- 相關(guān)推薦
高中數學(xué)考試知識點(diǎn)總結
在學(xué)習中,大家都背過(guò)各種知識點(diǎn)吧?知識點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識。為了幫助大家更高效的學(xué)習,以下是小編為大家整理的高中數學(xué)考試知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
高中數學(xué)考試知識點(diǎn)總結 1
空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類(lèi):
(1)共面:平行、相交
(2)異面:
異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。
異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。
兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):
(1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);
(2)沒(méi)有公共點(diǎn)——平行或異面
直線(xiàn)和平面的位置關(guān)系:
直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行
、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)
、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)
直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。
高中數學(xué)考試知識點(diǎn)總結 2
★高中數學(xué)導數知識點(diǎn)
一、早期導數概念————特殊的形式大約在1629年法國數學(xué)家費馬研究了作曲線(xiàn)的切線(xiàn)和求函數極值的方法1637年左右他寫(xiě)一篇手稿《求最大值與最小值的方法》。在作切線(xiàn)時(shí)他構造了差分f(A+E)—f(A),發(fā)現的因子E就是我們所說(shuō)的導數f(A)。
二、17世紀————廣泛使用的“流數術(shù)”17世紀生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng )造性研究的基礎上大數學(xué)家牛頓、萊布尼茨等從不同的角度開(kāi)始系統地研究微積分。牛頓的微積分理論被稱(chēng)為“流數術(shù)”他稱(chēng)變量為流量稱(chēng)變量的變化率為流數相當于我們所說(shuō)的導數。牛頓的有關(guān)“流數術(shù)”的主要著(zhù)作是《求曲邊形面積》、《運用無(wú)窮多項方程的計算法》和《流數術(shù)和無(wú)窮級數》流數理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數而不在于多變量的方程在于自變量的變化與函數的變化的比的構成最在于決定這個(gè)比當變化趨于零時(shí)的極限。
三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書(shū)》第五版寫(xiě)的“微分”條目中提出了關(guān)于導數的一種觀(guān)點(diǎn)可以用現代符號簡(jiǎn)單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無(wú)窮小分析概論》中定義導數如果函數y=f(x)在變量x的兩個(gè)給定的界限之間保持連續并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無(wú)窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng )造了ε—δ語(yǔ)言對微積分中出現的各種類(lèi)型的極限重加表達導數的定義也就獲得了今天常見(jiàn)的形式。
四、實(shí)無(wú)限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎大體可以分為兩個(gè)部分。一個(gè)是實(shí)無(wú)限理論即無(wú)限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無(wú)限指一種意識形態(tài)上的過(guò)程比如無(wú)限接近。就歷史來(lái)看兩種理論都有一定的道理。其中實(shí)無(wú)限用了150年后來(lái)極限論就是現在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長(cháng)期爭論的問(wèn)題后來(lái)由波粒二象性來(lái)統一。微積分無(wú)論是用現代極限論還是150年前的理論都不是最好的手段。
★高中數學(xué)導數要點(diǎn)
1、求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過(guò)來(lái),也可以利用導數由函數的單調性解決相關(guān)問(wèn)題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
。1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
。2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
。3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。
2、求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過(guò)研究函數的單調性求得,基本步驟是:
。1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區間,并列表:x變化時(shí),f(x)和f(x)值的
變化情況:
。4)檢查f(x)的符號并由表格判斷極值。
3、求函數的最大值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數在定義域上的最大值。函數在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。
求函數f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問(wèn)題:
。1)不等式恒成立問(wèn)題(絕對不等式問(wèn)題)可考慮值域。
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
。2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5、導數在實(shí)際生活中的應用:
實(shí)際生活求解最大(。┲祮(wèn)題,通常都可轉化為函數的最值。在利用導數來(lái)求函數最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數,極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。
高中數學(xué)考試知識點(diǎn)總結 3
