- 相關(guān)推薦
數學(xué)二次函數知識點(diǎn)總結
在我們平凡的學(xué)生生涯里,是不是聽(tīng)到知識點(diǎn),就立刻清醒了?知識點(diǎn)就是學(xué)習的重點(diǎn)。那么,都有哪些知識點(diǎn)呢?下面是小編整理的數學(xué)二次函數知識點(diǎn)總結,歡迎大家分享。
數學(xué)二次函數知識點(diǎn)總結 1
二次函數及其圖像
二次函數(quadraticfunction)是指未知數的最高次數為二次的多項式函數。二次函數可以表示為f(x)=ax^2bxc(a不為0)。其圖像是一條主軸平行于y軸的拋物線(xiàn)。
一般的,自變量x和因變量y之間存在如下關(guān)系:
一般式
y=ax∧2;bxc(a≠0,a、b、c為常數),頂點(diǎn)坐標為(-b/2a,-(4ac-b∧2)/4a);
頂點(diǎn)式
y=a(xm)∧2k(a≠0,a、m、k為常數)或y=a(x-h)∧2k(a≠0,a、h、k為常數),頂點(diǎn)坐標為(-m,k)對稱(chēng)軸為x=-m,頂點(diǎn)的位置特征和圖像的開(kāi)口方向與函數y=ax∧2的圖像相同,有時(shí)題目會(huì )指出讓你用配方法把一般式化成頂點(diǎn)式;
交點(diǎn)式
y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)];
重要概念:a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下。a的絕對值還可以決定開(kāi)口大小,a的絕對值越大開(kāi)口就越小,a的絕對值越小開(kāi)口就越大。
牛頓插值公式(已知三點(diǎn)求函數解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導出交點(diǎn)式的系數a=y1/(x1*x2)(y1為截距)
求根公式
二次函數表達式的右邊通常為二次三項式。
x是自變量,y是x的二次函數
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法還有因式分解法和配方法
在平面直角坐標系中作出二次函數y=2x的平方的圖像,可以看出,二次函數的圖像是一條永無(wú)止境的拋物線(xiàn)。不同的二次函數圖像
如果所畫(huà)圖形準確無(wú)誤,那么二次函數將是由一般式平移得到的。
注意:草圖要有1本身圖像,旁邊注明函數。
2畫(huà)出對稱(chēng)軸,并注明X=什么
3與X軸交點(diǎn)坐標,與Y軸交點(diǎn)坐標,頂點(diǎn)坐標。拋物線(xiàn)的性質(zhì)
軸對稱(chēng)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
頂點(diǎn)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為P(-b/2a,4ac-b^2;)/4a)
當-b/2a=0時(shí),P在y軸上;當Δ=b^2;-4ac=0時(shí),P在x軸上。
開(kāi)口
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
決定對稱(chēng)軸位置的因素
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;因為若對稱(chēng)軸在左邊則對稱(chēng)軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。因為對稱(chēng)軸在右邊則對稱(chēng)軸要大于0,也就是-b2a="">0,所以b/2a要小于0,所以a、b要異號
可簡(jiǎn)單記憶為左同右異,即當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
事實(shí)上,b有其自身的幾何意義:拋物線(xiàn)與y軸的交點(diǎn)處的該拋物線(xiàn)切線(xiàn)的函數解析式(一次函數)的斜率k的值?赏ㄟ^(guò)對二次函數求導得到。
決定拋物線(xiàn)與y軸交點(diǎn)的因素
5.常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
拋物線(xiàn)與x軸交點(diǎn)個(gè)數
6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
當a>0時(shí),函數在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是減函數,在{x|x>-b/2a}上是增函數;拋物線(xiàn)的開(kāi)口向上;函數的值域是{y|y≥4ac-b^2/4a}相反不變
當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸,這時(shí),函數是偶函數,解析式變形為y=ax^2c(a≠0)
特殊值的形式
7.特殊值的形式
、佼攛=1時(shí)y=abc
、诋攛=-1時(shí)y=a-bc
、郛攛=2時(shí)y=4a2bc
、墚攛=-2時(shí)y=4a-2bc
二次函數的性質(zhì)
8.定義域:R
值域:(對應解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,
正無(wú)窮);②[t,正無(wú)窮)
奇偶性:當b=0時(shí)為偶函數,當b≠0時(shí)為非奇非偶函數。
周期性:無(wú)
解析式:
、賧=ax^2bxc[一般式]
、臿≠0
、芶>0,則拋物線(xiàn)開(kāi)口朝上;a<0,則拋物線(xiàn)開(kāi)口朝下;
、菢O值點(diǎn):(-b/2a,(4ac-b^2)/4a);
、圈=b^2-4ac,
Δ>0,圖象與x軸交于兩點(diǎn):
([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);
