[精選]初中數學(xué)知識點(diǎn)總結15篇
總結就是把一個(gè)時(shí)間段取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓進(jìn)行一次全面系統的總結的書(shū)面材料,寫(xiě)總結有利于我們學(xué)習和工作能力的提高,不如我們來(lái)制定一份總結吧。那么總結要注意有什么內容呢?下面是小編整理的初中數學(xué)知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數學(xué)知識點(diǎn)總結1
一、基本知識
一、數與代數
A、數與式:
1、有理數:
、僬麛怠麛,0,負整數;
、诜謹怠謹,負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進(jìn)行正常運算。
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0、
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數
無(wú)理數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數,例如:π=…
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。
、垡粋(gè)正數有2個(gè)平方根;0的平方根為0;負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項;②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。
冪的運算:
A^M+A^N=A^(M+N)
。ˋ^M)^N=A^(MN
。ˋ/B)^N=A^N/B^N
除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢档姆匠探蟹质椒匠。
、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1、
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y=0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖像與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a
也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;
II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;
例如:如果A>B,則A—C>B—C;
在不等式中,如果乘以同一個(gè)正數,不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個(gè)負數,不等號改向;
例如:如果A>B,則A*C
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;
3、函數
變量:因變量Y,自變量X。
在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。
一次函數:
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。
、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。
一次函數的圖像:
、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖像。
、谡壤瘮礩=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O時(shí),則經(jīng)234象限;
當K〈0,B〉0時(shí),則經(jīng)124象限;
當K〉0,B〈0時(shí),則經(jīng)134象限;
當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。兩點(diǎn)之間直線(xiàn)最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角,180、始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角,360、
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;
判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上;
角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)的集合。
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上;
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對角線(xiàn)相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等——補角=180—角度。
4、同角或等角的余角相等——余角=90—角度。
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理:三角形兩邊的和大于第三邊
16、推論:三角形兩邊的差小于第三邊
17、三角形內角和定理:三角形三個(gè)內角的和等于180°
18、推論1:直角三角形的兩個(gè)銳角互余
19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)三角形全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個(gè)三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等
27、定理1:在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、推論1:等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
31、推論2:等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;
32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°
33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對等角)
35、推論1:三個(gè)角都相等的三角形是等邊三角形
36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39、定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1:關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理:如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3:兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理:如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理:如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理:四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2:行四邊形的對邊相等
54、推論:夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3:平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2:矩形的對角線(xiàn)相等
62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2:對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1:菱形的四條邊都相等
65、菱形性質(zhì)定理2:菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2:正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1:關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2:關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理:如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理:如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理:梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理:三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論:平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理:如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90、定理:平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2:兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3:三邊對應成比例,兩三角形相似(SSS)
95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似(HL)
96、性質(zhì)定理1:相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2:相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理:不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交0<=d<r
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
122、切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理
圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1
經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2
經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理
從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理
從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?
133、推論
從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條
割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R—r<d<R+r(R>r)
、軆蓤A內切d=R—r(R>r)
、輧蓤A內含d<R—r(R>r)
136、定理
相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n—2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(cháng)
142、正三角形面積√3a^2/4,a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(cháng)計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線(xiàn)長(cháng)=d—(R—r),外公切線(xiàn)長(cháng)=d—(R+r)