(一)導數第一定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時(shí),相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即導數第一定義
(二)導數第二定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時(shí),相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即 導數第二定義
(三)導函數與導數
如果函數 y = f(x) 在開(kāi)區間 I 內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間 I 內可導。這時(shí)函數 y = f(x) 對于區間 I 內的每一個(gè)確定的 x 值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數 y = f(x) 的導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。
(四)單調性及其應用
1.利用導數研究多項式函數單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對應區間為增區間; f(x)<0的解集與定義域的交集的對應區間為減區間
學(xué)習了導數基礎知識點(diǎn),接下來(lái)可以學(xué)習高二數學(xué)中涉及到的導數應用的部分。
高中數學(xué)考試知識點(diǎn)總結 4
一、高中數列基本公式:
1、一般數列的通項an與前n項和Sn的關(guān)系:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時(shí),an是關(guān)于n的一次式;當d=0時(shí),an是一個(gè)常數。
3、等差數列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時(shí),Sn是關(guān)于n的二次式且常數項為0;當d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當q≠1時(shí),Sn=
Sn=
二、高中數學(xué)中有關(guān)等差、等比數列的結論
1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。
2、等差數列{an}中,若m+n=p+q,則
3、等比數列{an}中,若m+n=p+q,則
4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。
5、兩個(gè)等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個(gè)等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個(gè)數成等差數列的設法:a-d,a,a+d;四個(gè)數成等差的設法:a-3d,a-d,,a+d,a+3d
10、三個(gè)數成等比數列的設法:a/q,a,aq;
四個(gè)數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)
高中數學(xué)考試知識點(diǎn)總結 5
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1、建立適當的坐標系,設出動(dòng)點(diǎn)M的坐標;
2、寫(xiě)出點(diǎn)M的集合;
3、列出方程=0;
4、化簡(jiǎn)方程為最簡(jiǎn)形式;
5、檢驗。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數法:當動(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。
5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
、俳ㄏ怠⑦m當的坐標系;
、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);
、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高中數學(xué)考試知識點(diǎn)總結 6
(1)不等關(guān)系
感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
。2)一元二次不等式
、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。
、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。
、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。
。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題
、購膶(shí)際情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。
、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。
。4)基本不等式
、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。
、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。
高中數學(xué)考試知識點(diǎn)總結 7
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(cháng)稱(chēng)為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內切圓,其圓心稱(chēng)為內心。
5.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線(xiàn)。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長(cháng)/圓錐母線(xiàn)—l 周長(cháng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱(chēng)圖形,其對稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn)。圓也是中心對稱(chēng)圖形,其對稱(chēng)中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線(xiàn)上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內切圓的圓心是三角形各內角平分線(xiàn)的交點(diǎn),到三角形3邊距離相等。
9.直線(xiàn)AB與圓O的位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線(xiàn)垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。
11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計算公式