Δ=0,圖象與x軸交于一點(diǎn):
(-b/2a,0);
Δ<0,圖象與x軸無(wú)交點(diǎn);
、趛=a(x-h)^2k[頂點(diǎn)式]
此時(shí),對應極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
、踶=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)
對稱(chēng)軸X=(X1X2)/2當a>0且X≧(X1X2)/2時(shí),Y隨X的增大而增大,當a>0且X≦(X1X2)/2時(shí)Y隨X的增大而減小
此時(shí),x1、x2即為函數與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連用)。
交點(diǎn)式是Y=A(X-X1)(X-X2)知道兩個(gè)x軸交點(diǎn)和另一個(gè)點(diǎn)坐標設交點(diǎn)式。兩交點(diǎn)X值就是相應X1X2值。
26.2用函數觀(guān)點(diǎn)看一元二次方程
1.如果拋物線(xiàn)與x軸有公共點(diǎn),公共點(diǎn)的橫坐標是,那么當時(shí),函數的值是0,因此就是方程的一個(gè)根。
2.二次函數的圖象與x軸的位置關(guān)系有三種:沒(méi)有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對應著(zhù)一元二次方程根的三種情況:沒(méi)有實(shí)數根,有兩個(gè)相等的實(shí)數根,有兩個(gè)不等的實(shí)數根。
26.3實(shí)際問(wèn)題與二次函數
在日常生活、生產(chǎn)和科研中,求使材料最省、時(shí)間最少、效率最高等問(wèn)題,有些可歸結為求二次函數的最大值或最小值。
二次函數
提醒大家:上面的內容是二次函數知識點(diǎn),請大家做好筆記了。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:
、僭谕黄矫
、趦蓷l數軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的'構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
數學(xué)二次函數知識點(diǎn)總結 2
1.二次函數的概念
二次函數的概念:一般地,形如(是常數,)的函數,叫做二次函數。這里需要強調:和一元二次方程類(lèi)似,二次項系數,而可以為零.二次函數的定義域是全體實(shí)數。
2.二次函數的結構特征:
、诺忍栕筮吺呛瘮,右邊是關(guān)于自變量的二次式,的最高次數是2。
、剖浅,是二次項系數,是一次項系數,是常數項。
2.初三數學(xué)二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)。頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]。
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]。
注:在3種形式的互相轉化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。
3.二次函數的性質(zhì)
1.性質(zhì):
(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。
(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。
2.k,b與函數圖像所在象限:當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;當k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn);當b<0時(shí),直線(xiàn)必通過(guò)三、四象限。特別地,當b=o時(shí),直線(xiàn)通過(guò)原點(diǎn)o(0,0)表示的`是正比例函數的圖像。這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。
4.初三數學(xué)二次函數圖像
對于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對稱(chēng)。
、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對稱(chēng)。
、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對稱(chēng)。
、躽=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對稱(chēng)。(即繞原點(diǎn)旋轉180度后得到的圖形)
對于頂點(diǎn)式:
、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對稱(chēng),即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對稱(chēng),橫坐標相反、縱坐標相同。
、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對稱(chēng),即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對稱(chēng),橫坐標相同、縱坐標相反。
、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對稱(chēng),即頂點(diǎn)(h,k)和(h,k)相同,開(kāi)口方向相反。