初中數學(xué)知識點(diǎn)總結2
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 :圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7.同圓或等圓的半徑相等。
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等。
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角。
12.①直線(xiàn)L和⊙O相交 d 、谥本(xiàn)L和⊙O相切 d=r 、壑本(xiàn)L和⊙O相離 d>r
13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。
17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
18.圓的外切四邊形的.兩組對邊的和相等 外角等于內對角。
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦。
22.定理 把圓分成n(n≥3): 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。
24.正n邊形的每個(gè)內角都等于(n-2)×180°/n。
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形。
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)。
27.正三角形面積√3a/4 a表示邊長(cháng)。
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。
29.弧長(cháng)計算公式:L=n兀R/180。
30.扇形面積公式:S扇形=n兀R^2/360=LR/2。
31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)。
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半。
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。
35.弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r。
1.直接法:根據選擇題的題設條件,通過(guò)計算、推理或判斷,最后得到題目的所求。
2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學(xué)命題與字母的取值范圍有關(guān);
在解這類(lèi)選擇題時(shí),可以考慮從取值范圍內選取某幾個(gè)特殊值,代入原命題進(jìn)行驗證,然后淘汰錯誤的,保留正確的。
3.淘汰法:把題目所給的四個(gè)結論逐一代回原題的題干中進(jìn)行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4.逐步淘汰法:如果我們在計算或推導的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;
每走一步都與四個(gè)結論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯誤的結論就被全部淘汰掉了。
5.數形結合法:根據數學(xué)問(wèn)題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;
使數量關(guān)系和圖形巧妙和諧地結合起來(lái),并充分利用這種結合,尋求解題思路,使問(wèn)題得到解決。
常用的數學(xué)思想方法
1.數形結合思想:就是根據數學(xué)問(wèn)題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;
使數量關(guān)系和圖形巧妙和諧地結合起來(lái),并充分利用這種結合,尋求解體思路,使問(wèn)題得到解決。
2.聯(lián)系與轉化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉化的。
在解題時(shí),如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動(dòng)與靜的轉化等等。
3.分類(lèi)討論的思想:在數學(xué)中,我們常常需要根據研究對象性質(zhì)的差異,分各種不同情況予以考查;
這種分類(lèi)思考的方法,是一種重要的數學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4.待定系數法:當我們所研究的數學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì )得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。
5.配方法:就是把一個(gè)代數式設法構造成平方式,然后再進(jìn)行所需要的變化。
配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問(wèn)題,都有重要的作用。
6.換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。
換元法可以把一個(gè)較為復雜的式子化簡(jiǎn),把問(wèn)題歸結為比原來(lái)更為基本的問(wèn)題,從而達到化繁為簡(jiǎn),化難為易的目的。
7.分析法:在研究或證明一個(gè)命題時(shí),又結論向已知條件追溯,既從結論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;
則再把它當作結論,進(jìn)一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執果尋因”
8.綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導得到結論,這種思維過(guò)程通常稱(chēng)為“由因導果”
9.演繹法:由一般到特殊的推理方法。
10.歸納法:由一般到特殊的推理方法。
初中數學(xué)知識點(diǎn)總結3
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作,頂點(diǎn)和間的線(xiàn)段叫做三角形的高.4.中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它對邊的線(xiàn)段叫做三角形的中線(xiàn).
5.角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和之間的線(xiàn)段叫做三角形的角平分線(xiàn).
6.三角形的穩定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩定性.
7.多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線(xiàn)組成的角叫做多邊形的外角.
10.多邊形的對角線(xiàn):連接多邊形的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn).
11.正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑槎。
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內角.
、嵌噙呅蝺冉呛凸剑簄邊形的內角和等于。
學(xué)無(wú)慮課后輔導中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
、啥噙呅螌蔷(xiàn)的條數:
、購膎邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線(xiàn),把多邊形分成個(gè)三角形.
、趎邊形共有條對角線(xiàn).
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
、湃刃危耗軌蛲耆膬蓚(gè)圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚(gè)三角形叫做全等三角形.
、菍旤c(diǎn):全等三角形中互相的頂點(diǎn)叫做對應頂點(diǎn).
、葘叄喝热切沃谢ハ嗟倪吔凶鰧.
、蓪牵喝热切沃谢ハ嗟慕墙凶鰧.
2.基本性質(zhì):
、湃切蔚姆定性:三角形三邊的確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩定性.
、迫热切蔚男再|(zhì):全等三角形的相等,對應角相等.
3.全等三角形的判定定理:
、胚呥呥叄⊿SS):。
、七吔沁叄⊿AS):。
、墙沁吔牵ˋSA):。
、冉墙沁叄ˋAS):。
、尚边、直角邊(HL):。
4.角平分線(xiàn):⑴畫(huà)法:⑵性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內部到角的兩邊距離相等的點(diǎn)在角的`上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據題意,畫(huà)出圖形,并用數字符號表示已知和求證.⑶經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程.
第十三章軸對稱(chēng)
一、知識框架:
二、知識概念:
1.基本概念:
、泡S對稱(chēng)圖形:如果一個(gè)圖形沿一條直線(xiàn)折疊,直線(xiàn)兩旁的部分能夠互相,這個(gè)圖形就叫做軸對稱(chēng)圖形.
、苾蓚(gè)圖形成軸對稱(chēng):把一個(gè)圖形沿某一條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng).⑶線(xiàn)段的垂直平分線(xiàn):經(jīng)過(guò)線(xiàn)段中點(diǎn)并且這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn).
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對稱(chēng)的性質(zhì):①不管是軸對稱(chēng)圖形還是兩個(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),對稱(chēng)軸都是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn).②對稱(chēng)的圖形都全等.⑵線(xiàn)段垂直平分線(xiàn)的性質(zhì):①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段的距離相等.②與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的上.⑶關(guān)于坐標軸對稱(chēng)的點(diǎn)的坐標性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對稱(chēng)的點(diǎn)的坐標為P"(,).⑷等腰三角形的性質(zhì):
、俚妊切蝺裳.
、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.
、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對稱(chēng)軸是三線(xiàn)合一(1條).⑸等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻(gè)內角都相等,都等于度。③等邊三角形每條邊上都存在三線(xiàn)合一.
、艿冗吶切问禽S對稱(chēng)圖形,對稱(chēng)軸是三線(xiàn)合一(3條).3.基本判定:
、诺妊切蔚呐卸ǎ
、傧嗟鹊娜切问堑妊切.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也(等角對等邊).
、频冗吶切蔚呐卸ǎ
、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.