1.圓的周長(cháng)C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長(cháng)l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側面積S=πrl
四、圓的方程
1.圓的標準方程
在平面直角坐標系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標準方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標準方程展開(kāi),移項,合并同類(lèi)項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線(xiàn)的位置關(guān)系判斷
平面內,直線(xiàn)Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線(xiàn)的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離
。2)如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規定x1
當x=-C/Ax2時(shí),直線(xiàn)與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時(shí),直線(xiàn)與圓相切
圓的定理:
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11.定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角
12.①直線(xiàn)L和⊙O相交 d
、谥本(xiàn)L和⊙O相切 d=r
、壑本(xiàn)L和⊙O相離 d>r
13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
、軆蓤A內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
。1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
。2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)
27.正三角形面積√3a/4 a表示邊長(cháng)
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長(cháng)計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長(cháng)公式 l=axr a是圓心角的弧度數r >0 扇形面積公式 s=1/2xlxr
高中數學(xué)考試知識點(diǎn)總結 8
一、求導數的方法
。1)基本求導公式
。2)導數的四則運算
。3)復合函數的導數
設在點(diǎn)x處可導,y=在點(diǎn)處可導,則復合函數在點(diǎn)x處可導,且即
二、關(guān)于極限
1、數列的極限:
粗略地說(shuō),就是當數列的項n無(wú)限增大時(shí),數列的項無(wú)限趨向于A(yíng),這就是數列極限的描述性定義。記作:=A。如:
2、函數的極限:
當自變量x無(wú)限趨近于常數時(shí),如果函數無(wú)限趨近于一個(gè)常數,就說(shuō)當x趨近于時(shí),函數的極限是,記作
三、導數的概念
1、在處的導數。
2、在的導數。
3、函數在點(diǎn)處的導數的幾何意義:
函數在點(diǎn)處的導數是曲線(xiàn)在處的切線(xiàn)的斜率,
即k=,相應的切線(xiàn)方程是
注:函數的導函數在時(shí)的函數值,就是在處的導數。
例、若=2,則=()A—1B—2C1D
四、導數的綜合運用
。ㄒ唬┣(xiàn)的切線(xiàn)
函數y=f(x)在點(diǎn)處的導數,就是曲線(xiàn)y=(x)在點(diǎn)處的切線(xiàn)的斜率。由此,可以利用導數求曲線(xiàn)的切線(xiàn)方程。具體求法分兩步:
。1)求出函數y=f(x)在點(diǎn)處的導數,即曲線(xiàn)y=f(x)在點(diǎn)處的切線(xiàn)的斜率k=
。2)在已知切點(diǎn)坐標和切線(xiàn)斜率的條件下,求得切線(xiàn)方程為x。
高中數學(xué)考試知識點(diǎn)總結 9
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;
公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:
直線(xiàn)與直線(xiàn)—平行、相交、異面;
直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線(xiàn):
平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);
所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);
兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);
異面直線(xiàn)不同在任何一個(gè)平面內。
求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角
二、空間中的平行關(guān)系
1、直線(xiàn)與平面平行(核心)
定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)
判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)
性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行
2、平面與平面平行
定義:兩個(gè)平面沒(méi)有公共點(diǎn)
判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)
三、空間中的垂直關(guān)系
1、直線(xiàn)與平面垂直
定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直
判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直
性質(zhì):垂直于同一直線(xiàn)的兩平面平行
推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)
判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直
高中數學(xué)考試知識點(diǎn)總結 10
一、簡(jiǎn)單隨機抽樣
設一個(gè)總體的個(gè)體數為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí),各個(gè)體被抽到的概率相等,就稱(chēng)這樣的抽樣為簡(jiǎn)單隨機抽樣。一般地如果用簡(jiǎn)單隨機抽樣從個(gè)體數為N的總體中抽取一個(gè)容量為n的樣本那么每個(gè)個(gè)體被抽到的概率等于n/N.常用的簡(jiǎn)單隨機抽樣方法有:抽簽法、隨機數法。
1.抽簽法
一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號,把號碼寫(xiě)在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本。
