一到二題考試題目。
總的處理方法:幾乎所有的位運算的題目都要按這個(gè)流程來(lái)處理(先把十進(jìn)制變成二進(jìn)制再變成十進(jìn)制)。
例1:char a = 6, b;
b = a<<2;這種題目的計算是先要把a的十進(jìn)制6化成二進(jìn)制,再做位運算。
例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。
0異或0得到0。兩個(gè)女的生不出來(lái)。
考試記憶方法:一男(1)一女(0)才可以生個(gè)小孩(1)。
例3:在沒(méi)有舍去數據的時(shí)候,<<左移一位表示乘以2;>>右移一位表示除以2。
【函數知識點(diǎn)總結】相關(guān)文章:
函數知識點(diǎn)總結02-10
函數知識點(diǎn)總結06-23
[精選]函數知識點(diǎn)03-01
函數知識點(diǎn)03-01
初二函數知識點(diǎn)總結01-13
函數知識點(diǎn)總結20篇04-20
函數知識點(diǎn)(合集)03-02