、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本(xiàn)的垂線(xiàn):
、谱鲆阎(xiàn)段的垂直平分線(xiàn):
、亲鲗ΨQ(chēng)軸:連接兩個(gè)對應點(diǎn),作所連線(xiàn)段的垂直平分線(xiàn).
、茸饕阎獔D形關(guān)于某直線(xiàn)的對稱(chēng)圖形:
、稍谥本(xiàn)上做一點(diǎn),使它到該直線(xiàn)同側的兩個(gè)已知點(diǎn)的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數,同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛祪绲某ǎ篴aamnmn
、茊雾検絾雾検剑合禂,同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個(gè)多項式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數)約去,這種變形稱(chēng)為約分.5.通分:異分母的分式可以化成的分式,這一過(guò)程叫做通分.
6.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒(méi)有時(shí),這個(gè)分式稱(chēng)為最簡(jiǎn)分式,約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.7.分式的四則運算:
、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:。
、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
、确质降某ǚ▌t:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數指數冪:⑴aaam⑵amnmn(m、n是正整數)namn(m、n是正整數)nn⑶abab(n是正整數)n⑷aaanmnmn(a0,m、n是正整數,mn)ana⑸n(n是正整數)bb⑹an1(a0,n是正整數)na9.分式方程的意義:分母中含有未知數的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;
、(求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過(guò)程中,擴大了未知數的取值范圍,可能產(chǎn)生增根).
初中數學(xué)知識點(diǎn)總結4
一、實(shí)數
1.平方根性質(zhì):
。1)一個(gè)正數有兩個(gè)平方根,它們互為相反數;
。2)零的平方根是零;
。3)負數沒(méi)有平方根。
2.算術(shù)平方根性質(zhì):
。1)一個(gè)正數的正的平方根叫做它的算術(shù)平方根;
。2)零的算術(shù)平方根是零;
。3)負數沒(méi)有算術(shù)平方根。
3.立方根性質(zhì):
。1)正數的立方根是正數;
。2)零的立方根是零;
。3)負數的立方根是負數。
4.實(shí)數的性質(zhì):
。1)零是唯一沒(méi)有平方根的數;
。2)正數和負數可以沒(méi)有算術(shù)平方根;
。3)任何實(shí)數的立方根只有唯一的一個(gè);
。4)正數的立方根與它本身和零同類(lèi)。
二、整式的運算
1.整式范圍:
。1)整式可以化為分數或整數;
。2)整式可以化為負數或非負數;
。3)整式可以化為奇數或偶數;
。4)整式可以化簡(jiǎn)為分數指數冪。
2.單項式:
。1)單項式的系數是數字因數;
。2)一個(gè)單項式中所有字母的指數的和叫做單項式的次數。
3.多項式:
。1)多項式的每一項都是一個(gè)單項式;
。2)一個(gè)多項式的項數與多項式中含有幾個(gè)單項式有關(guān)。
4.同底數冪的乘法:
。1)同底數冪相乘,底數不變,指數相加;
。2)同底數冪相除,底數不變,指數相減。
5.冪的乘方:
冪的乘方,底數不變,指數相乘。
6.積的乘方:
。1)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;
。2)1的.乘方等于1。
7.同底數冪的除法:
。1)同底數冪相除,底數不變,指數相減;
。2)0的任何正整數次冪都是0。
8.分式:
。1)分式是整式的一種,在整式中區別于整式,分式的分母中必須含有字母;
。2)分式的值等于分子除以分母。
9.分式的運算:
。1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;
。2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
。3)分式的加減:異分母分式的加減運算,為了使不同分母的分數直接相加減不便,因此常把不同分母的分數分別化成與原來(lái)的分母相同的分母后再相加減。
三、方程與方程組
1.方程:
。1)含有未知數的等式叫方程;
。2)使方程左右兩邊相等的未知數的值,叫做方程的解;
。3)求方程的解的過(guò)程叫做解方程。
2.方程的解:
。1)能使方程左右兩邊相等的未知數的值;
。2)一個(gè)數(它不一定是數,也可以是符號和運算)是某一等式(含有未知數的等式)的解,那么這個(gè)數就叫做該等式的解。
3.一元一次方程:
。1)只有一個(gè)未知數;
。2)未知數的最高次數為1;
。3)整式方程。
4.方程的解法:
。1)去分母:在方程兩端同乘各分母的最小公倍數;
。2)去括號:去括號要變號;
。3)移項:把含有未知數的項移到等號的一邊,其他項移到另一邊;
。4)合并同類(lèi)項:化未知數為已知數;
。5)系數化成1:在方程兩端同除以未知數的系數。
5.列方程解應用題
初中數學(xué)知識點(diǎn)總結5
1.有理數:
(1)凡能寫(xiě)成形式的數,都是有理數.正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類(lèi): ① ②
2.數軸:數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn).