、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對稱(chēng),即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對稱(chēng),橫坐標、縱坐標都相反。(其實(shí)①③④就是對f(x)來(lái)說(shuō)f(-x),-f(x),-f(-x)的情況)
數學(xué)二次函數知識點(diǎn)總結 3
一、 基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2. 分類(lèi):
二、 解方程的依據—等式性質(zhì)
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括號→移項→合并同類(lèi)項→
系數化成1→解。
2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法
、诩訙p法
四、 一元二次方程
1.定義及一般形式:
2.解法:⑴直接開(kāi)平方法(注意特征)
、婆浞椒(注意步驟—推倒求根公式)
、枪椒ǎ
、纫蚴椒纸夥(特征:左邊=0)
3.根的判別式:
4.根與系數頂的關(guān)系:
逆定理:若 ,則以 為根的`一元二次方程是: 。
5.常用等式:
五、 可化為一元二次方程的方程
1.分式方程
、哦x
、苹舅枷耄
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如, )
、闰灨胺椒
2.無(wú)理方程
、哦x
、苹舅枷耄
、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例, )⑷驗根及方法
3.簡(jiǎn)單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。
六、 列方程(組)解應用題
一概述
列方程(組)解應用題是中學(xué)數學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。
、圃O元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來(lái)說(shuō),未知數越多,方程越易列,但越難解。
、怯煤粗獢档拇鷶凳奖硎鞠嚓P(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數個(gè)數與方程個(gè)數是相同的。
、山夥匠碳皺z驗。
、蚀鸢。
綜上所述,列方程(組)解應用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題(設元、列方程),在由數學(xué)問(wèn)題的解決而導致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著(zhù)承前啟后的作用。因此,列方程是解應用題的關(guān)鍵。
二常用的相等關(guān)系
1. 行程問(wèn)題(勻速運動(dòng))
基本關(guān)系:s=vt
、畔嘤鰡(wèn)題(同時(shí)出發(fā)):
+ = ;
、谱芳皢(wèn)題(同時(shí)出發(fā)):
若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則
、撬泻叫校 ;
2. 配料問(wèn)題:溶質(zhì)=溶液×濃度
溶液=溶質(zhì)+溶劑
3.增長(cháng)率問(wèn)題:
4.工程問(wèn)題:基本關(guān)系:工作量=工作效率×工作時(shí)間(常把工作量看著(zhù)單位“1”)。
5.幾何問(wèn)題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
數學(xué)二次函數知識點(diǎn)總結 4
1二次函數的定義
一般地,形如y=ax2+bx+c(a,b,c為常數,a≠0)的函數叫做x的二次函數.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數.
注意:(1)二次函數是關(guān)于自變量的二次式,二次項系數a必須是非零實(shí)數,即a≠0,而b,c是任意實(shí)數,二次函數的表達式是一個(gè)整式;
(2)二次函數y=ax2+bx+c(a,b,c是常數,a≠0),自變量x的取值范圍是全體實(shí)數;
(3)當b=c=0時(shí),二次函數y=ax2是最簡(jiǎn)單的二次函數;
(4)一個(gè)函數是否是二次函數,要化簡(jiǎn)整理后,對照定義才能下結論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數.
2二次函數解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).
(2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數,a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線(xiàn)與x軸的交點(diǎn)的橫坐標,即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.
說(shuō)明:(1)任何一個(gè)二次函數通過(guò)配方都可以化為頂點(diǎn)式y=a(x-h)2+k,拋物線(xiàn)的頂點(diǎn)坐標是(h,k),h=0時(shí),拋物線(xiàn)y=ax2+k的頂點(diǎn)在y軸上;當k=0時(shí),拋物線(xiàn)a(x-h)2的頂點(diǎn)在x軸上;當h=0且k=0時(shí),拋物線(xiàn)y=ax2的`頂點(diǎn)在原點(diǎn)
3二次函數y=ax2+c的圖象與性質(zhì)
(1)拋物線(xiàn)y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數y=ax2+c的圖象是一條拋物線(xiàn),頂點(diǎn)坐標是(0,c),對稱(chēng)軸是y軸.