2.隨機數法
隨機抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產(chǎn)生的隨機數進(jìn)行抽樣。
二、活用隨機抽樣
系統抽樣的最基本特征是“等距性”,每組內所抽取的號碼需要依據第一組抽取的號碼和組距是唯一確定,每組抽取樣本的號碼依次構成一個(gè)以第一組抽取的號碼m為首項,組距d為公差的等差數列{an},第k組抽取樣本的號碼,ak=m+(k-1)d,如本題中根據第一組的樣本號碼和組距,可得第k組抽取號碼應該為9+30x(k-1)
三、系統抽樣
當總體中的個(gè)體數較多時(shí),采用簡(jiǎn)單隨機抽樣顯得較為費事,這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預先定出的規則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統抽樣。
四、分層抽樣
當已知總體有差異明顯的幾部分組成時(shí),為了使樣本更充分地反映總體的情況,常常將總體分為幾個(gè)部分,然后按照各個(gè)部分所占比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分層的各部分叫做層
高中數學(xué)考試知識點(diǎn)總結 11
一、集合間的關(guān)系
1.子集:如果集合A中所有元素都是集合B中的元素,則稱(chēng)集合A為集合B的子集。
2.真子集:如果集合AB,但存在元素a∈B,且a不屬于A(yíng),則稱(chēng)集合A是集合B的真子集。
3.集合相等:集合A與集合B中元素相同那么就說(shuō)集合A與集合B相等。
子集:一般地,對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A,記作:AB(或BA),讀作“A包含于B”(或“B包含A”),這時(shí)我們說(shuō)集合是集合的子集,更多集合關(guān)系的知識點(diǎn)見(jiàn)集合間的基本關(guān)系
二、集合的運算
1.并集
并集:以屬于A(yíng)或屬于B的元素為元素的集合稱(chēng)為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
2.交集
交集: 以屬于A(yíng)且屬于B的元素為元素的集合稱(chēng)為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
3.補集
高中數學(xué)考試知識點(diǎn)總結 12
導數是微積分中的重要基礎概念。當自變量的增量趨于零時(shí),因變量的增量與自變量的增量之商的極限。在一個(gè)函數存在導數時(shí),稱(chēng)這個(gè)函數可導或者可微分?蓪У暮瘮狄欢ㄟB續。不連續的函數一定不可導。導數實(shí)質(zhì)上就是一個(gè)求極限的過(guò)程,導數的四則運算法則來(lái)源于極限的四則運算法則。
。ㄒ唬⿲档谝欢x
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時(shí),相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即導數第一定義
。ǘ⿲档诙x
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時(shí),相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即 導數第二定義
。ㄈ⿲Ш瘮蹬c導數
如果函數 y = f(x) 在開(kāi)區間 I 內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間 I 內可導。這時(shí)函數 y = f(x) 對于區間 I 內的每一個(gè)確定的 x 值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數 y = f(x) 的導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。
。ㄋ模﹩握{性及其應用
1.利用導數研究多項式函數單調性的一般步驟
。1)求f(x)
。2)確定f(x)在(a,b)內符號 (3)若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
。1)求f(x)
。2)f(x)0的解集與定義域的交集的對應區間為增區間; f(x)0的解集與定義域的交集的對應區間為減區間
高中數學(xué)考試知識點(diǎn)總結 13
一次函數
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數。
特別地,當b=0時(shí),y是x的正比例函數。
即:y=kx (k為常數,k0)
二、一次函數的性質(zhì):
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數b取任何實(shí)數)
2、當x=0時(shí),b為函數在y軸上的截距。
三、一次函數的圖像及性質(zhì):
1、作法與圖形:通過(guò)如下3個(gè)步驟
。1)列表;
。2)描點(diǎn);
。3)連線(xiàn),可以作出一次函數的圖像一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。
3、k,b與函數圖像所在象限:
當k0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;
當k0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。
當b0時(shí),直線(xiàn)必通過(guò)一、二象限;
當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)
當b0時(shí),直線(xiàn)必通過(guò)三、四象限。
特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。
這時(shí),當k0時(shí),直線(xiàn)只通過(guò)一、三象限;當k0時(shí),直線(xiàn)只通過(guò)二、四象限。
四、確定一次函數的表達式:
已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。
。1)設一次函數的表達式(也叫解析式)為y=kx+b。
。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個(gè)二元一次方程,得到k,b的值。
。4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。
2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2
4、求任意線(xiàn)段的長(cháng):(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
。╝,b,c為常數,a0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a0)
頂點(diǎn)式:y=a(x—h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的性質(zhì)