3.相反數:
(1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2) 絕對值可表示為:或 ;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;
5.有理數比大。(1)正數的絕對值越大,這個(gè)數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個(gè)負數比大小,絕對值大的反而小;(5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.
6.互為倒數:乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若 a≠0,那么的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個(gè)數與0相加,仍得這個(gè)數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定.
11 有理數乘法的運算律:
(1)乘法的.交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時(shí): (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;
15.科學(xué)記數法:把一個(gè)大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法.
16.近似數的精確位:一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位.
17.有效數字:從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減.
本章內容要求學(xué)生正確認識有理數的概念,在實(shí)際生活和學(xué)習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點(diǎn)利用有理數的運算法則解決實(shí)際問(wèn)題.
體驗數學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要.激發(fā)學(xué)生學(xué)習數學(xué)的興趣,教師培養學(xué)生的觀(guān)察、歸納與概括的能力,使學(xué)生建立正確的數感和解決實(shí)際問(wèn)題的能力。教師在講授本章內容時(shí),應該多創(chuàng )設情境,充分體現學(xué)生學(xué)習的主體性地位。
初中數學(xué)知識點(diǎn)總結6
一、基本知識
、、數與代數
A、數與式:
1、有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0、
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。
、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。
冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0、
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:
、偻帜阜质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢档姆匠探蟹质椒匠。
、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1、
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的`方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
。1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解
。2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
。3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步驟:
。1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
。2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
。3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;
II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,A+C>B+C在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個(gè)正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負數,不等號改向;例如:A>B,A*C系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。
、谡壤瘮礩=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
、婵臻g與圖形A、圖形的認識1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出
現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個(gè)內角的和等于180°
18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等
27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n—2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
94、判定定理3三邊對應成比例,兩三角形相似(SSS)
95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
122、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
133、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內切d=R—r(Rr)⑤兩圓內含dR—r(Rr)
136、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
137、定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內角都等于(n—2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
142、正三角形面積√3a/4a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
144、弧長(cháng)計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)
一、常用數學(xué)公式
公式分類(lèi)公式表達式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|
|a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|
一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a
根與系數的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達定理判別式
b2—4ac=0注:方程有兩個(gè)相等的實(shí)根b2—4ac>0注:方程有兩個(gè)不等的實(shí)根
b2—4ac歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。
9、幾何變換法
在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。
10、客觀(guān)性題的解題方法
選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
。2)驗證法:由題設找出合適的驗證條件,再通過(guò)驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱(chēng)為驗證法(也稱(chēng)代入法)。當遇到定量命題時(shí),常用此法。
。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據數學(xué)知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過(guò)對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
初中數學(xué)知識點(diǎn)總結7
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的'圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12、①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含dr)
初中數學(xué)知識點(diǎn)總結8
第一章實(shí)數
一、重要概念
1、數的分類(lèi)及概念
數系表:
說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏)
2)有標準
2、非負數:正實(shí)數與零的統稱(chēng)。(表為:x≥0)
常見(jiàn)的非負數有:
性質(zhì):若干個(gè)非負數的和為0,則每個(gè)非負擔數均為0。
3、倒數:①定義及表示法