當a>0時(shí),圖象的開(kāi)口向上,有最低點(diǎn)(即頂點(diǎn)),當x=0時(shí),y最小值=c.在y軸左側,y隨x的增大而減小;在y軸右側,y隨x增大而增大.
當a<0時(shí),圖象的開(kāi)口向下,有最高點(diǎn)(即頂點(diǎn)),當x=0時(shí),y最大值=c.在y軸左側,y隨x的增大而增大;在y軸右側,y隨x增大而減小.
(3)拋物線(xiàn)y=ax2+c與y=ax2的關(guān)系.
拋物線(xiàn)y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線(xiàn)y=ax2+c可由拋物線(xiàn)y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當c>0時(shí),向上平行移動(dòng),當c<0時(shí),向下平行移動(dòng).
數學(xué)二次函數知識點(diǎn)總結 5
一、二次函數概念:
a0)b,c是常數
1.二次函數的概念:一般地,形如yax2bxc(a,的函數,叫做二次函數。這c可以為零.二次函數的定義域是全體實(shí)里需要強調:和一元二次方程類(lèi)似,二次項系數a0,而b,數.
2.二次函數yax2bxc的結構特征:
、诺忍栕筮吺呛瘮,右邊是關(guān)于自變量x的二次式,x的最高次數是2.b,c是常數,a是二次項系數,b是一次項系數,c是常數項.
、芶,二、二次函數的基本形式
1.二次函數基本形式:yax2的性質(zhì):a的絕對值越大,拋物線(xiàn)的開(kāi)口越小。
a的符號a0開(kāi)口方向頂點(diǎn)坐標對稱(chēng)軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.
2.yax2c的性質(zhì):上加下減。
a的符號a0開(kāi)口方向頂點(diǎn)坐標對稱(chēng)軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.
3.yaxh的性質(zhì):左加右減。
2a的符號a0開(kāi)口方向頂點(diǎn)坐標對稱(chēng)軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.
4.yaxhk的性質(zhì):
a的符號開(kāi)口方向頂點(diǎn)坐標對稱(chēng)軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.
三、二次函數圖象的平移
1.平移步驟:
方法一:
、艑佄锞(xiàn)解析式轉化成頂點(diǎn)式yaxhk,確定其頂點(diǎn)坐標h,k;
、票3謷佄锞(xiàn)yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:
向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k
畫(huà)草圖時(shí)應抓住以下幾點(diǎn):開(kāi)口方向,對稱(chēng)軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).
六、二次函數yax2bxc的性質(zhì)
b4acb2b1.當a0時(shí),拋物線(xiàn)開(kāi)口向上,對稱(chēng)軸為x,頂點(diǎn)坐標為,.
2a4a2a當xbbb時(shí),y隨x的增大而減;當x時(shí),y隨x的增大而增大;當x時(shí),y有最小2a2a2a4acb2值.
4ab4acb2bb2.當a0時(shí),拋物線(xiàn)開(kāi)口向下,對稱(chēng)軸為x,頂點(diǎn)坐標為,時(shí),y隨.當x2a4a2a2a4acb2bb.x的增大而增大;當x時(shí),y隨x的增大而減;當x時(shí),y有最大值
2a2a4a
七、二次函數解析式的表示方法
1.一般式:yax2bxc(a,b,c為常數,a0);
2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數,a0);
3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線(xiàn)與x軸兩交點(diǎn)的橫坐標).
注意:任何二次函數的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數都可以寫(xiě)成交點(diǎn)式,只有拋物線(xiàn)與x軸有交點(diǎn),即b24ac0時(shí),拋物線(xiàn)的解析式才可以用交點(diǎn)式表示.二次函數解析式的這三種形式可以互化.