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x= —b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時(shí),P在y軸上;當= b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a0時(shí),拋物線(xiàn)向上開(kāi)口;當a0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
= b^2—4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
= b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
= b^2—4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
V、二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),
即ax^2+bx+c=0
此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。
函數與x軸交點(diǎn)的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
解析式頂點(diǎn)坐標對稱(chēng)軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了、這給畫(huà)圖象提供了方便、
2、拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x —b/2a時(shí),y隨x的增大而減;當x —b/2a時(shí),y隨x的增大而增大、若a0,當x —b/2a時(shí),y隨x的增大而增大;當x —b/2a時(shí),y隨x的增大而減小、
4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
。2)當△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|
當△=0、圖象與x軸只有一個(gè)交點(diǎn);
當△0、圖象與x軸沒(méi)有交點(diǎn)、當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y0;當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0、
5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值、
6、用待定系數法求二次函數的解析式
。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、
。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現、
反比例函數
形如y=k/x(k為常數且k0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。
當K0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(xm)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
高中數學(xué)考試知識點(diǎn)總結 14
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;
公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:
直線(xiàn)與直線(xiàn)—平行、相交、異面;
直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線(xiàn):
平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);
所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);
兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);
異面直線(xiàn)不同在任何一個(gè)平面內。
求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角
二、空間中的平行關(guān)系
1、直線(xiàn)與平面平行(核心)
定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)
判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)
性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行
2、平面與平面平行
定義:兩個(gè)平面沒(méi)有公共點(diǎn)
判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)
三、空間中的垂直關(guān)系
1、直線(xiàn)與平面垂直
定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直
判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直
性質(zhì):垂直于同一直線(xiàn)的兩平面平行
推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)
判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直
高中數學(xué)考試知識點(diǎn)總結 15
一.算法,概率和統計
1.算法初步(約12課時(shí))
。1)算法的含義、程序框圖
、偻ㄟ^(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(如,二元一次方程組求解等問(wèn)題),體會(huì )算法的思想,了解算法的含義。
、谕ㄟ^(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中(如,三元一次方程組求解等問(wèn)題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環(huán)。
。2)基本算法語(yǔ)句
經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句--輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
。3)通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
3.概率(約8課時(shí))
。1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩定性,進(jìn)一步了解概率的意義以及頻率與概率的區別。
。2)通過(guò)實(shí)例,了解兩個(gè)互斥事件的概率加法公式。
。3)通過(guò)實(shí)例,理解古典概型及其概率計算公式,會(huì )用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。
。4)了解隨機數的意義,能運用模擬方法(包括計算器產(chǎn)生隨機數來(lái)進(jìn)行模擬)估計概率,初步體會(huì )幾何概型的意義(參見(jiàn)例3)。