、谛再|(zhì):A。a≠1/a(a≠±1);B。1/a中,a≠0;C。01;a>1時(shí),1/a<1;D。積為1。
4、相反數:①定義及表示法
、谛再|(zhì):A。a≠0時(shí),a≠—a;B。a與—a在數軸上的位置;C。和為0,商為—1。
5、數軸:①定義(“三要素”)
、谧饔茫篈。直觀(guān)地比較實(shí)數的大;B。明確體現絕對值意義;C。建立點(diǎn)與實(shí)數的一一對應關(guān)系。
6、奇數、偶數、質(zhì)數、合數(正整數—自然數)
定義及表示:
奇數:2n—1
偶數:2n(n為自然數)
7、絕對值:①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實(shí)數a在數軸上所對應的點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現,其關(guān)鍵一步是去掉“││”符號。
二、實(shí)數的運算
1、運算法則(加、減、乘、除、乘方、開(kāi)方)
2、運算定律(五個(gè)—加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3、運算順序:A。高級運算到低級運算;B。(同級運算)從“左”
到“右”(如5÷ ×5);C。(有括號時(shí))由“小”到“中”到“大”。
三、應用舉例(略)
附:典型例題
1、已知:a、b、x在數軸上的位置如下圖,求證:│x—a│+│x—b│
=b—a。
2、已知:a—b=—2且ab<0,(a≠0,b≠0),判斷a、b的符號。
初三數學(xué)知識點(diǎn)第二章代數式
重點(diǎn)代數式的有關(guān)概念及性質(zhì),代數式的運算
☆內容提要☆
一、重要概念
分類(lèi):
1、代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨
的一個(gè)數或字母也是代數式。
整式和分式統稱(chēng)為有理式。
2、整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒(méi)有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。
3、單項式與多項式
沒(méi)有加減運算的.整式叫做單項式。(數字與字母的積—包括單獨的一個(gè)數或字母)
幾個(gè)單項式的和,叫做多項式。
說(shuō)明:①根據除式中有否字母,將整式和分式區別開(kāi);根據整式中有否加減運算,把單項式、多項式區分開(kāi)。②進(jìn)行代數式分類(lèi)時(shí),是以所給的代數式為對象,而非以變形后的代數式為對象。劃分代數式類(lèi)別時(shí),是從外形來(lái)看。如,=x,=│x│等。
4、系數與指數
區別與聯(lián)系:①從位置上看;②從表示的意義上看
5、同類(lèi)項及其合并
條件:①字母相同;②相同字母的指數相同
合并依據:乘法分配律
6、根式
表示方根的代數式叫做根式。
含有關(guān)于字母開(kāi)方運算的代數式叫做無(wú)理式。
注意:①從外形上判斷;②區別:、是根式,但不是無(wú)理式(是無(wú)理數)。
7、算術(shù)平方根
、耪龜礱的正的平方根([a≥0—與“平方根”的區別]);
、扑阈g(shù)平方根與絕對值
、俾(lián)系:都是非負數,=│a│
、趨^別:│a│中,a為一切實(shí)數;中,a為非負數。
8、同類(lèi)二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開(kāi)方數相同的二次根式叫做同類(lèi)二次根式。
滿(mǎn)足條件:①被開(kāi)方數的因數是整數,因式是整式;②被開(kāi)方數中不含有開(kāi)得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。
初中數學(xué)知識點(diǎn)總結9
1.鄰補角:兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補角。
2.對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(cháng)線(xiàn),像這樣的兩個(gè)角互為對頂角。
3.垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線(xiàn)。
4.平行線(xiàn):在同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
5.同位角、內錯角、同旁?xún)冉牵?/p>
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁?xún)冉牵骸?與∠5像這樣的`一對角叫做同旁?xún)冉恰?/p>
6.命題:判斷一件事情的語(yǔ)句叫命題。
7.平移:在平面內,將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
8.對應點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應點(diǎn)。
9.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
10垂線(xiàn)的性質(zhì):
性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。
11.平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行。
平行公理的推論:如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行。
12.平行線(xiàn)的性質(zhì):
性質(zhì)1:兩直線(xiàn)平行,同位角相等。
性質(zhì)2:兩直線(xiàn)平行,內錯角相等。
性質(zhì)3:兩直線(xiàn)平行,同旁?xún)冉腔パa。
13.平行線(xiàn)的判定:
判定1:同位角相等,兩直線(xiàn)平行。
判定2:內錯角相等,兩直線(xiàn)平行。
判定3:同旁?xún)冉窍嗟,兩直線(xiàn)平行。
本章使學(xué)生了解在平面內不重合的兩條直線(xiàn)相交與平行的兩種位置關(guān)系,研究了兩條直線(xiàn)相交時(shí)的形成的角的特征,兩條直線(xiàn)互相垂直所具有的特性,兩條直線(xiàn)平行的長(cháng)期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設計一些優(yōu)美的圖案. 重點(diǎn):垂線(xiàn)和它的性質(zhì),平行線(xiàn)的判定方法和它的性質(zhì),平移和它的性質(zhì),以及這些的組織運用. 難點(diǎn):探索平行線(xiàn)的條件和特征,平行線(xiàn)條件與特征的區別,運用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設計。
初中數學(xué)知識點(diǎn)總結10
一元一次方程定義
通過(guò)化簡(jiǎn),只含有一個(gè)未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個(gè)未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。
即一元一次方程必須同時(shí)滿(mǎn)足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。
一元一次方程的五個(gè)核心問(wèn)題
一、什么是等式?1+1=1是等式嗎?
表示相等關(guān)系的式子叫做等式,等式可分三類(lèi):第一類(lèi)是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類(lèi)是條件等式,也就是方程,這類(lèi)等式只能取某些數值代替等式中的字母時(shí),等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類(lèi)是矛盾等式,就是無(wú)論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個(gè)等式中,如果等號多于一個(gè),叫做連等式,連等式可以化為一組只含有一個(gè)等號的等式。
等式與代數式不同,等式中含有等號,代數式中不含等號。
等式有兩個(gè)重要性質(zhì)1)等式的兩邊都加上或減去同一個(gè)數或同一個(gè)整式,所得結果仍然是一個(gè)等式;(2)等式的兩邊都乘以或除以同一個(gè)數除數不為零,所得結果仍然是一個(gè)等式。
二、什么是方程,什么是一元一次方程?
含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個(gè)式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數,兩者缺一不可。
只含有一個(gè)未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的`方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個(gè)整式方程的"元"和"次"是將這個(gè)方程化成最簡(jiǎn)形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡(jiǎn)后,它實(shí)際上是一個(gè)一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡(jiǎn)的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡(jiǎn),則為x=2,這時(shí)再去作判斷,將得到錯誤的結論。
凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。
三、等式有什么牛掰的基本性質(zhì)嗎?