八、二次函數的圖象與各項系數之間的.關(guān)系
1.二次項系數a
二次函數yax2bxc中,a作為二次項系數,顯然a0.
、女攁0時(shí),拋物線(xiàn)開(kāi)口向上,a的值越大,開(kāi)口越小,反之a(chǎn)的值越小,開(kāi)口越大;
、飘攁0時(shí),拋物線(xiàn)開(kāi)口向下,a的值越小,開(kāi)口越小,反之a(chǎn)的值越大,開(kāi)口越大.
總結起來(lái),a決定了拋物線(xiàn)開(kāi)口的大小和方向,a的正負決定開(kāi)口方向,a的大小決定開(kāi)口的大。
2.一次項系數b
在二次項系數a確定的前提下,b決定了拋物線(xiàn)的對稱(chēng)軸.
、旁赼0的前提下,當b0時(shí),當b0時(shí),當b0時(shí),b0,即拋物線(xiàn)的對稱(chēng)軸在y軸左側;2ab0,即拋物線(xiàn)的對稱(chēng)軸就是y軸;2ab0,即拋物線(xiàn)對稱(chēng)軸在y軸的右側.2a⑵在a0的前提下,結論剛好與上述相反,即當b0時(shí),當b0時(shí),當b0時(shí),b0,即拋物線(xiàn)的對稱(chēng)軸在y軸右側;2ab0,即拋物線(xiàn)的對稱(chēng)軸就是y軸;2ab0,即拋物線(xiàn)對稱(chēng)軸在y軸的左側.2a
總結起來(lái),在a確定的前提下,b決定了拋物線(xiàn)對稱(chēng)軸的位置.
ab的符號的判定:對稱(chēng)軸xb在y軸左邊則ab0,在y軸的右側則ab0,概括的說(shuō)就是“左同2a右異”總結:
3.常數項c
、女攃0時(shí),拋物線(xiàn)與y軸的交點(diǎn)在x軸上方,即拋物線(xiàn)與y軸交點(diǎn)的縱坐標為正;
、飘攃0時(shí),拋物線(xiàn)與y軸的交點(diǎn)為坐標原點(diǎn),即拋物線(xiàn)與y軸交點(diǎn)的縱坐標為0;
、钱攃0時(shí),拋物線(xiàn)與y軸的交點(diǎn)在x軸下方,即拋物線(xiàn)與y軸交點(diǎn)的縱坐標為負.總結起來(lái),c決定了拋物線(xiàn)與y軸交點(diǎn)的位置.
b,c都確定,那么這條拋物線(xiàn)就是唯一確定的.總之,只要a,二次函數解析式的確定:
根據已知條件確定二次函數解析式,通常利用待定系數法.用待定系數法求二次函數的解析式必須根據題目的特點(diǎn),選擇適當的形式,才能使解題簡(jiǎn)便.一般來(lái)說(shuō),有如下幾種情況:
1.已知拋物線(xiàn)上三點(diǎn)的坐標,一般選用一般式;
2.已知拋物線(xiàn)頂點(diǎn)或對稱(chēng)軸或最大(。┲,一般選用頂點(diǎn)式;
3.已知拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)的橫坐標,一般選用兩根式;
4.已知拋物線(xiàn)上縱坐標相同的兩點(diǎn),常選用頂點(diǎn)式.