。5)通過(guò)閱讀材料,了解人類(lèi)認識隨機現象的過(guò)程。
2.統計(約16課時(shí))
。1)隨機抽樣
、倌軓默F實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題。
、诮Y合具體的實(shí)際問(wèn)題情境,理解隨機抽樣的必要性和重要性。
、墼趨⑴c解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣方法從總體中抽取樣本;通過(guò)對實(shí)例的分析,了解分層抽樣和系統抽樣方法。
、苣芡ㄟ^(guò)試驗、查閱資料、設計調查問(wèn)卷等方法收集數據。
。2)用樣本估計總體
、偻ㄟ^(guò)實(shí)例體會(huì )分布的意義和作用,在表示樣本數據的過(guò)程中,學(xué)會(huì )列頻率分布表、畫(huà)頻率分布直方圖、頻率折線(xiàn)圖、莖葉圖(參見(jiàn)例1),體會(huì )他們各自的特點(diǎn)。
、谕ㄟ^(guò)實(shí)例理解樣本數據標準差的意義和作用,學(xué)會(huì )計算數據標準差。
、勰芨鶕䦟(shí)際問(wèn)題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。
、茉诮鉀Q統計問(wèn)題的過(guò)程中,進(jìn)一步體會(huì )用樣本估計總體的思想,會(huì )用樣本的頻率分布估計總體分布,會(huì )用樣本的基本數字特征估計總體的基本數字特征;初步體會(huì )樣本頻率分布和數字特征的隨機性。
、輹(huì )用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題;能通過(guò)對數據的分析為合理的決策提供一些依據,認識統計的作用,體會(huì )統計思維與確定性思維的差異。
、扌纬蓪祿幚磉^(guò)程進(jìn)行初步評價(jià)的意識。
。3)變量的相關(guān)性
、偻ㄟ^(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。
、诮(jīng)歷用不同估算方法描述兩個(gè)變量線(xiàn)性相關(guān)的過(guò)程。知道最小二乘法的思想,能根據給出的線(xiàn)性回歸方程系數公式建立線(xiàn)性回歸方程。
二.常用邏輯用語(yǔ)
1。命題及其關(guān)系
、倭私饷}的逆命題、否命題與逆否命題。
、诶斫獗匾獥l件、充分條件與充要條件的意義,會(huì )分析四種命題的相互關(guān)系。
。2)簡(jiǎn)單的邏輯聯(lián)結詞
通過(guò)數學(xué)實(shí)例,了解"或"、"且"、"非"的含義。
。3)全稱(chēng)量詞與存在量詞
、偻ㄟ^(guò)生活和數學(xué)中的豐富實(shí)例,理解全稱(chēng)量詞與存在量詞的意義。
、谀苷_地對含有一個(gè)量詞的命題進(jìn)行否定。
3.導數及其應用(約16課時(shí))
。1)導數概念及其幾何意義
、偻ㄟ^(guò)對大量實(shí)例的分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導數概念的實(shí)際背景,知道瞬時(shí)變化率就是導數,體會(huì )導數的思想及其內涵(參見(jiàn)例2、例3)。
、谕ㄟ^(guò)函數圖像直觀(guān)地理解導數的幾何意義。
。2)導數的運算
、倌芨鶕䦟刀x,求函數y=c,y=x,y=x2,y=1/x的導數。
、谀芾媒o出的基本初等函數的導數公式和導數的四則運算法則求簡(jiǎn)單函數的導數。
、蹠(huì )使用導數公式表。
。3)導數在研究函數中的應用
、俳Y合實(shí)例,借助幾何直觀(guān)探索并了解函數的單調性與導數的關(guān)系(參見(jiàn)例4);能利用導數研究函數的單調性,會(huì )求不超過(guò)三次的多項式函數的單調區間。
、诮Y合函數的圖像,了解函數在某點(diǎn)取得極值的必要條件和充分條件;會(huì )用導數求不超過(guò)三次的多項式函數的極大值、極小值,以及在給定區間上不超過(guò)三次的多項式函數的最大值、最小值。2.圓錐曲線(xiàn)與方程(約12課時(shí))
。1)了解圓錐曲線(xiàn)的實(shí)際背景,感受圓錐曲線(xiàn)在刻畫(huà)現實(shí)世界和解決實(shí)際問(wèn)題中的作用。
。2)經(jīng)歷從具體情境中抽象出橢圓模型的過(guò)程(參見(jiàn)例1),掌握橢圓的定義、標準方程及簡(jiǎn)單幾何性質(zhì)。
。3)了解拋物線(xiàn)、雙曲線(xiàn)的定義、幾何圖形和標準方程,知道它們的簡(jiǎn)單幾何性質(zhì)。
。4)通過(guò)圓錐曲線(xiàn)與方程的學(xué)習,進(jìn)一步體會(huì )數形結合的思想。
。5)了解圓錐曲線(xiàn)的簡(jiǎn)單應用。
三.統計案例(約14課時(shí))
通過(guò)典型案例,學(xué)習下列一些常見(jiàn)的統計方法,并能初步應用這些方法解決一些實(shí)際問(wèn)題。
、偻ㄟ^(guò)對典型案例(如"肺癌與吸煙有關(guān)嗎"等)的探究,了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及初步應用。
、谕ㄟ^(guò)對典型案例(如"質(zhì)量控制"、"新藥是否有效"等)的探究,了解實(shí)際推斷原理和假設檢驗的基本思想、方法及初步應用(參見(jiàn)例1)。
、弁ㄟ^(guò)對典型案例(如"昆蟲(chóng)分類(lèi)"等)的探究,了解聚類(lèi)分析的基本思想、方法及初步應用。
、芡ㄟ^(guò)對典型案例(如"人的體重與身高的關(guān)系"等)的探究,進(jìn)一步了解回歸的基本思想、方法及初步應用。
2.推理與證明(約10課時(shí))
。1)合情推理與演繹推理
、俳Y合已學(xué)過(guò)的數學(xué)實(shí)例和生活中的實(shí)例,了解合情推理的含義,能利用歸納和類(lèi)比等進(jìn)行簡(jiǎn)單的推理,體會(huì )并認識合情推理在數學(xué)發(fā)現中的作用(參見(jiàn)例2、例3)。
、诮Y合已學(xué)過(guò)的數學(xué)實(shí)例和生活中的實(shí)例,體會(huì )演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進(jìn)行一些簡(jiǎn)單推理。
、弁ㄟ^(guò)具體實(shí)例,了解合情推理和演繹推理之間的聯(lián)系和差異。
。2)直接證明與間接證明
、俳Y合已經(jīng)學(xué)過(guò)的數學(xué)實(shí)例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn)。
、诮Y合已經(jīng)學(xué)過(guò)的數學(xué)實(shí)例,了解間接證明的一種基本方法--反證法;了解反證法的思考過(guò)程、特點(diǎn)。
【高中數學(xué)考試知識點(diǎn)總結】相關(guān)文章:
高中力學(xué)知識點(diǎn)總結11-08
高中概率知識點(diǎn)總結01-12
高中遺傳知識點(diǎn)的總結07-12
高中圓知識點(diǎn)的總結03-15
高中化學(xué)知識點(diǎn)總結07-14
高中語(yǔ)文的知識點(diǎn)總結07-11
高中必修一知識點(diǎn)總結07-11