將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質(zhì)1。
移項時(shí)不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時(shí)就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會(huì )顯得簡(jiǎn)便些。
去分母,將未知數的系數化為1,則是依據等式的基本性質(zhì)2進(jìn)行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說(shuō),等式包含方程;反過(guò)來(lái),方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說(shuō)法是不對的。
五、"解方程"與"方程的解"是一回事兒?jiǎn)?
方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無(wú)解的過(guò)程。即方程的解是結果,而解方程是一個(gè)過(guò)程。方程的解中的"解"是名詞,而解方程中的"解"是動(dòng)詞,二者不能混淆。
初中數學(xué)知識點(diǎn)總結11
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的`值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學(xué)知識點(diǎn)總結12
一、關(guān)于初高中數學(xué)成績(jì)分化原因的分析
1、環(huán)境與心理的變化。
對高一新生來(lái)講,環(huán)境可以說(shuō)是全新的,新教材、新同學(xué)、新教師、新集體……學(xué)生有一個(gè)由陌生到熟悉的適應過(guò)程。另外,經(jīng)過(guò)緊張的中考復習,考取了自己理想的高中,必有些學(xué)生產(chǎn)生“松口氣”想法,入學(xué)后無(wú)緊迫感。也有些學(xué)生有畏懼心理,他們在入學(xué)前,就耳聞高中數學(xué)很難學(xué),高中數學(xué)課一開(kāi)始也確是些難理解的抽象概念,如映射、集合、異面直線(xiàn)等,使他們從開(kāi)始就處于怵頭無(wú)趣的被動(dòng)局面。以上這些因素都嚴重影響高一新生的學(xué)習質(zhì)量。
2、教材的變化。
首先,初中數學(xué)教材內容通俗具體,多為常量,題型少而簡(jiǎn)單;而高中數學(xué)內容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。
其次,由于近幾年教材內容的調整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數學(xué)實(shí)際難度沒(méi)有降低。因此,從一定意義上講,調整后的教材不僅沒(méi)有縮小初高中教材內容的難度差距,反而加大了。
3、課時(shí)的變化。
在初中,由于內容少,題型簡(jiǎn)單,課時(shí)較充足。因此,課容量小,進(jìn)度慢,對重難點(diǎn)內容均有充足時(shí)間反復強調,對各類(lèi)習題的解法,教師有時(shí)間進(jìn)行舉例示范,學(xué)生也有足夠時(shí)間進(jìn)行鞏固。而到高中,由于知識點(diǎn)增多,靈活性加大和新工時(shí)制實(shí)行,使課時(shí)減少,課容量增大,進(jìn)度加快,對重難點(diǎn)內容沒(méi)有更多的時(shí)間強調,對各類(lèi)型題也不可能講全講細和鞏固強化。這也使高一新生開(kāi)始不適應高中學(xué)習而影響成績(jì)的提高。
4、學(xué)法的變化。
在初中,教師講得細,類(lèi)型歸納得全,練得熟,考試時(shí),學(xué)生只要記準概念、公式及教師所講例題類(lèi)型,一般均可對號入座取得好成績(jì)。因此,學(xué)生習慣于圍著(zhù)教師轉,不注重獨立思考和對規律的歸納總結。到高中,由于內容多時(shí)間少,教師不可能把知識應用形式和題型講全講細,只能選講一些具有典型性的題目,以落實(shí)“三基”培養能力。因此,高中數學(xué)學(xué)習要求學(xué)生要勤于思考,善于歸納總結規律,掌握數學(xué)思想方法,做到舉一反三,觸類(lèi)旁通。然而,剛入學(xué)的高一新生,往往繼續沿用初中學(xué)法,致使學(xué)習困難較多,完成當天作業(yè)都很困難,更沒(méi)有預習、復習及總結等自我消化自我調整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習質(zhì)量的提高。
二、搞好初高中銜接所采取的主要措施
1、做好準備工作,為搞好銜接打好基礎。
、俑愫萌雽W(xué)教育。這是搞好銜接的基礎工作,也是首要工作。通過(guò)入學(xué)教育提高學(xué)生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數學(xué)學(xué)習的特點(diǎn),為其它措施的落實(shí)奠定基礎這里主要做好四項工作:一是給學(xué)生講清高一數學(xué)在整個(gè)中學(xué)數學(xué)中所占的位置和作用;二是結合實(shí)例,采取與初中對比的方法,給學(xué)生講清高中數學(xué)內容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結合實(shí)例給學(xué)生講明初高中數學(xué)在學(xué)法上存在的本質(zhì)區別,并向學(xué)生介紹一些優(yōu)秀學(xué)法,指出注意事項;四是請高年級學(xué)生談體會(huì )講感受,引導學(xué)生少走彎路,盡快適應高中學(xué)習。
、诿宓讛,規劃教學(xué)。
為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習基礎,然后以此來(lái)規劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的針對性。在教學(xué)實(shí)際中,我們一方面通過(guò)進(jìn)行摸底測試和對入學(xué)成績(jì)的分析,了解學(xué)生的基礎;另一方面,認真學(xué)習和比較初高中教學(xué)大綱和教材,以全面了解初高中數學(xué)知識體系,找出初高中知識的銜接點(diǎn)、區別點(diǎn)和需要鋪路搭橋的知識點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對性。
2、優(yōu)化課堂教學(xué)環(huán)節,搞好初高中銜接。
、倭⒆阌诖缶V和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。高一數學(xué)中有許多難理解和掌握的`知識點(diǎn),如集合、映射等,對高一新生來(lái)講確實(shí)困難較大。因此,在教學(xué)中,應從高一學(xué)生實(shí)際出發(fā),采勸低起點(diǎn)、小梯度、多訓練、分層次”的方法,將教學(xué)目標分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節奏。在知識導入上,多由實(shí)例和已知引入。在知識落實(shí)上,先落實(shí)“死”課本,后變通延伸用活課本。在難點(diǎn)知識講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點(diǎn)和應用注意點(diǎn)作必要總結及舉例說(shuō)明。