九、二次函數圖象的對稱(chēng)
二次函數圖象的對稱(chēng)一般有五種情況,可以用一般式或頂點(diǎn)式表達
1.關(guān)于x軸對稱(chēng)
yax2bxc關(guān)于x軸對稱(chēng)后,得到的解析式是yax2bxc;
yaxhk關(guān)于x軸對稱(chēng)后,得到的解析式是yaxhk;
2.關(guān)于y軸對稱(chēng)
yax2bxc關(guān)于y軸對稱(chēng)后,得到的解析式是yax2bxc;
22yaxhk關(guān)于y軸對稱(chēng)后,得到的解析式是yaxhk;
3.關(guān)于原點(diǎn)對稱(chēng)
yax2bxc關(guān)于原點(diǎn)對稱(chēng)后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對稱(chēng)后,得到的解析式是yaxhk;
4.關(guān)于頂點(diǎn)對稱(chēng)(即:拋物線(xiàn)繞頂點(diǎn)旋轉180°)
2222b2yaxbxc關(guān)于頂點(diǎn)對稱(chēng)后,得到的解析式是yaxbxc;
2a22yaxhk關(guān)于頂點(diǎn)對稱(chēng)后,得到的解析式是yaxhk.n對稱(chēng)
5.關(guān)于點(diǎn)m,n對稱(chēng)后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據對稱(chēng)的性質(zhì),顯然無(wú)論作何種對稱(chēng)變換,拋物線(xiàn)的形狀一定不會(huì )發(fā)生變化,因此a永遠不變.求拋物線(xiàn)的對稱(chēng)拋物線(xiàn)的表達式時(shí),可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(xiàn)(或表達式已知的拋物線(xiàn))的頂點(diǎn)坐標及開(kāi)口方向,再確定其對稱(chēng)拋物線(xiàn)的頂點(diǎn)坐標及開(kāi)口方向,然后再寫(xiě)出其對稱(chēng)拋物線(xiàn)的表達式.
十、二次函數與一元二次方程:
1.二次函數與一元二次方程的關(guān)系(二次函數與x軸交點(diǎn)情況):
一元二次方程ax2bxc0是二次函數yax2bxc當函數值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數:
、佼攂24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次
b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.
a2
、诋0時(shí),圖象與x軸只有一個(gè)交點(diǎn);
、郛0時(shí),圖象與x軸沒(méi)有交點(diǎn).
1"當a0時(shí),圖象落在x軸的上方,無(wú)論x為任何實(shí)數,都有y0;
2"當a0時(shí),圖象落在x軸的下方,無(wú)論x為任何實(shí)數,都有y0.
2.拋物線(xiàn)yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
3.二次函數常用解題方法總結:
、徘蠖魏瘮档膱D象與x軸的交點(diǎn)坐標,需轉化為一元二次方程;
、魄蠖魏瘮档淖畲螅ㄐ。┲敌枰门浞椒▽⒍魏瘮涤梢话闶睫D化為頂點(diǎn)式;
、歉鶕䦂D象的位置判斷二次函數yax2bxc中a,b,c的符號,或由二次函數中a,b,c的符號判斷圖象的位置,要數形結合;
、榷魏瘮档膱D象關(guān)于對稱(chēng)軸對稱(chēng),可利用這一性質(zhì),求和已知一點(diǎn)對稱(chēng)的點(diǎn)坐標,或已知與x軸的一個(gè)交點(diǎn)坐標,可由對稱(chēng)性求出另一個(gè)交點(diǎn)坐標.
、膳c二次函數有關(guān)的還有二次三項式,二次三項式ax2bxc(a0)本身就是所含字母x的二次函數;下面以a0時(shí)為例,揭示二次函數、二次三項式和一元二次方程之間的內在聯(lián)系:
0拋物線(xiàn)與x軸有兩個(gè)交點(diǎn)0二次三項式的值可正、可零、可負二次三項式的值為非負二次三項式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數根一元二次方程無(wú)實(shí)數根.0拋物線(xiàn)與x軸只有一個(gè)交點(diǎn)拋物線(xiàn)與x軸無(wú)交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數圖像參考:
y=3x2y=3(x-2)2y=x22
y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2
十一、函數的應用
剎車(chē)距離二次函數應用何時(shí)獲得最大利潤
最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2
【數學(xué)二次函數知識點(diǎn)總結】相關(guān)文章:
二次函數的知識點(diǎn)總結09-17
二次函數數學(xué)教案06-30
二次函數數學(xué)教案10-28
數學(xué)二次函數教學(xué)反思07-29