、谥匾曅屡f知識的聯(lián)系與區別,建立知識網(wǎng)絡(luò )。初高中數學(xué)有很多銜接知識點(diǎn),如函數概念、平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結論到高中可能不成立。因此,在講授新知識時(shí),我們有意引導學(xué)生聯(lián)系舊知識,復習和區別舊知識,特別注重對那些易錯易混的知識加以分析、比較和區別。這樣可達到溫故知新、溫故而探新的效果。
、壑匾曊故局R的形成過(guò)程和方法探索過(guò)程,培養學(xué)生創(chuàng )造能力。高中數學(xué)較初中抽象性強,應用靈活,這就要求學(xué)生對知識理解要透,應用要活,不能只停留在對知識結論的死記硬套上,這就要求教師應向學(xué)生展示新知識和新解法的產(chǎn)生背景、形成和探索過(guò)程,不僅使學(xué)生掌握知識和方法的本質(zhì),提高應用的靈活性,而且還使學(xué)生學(xué)會(huì )如何質(zhì)疑和解疑的思想方法,促進(jìn)創(chuàng )造性思維能力的提高。
、苤匾暸囵B學(xué)生自我反思自我總結的良好習慣,提高學(xué)習的自覺(jué)性。高中數學(xué)概括性強,題目靈活多變,只靠課上聽(tīng)懂是不夠的,需要課后進(jìn)行認真消化,認真總結歸納。這就要求學(xué)生應具備善于自我反思和自我總結的能力。為此,我們在教學(xué)中,抓住時(shí)機積極培養。在單元結束時(shí),幫助學(xué)生進(jìn)行自我章節小結,在解題后,積極引導學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規律的總結。由此培養學(xué)生善于進(jìn)行自我反思的習慣,擴大知識和方法的應用范圍,提高學(xué)習效率。
、葜匾晫(zhuān)題教學(xué)。利用專(zhuān)題教學(xué),集中精力攻克難點(diǎn),強化重點(diǎn)和彌補弱點(diǎn),系統歸納總結某一類(lèi)問(wèn)題的前后知識、應用形式、解決方法和解題規律。并借此機會(huì )對學(xué)生進(jìn)行學(xué)法的指點(diǎn),有意滲透數學(xué)思想方法。
3、加強學(xué)法指導。
高中數學(xué)教學(xué)要把對學(xué)生加強學(xué)法指導作為教學(xué)的重要任務(wù)之一。指導以培養學(xué)習能力為重點(diǎn),狠抓學(xué)習基本環(huán)節,如“怎樣預習”、“怎樣聽(tīng)課”等等。
具體措施有三:一是寓學(xué)法指導于知識講解、作業(yè)講評、試卷分析等教學(xué)活動(dòng)之中,這種形式貼近學(xué)生學(xué)習實(shí)際,易被學(xué)生接受;二是舉辦系列講座,介紹學(xué)習方法;三是定期進(jìn)行學(xué)法交流,同學(xué)間互相取長(cháng)補短,共同提高。
4、優(yōu)化教育管理環(huán)節,促進(jìn)初高中良好銜接。
、僦匾曔\用情感和成功原理,喚起學(xué)生學(xué)好數學(xué)的熱情。搞好初高中銜接,除了優(yōu)化教學(xué)環(huán)節外,還應充分發(fā)揮情感和心理的積極作用。我們在高一教學(xué)中,注意運用情感和成功原理,調動(dòng)學(xué)生學(xué)習熱情,培養學(xué)習數學(xué)興趣。學(xué)生學(xué)不好數學(xué),少責怪學(xué)生,要多找自己的原因。要深入學(xué)生當中,從各方面了解關(guān)心他們,特別是差生,幫助他們解決思想、學(xué)習及生活上存在的問(wèn)題。給他們多講數學(xué)在各行各業(yè)廣泛應用,講祖國四化建設需要大批懂數學(xué)的專(zhuān)家學(xué)者;講愛(ài)因斯坦在初中一次數學(xué)竟沒(méi)有考及格,但他沒(méi)有氣餒,終于成了一名偉大科學(xué)家,華羅庚在學(xué)生時(shí)代奮發(fā)圖強,終于在數學(xué)研究中做出了卓越貢獻,等等。使學(xué)生提高認識,增強學(xué)好數學(xué)的信心。在提問(wèn)和布置作業(yè)時(shí),從學(xué)生實(shí)際出發(fā),多給學(xué)生創(chuàng )設成功的機會(huì ),以體會(huì )成功的喜悅,激發(fā)學(xué)習熱情。
、谥匾暸囵B學(xué)生正確對待困難和挫折的良好心理素質(zhì)。由于高中數學(xué)的特點(diǎn),決定了高一學(xué)生在學(xué)習中的困難大挫折多。為此,我們在教學(xué)中注意培養學(xué)生正確對待困難和挫折的良好心理素質(zhì),使他們善于在失敗面前,能冷靜地總結教訓,振作精神,主動(dòng)調整自己的學(xué)習,并努力爭取今后的勝利。平時(shí)多注意觀(guān)察學(xué)生情緒變化,開(kāi)展心理咨詢(xún),做好個(gè)別學(xué)生思想工作。
、垭娨曋R的反饋和落實(shí)。通過(guò)建立多渠道的反饋途徑,及時(shí)收集學(xué)生對知識的掌握情況和對教學(xué)的意見(jiàn),為及時(shí)矯上學(xué)生的錯誤,調整教學(xué),提高教學(xué)針對性提供依據。知識落實(shí)的思路為:以落實(shí)“三基”為中心,實(shí)行分層落實(shí),做到提優(yōu)補差。主要措施是:平時(shí)練習層次化,單元結束考查制度化,做到章節會(huì ),單元清。
初中數學(xué)知識點(diǎn)總結13
1、xxx:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做xxx。
2、xxx的分類(lèi)
3、xxx的三邊關(guān)系:xxx任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從xxx的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做xxx的高。
5、中線(xiàn):在xxx中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做xxx的中線(xiàn)。
6、角平分線(xiàn):xxx的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做xxx的角平分線(xiàn)。
7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法
8、xxx的穩定性:xxx的形狀是固定的,xxx的這個(gè)性質(zhì)叫xxx的穩定性。
9、xxx內角和定理:xxx三個(gè)內角的和等于180°
推論1直角xxx的兩個(gè)銳角互余
推論2xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角和
推論3xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;xxx的內角和是外角和的一半
10、xxx的外角:xxx的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做xxx的`外角。
11、xxx外角的性質(zhì)
(1)頂點(diǎn)是xxx的一個(gè)頂點(diǎn),一邊是xxx的一邊,另一邊是xxx的一邊的延長(cháng)線(xiàn);
(2)xxx的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;
(3)xxx的一個(gè)外角大于與它不相鄰的任一內角;
(4)xxx的外角和是360°。
初中數學(xué)知識點(diǎn)總結14
一、基本知識
、、數與代數A、數與式:
1、有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方
向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的
絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0。
、鄢朔e為1的兩個(gè)有理數互為倒數。除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數;旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。③一個(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。③求一個(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。③一個(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作
為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則
連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱(chēng)為原方程的增根。B、方程與不等式1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的
形式去解(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,A+C>B+C在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個(gè)正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負數,不等號改向;例如:A>B,A*C系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
、婵臻g與圖形A、圖形的認識1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。③點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相
等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形;、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。③將線(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:①同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出
現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9、同位角相等,兩直線(xiàn)平行10、內錯角相等,兩直線(xiàn)平行11、同旁?xún)冉腔パa,兩直線(xiàn)平行12、兩直線(xiàn)平行,同位角相等13、兩直線(xiàn)平行,內錯角相等14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個(gè)內角的和等于180°18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
5
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c++m)/(b+d++n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
122、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項133、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)
、軆蓤A內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139、正n邊形的每個(gè)內角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142、正三角形面積√3a/4a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(cháng)計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
一、常用數學(xué)公式
公式分類(lèi)公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|
|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。9、幾何變換法
在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。10、客觀(guān)性題的解題方法
選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
。2)驗證法:由題設找出合適的驗證條件,再通過(guò)驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱(chēng)為驗證法(也稱(chēng)代入法)。當遇到定量命題時(shí),常用此法。
。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據數學(xué)知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過(guò)對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
初中數學(xué)知識點(diǎn)總結15
平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的'坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解定義:
把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結10-24
初中數學(xué)知識點(diǎn)總結06-24
初中數學(xué)知識點(diǎn)總結03-07
初中數學(xué)知識點(diǎn)總結03-04