初中數學(xué)知識點(diǎn)總結【通用】
總結是對過(guò)去一定時(shí)期的工作、學(xué)習或思想情況進(jìn)行回顧、分析,并做出客觀(guān)評價(jià)的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,為此我們要做好回顧,寫(xiě)好總結?偨Y怎么寫(xiě)才能發(fā)揮它的作用呢?下面是小編收集整理的初中數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
初中數學(xué)知識點(diǎn)總結1
一、在創(chuàng )新中培養學(xué)生的歸納意?R
在初中數學(xué)教學(xué)中,重點(diǎn)是對學(xué)生的創(chuàng )新精神和實(shí)踐能力的培養,體現出現代素質(zhì)教育。學(xué)生創(chuàng )新能力的培養在學(xué)習中占據非常重要的作用,在創(chuàng )新中學(xué)生可以鞏固自身所學(xué)的知識,使數學(xué)知識在自己的頭腦中根深蒂固,各類(lèi)知識點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養。歸納意識的培養,可以減輕學(xué)生的學(xué)習負擔,提升學(xué)生對知識的理解能力。
初中生在學(xué)習數學(xué)的環(huán)節中,常常會(huì )接觸到大量的圖像,在數學(xué)學(xué)習中,老師應該鼓勵學(xué)生大膽創(chuàng )新,在創(chuàng )新環(huán)節中完成對知識點(diǎn)的歸納。數學(xué)學(xué)習并不死板,不僅僅學(xué)習教科書(shū)上的知識,還應該學(xué)習書(shū)本以外的知識,從而創(chuàng )新自己的'思維。例如在進(jìn)行函數的學(xué)習中,老師可以讓學(xué)生繪制函數圖像,對函數進(jìn)行分類(lèi)討論,從而掌握遞增函數和遞減函數的定義,在分類(lèi)討論后,學(xué)生結合圖像進(jìn)行歸納。在數學(xué)教學(xué)中,老師不僅僅要重視書(shū)本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學(xué)知識有機結合起來(lái),使學(xué)生可以大膽創(chuàng )新。
很多學(xué)生在數學(xué)學(xué)習中存在困難,認為數學(xué)的學(xué)習就是解答大量的難題,他們在大量的題海戰術(shù)后不善于歸納,導致數學(xué)學(xué)習的效率不高。
二、在交流中歸納知識點(diǎn)
在數學(xué)學(xué)習中,如果學(xué)生只是自己探究,那么在學(xué)習中不會(huì )得到靈感。數學(xué)學(xué)習不僅僅要求學(xué)生具有認真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養成歸納的意識。溝通和交流不僅僅在語(yǔ)言的學(xué)習中發(fā)揮非常重要的作用,而且在數學(xué)學(xué)習中同樣非常重要。學(xué)生在解答數學(xué)問(wèn)題中,常常會(huì )遇到一些問(wèn)題,學(xué)生自己探究會(huì )陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實(shí)在初中數學(xué)教學(xué)中培養學(xué)生的歸納意識,老師可以將班級內的學(xué)生分成幾個(gè)不同的小組,組內的同學(xué)可以通過(guò)合作的方式,對知識點(diǎn)進(jìn)行歸納,在數學(xué)的學(xué)習中更加變通,將數學(xué)這門(mén)學(xué)科應用到生活中。
例如,在進(jìn)行二次函數的學(xué)習中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對知識點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結論,如果函數有兩個(gè)解,那么函數與數軸會(huì )有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數與數軸只有一個(gè)交點(diǎn),如果方程沒(méi)有解,那么函數與數軸沒(méi)有交點(diǎn)。學(xué)生通過(guò)分組討論的方式得到結論,通過(guò)歸納,學(xué)生對二次函數知識點(diǎn)的印象非常深刻。
三、學(xué)會(huì )正確歸納
在數學(xué)學(xué)習中,歸納思想非常重要,數學(xué)這門(mén)學(xué)科的知識非常細碎,是一門(mén)系統性很強的學(xué)科。數學(xué)知識錯綜復雜,很多學(xué)生在學(xué)習數學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數學(xué)成績(jì)。初中生的思維還不是特別完善,在進(jìn)行數學(xué)學(xué)習環(huán)節中,對知識點(diǎn)進(jìn)行合理的歸納,是每位老師應該采取的方法。如果學(xué)生不懂得歸納,那么在數學(xué)考試中,學(xué)生會(huì )將知識點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學(xué)生總結。
例如,在學(xué)習圓和直線(xiàn)這部分內容中,老師都會(huì )將重點(diǎn)內容,圓和圓的位置關(guān)系,直線(xiàn)和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書(shū)目和資料,總結一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點(diǎn)進(jìn)行總結,從而加深對這部分知識的理解。歸納思想在數學(xué)學(xué)習中應用非常多,在進(jìn)行初中數學(xué)教學(xué)環(huán)節中,學(xué)生應該花更多的時(shí)間進(jìn)行歸納。
在進(jìn)行初中數學(xué)的學(xué)習中,學(xué)生歸納意識的養成可以完善學(xué)生的數學(xué)思維,學(xué)生學(xué)會(huì )歸納,在學(xué)習中就會(huì )如魚(yú)得水,在考試中取得好成績(jì)。
四、在反思中完成知識點(diǎn)的歸納
初中數學(xué)知識點(diǎn)總結2
20xx年的工作臨近尾聲,回首本年度真是忙碌而充實(shí),本年度我即擔任教導處主任一職又擔任班主任工作,經(jīng)常是忙的喝口水的時(shí)間都沒(méi)有。雖然在教導處主任的崗位上我只有不到一年的工作經(jīng)驗,但是在李校長(cháng)的關(guān)心和培養下,在全體領(lǐng)導、老師、家長(cháng)的熱情支持和幫助下,各項工作得以順利開(kāi)展并在一些方面有了較為明顯的進(jìn)步,F對自己一年來(lái)所做工作加以梳理和反思,力求在總結中發(fā)現不足,在反思中縮中差距,在創(chuàng )新中不斷提升。
一、思想品德方面
我熱愛(ài)教育事業(yè),始初不忘人民教師職責,愛(ài)學(xué)校、愛(ài)學(xué)生。作為一名名師,我從自身嚴格要求自己,通過(guò)政治思想、學(xué)識水平、教育教學(xué)能力等方面的不斷提高來(lái)塑造自己的行為,使自己在教育行業(yè)中不斷成長(cháng),為社會(huì )培養出優(yōu)秀的人才,打下堅實(shí)的基礎。
二、主要成績(jì)
今年是我到工作的第五個(gè)年頭,幾年來(lái)我一直擔任班主任和年級的組長(cháng),同時(shí)又負責學(xué)校教導處工作,一直以來(lái),我始初牢記"踏實(shí)工作、真心待人"的原則,在工作中嚴格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習新知識,探索教育教學(xué)規律,改進(jìn)教育教學(xué)方法,努力使自己成為專(zhuān)家型教師。
1、在班主任工作方面:我投入了極強的責任心,關(guān)注每一名學(xué)生,及時(shí)發(fā)現他們的各種心理或行為動(dòng)態(tài),還有學(xué)習的心態(tài)與學(xué)習情況,用愛(ài)心與耐心澆灌每一個(gè)孩子,并且及時(shí)與家長(cháng)、科任老師進(jìn)行溝通,使孩子在各個(gè)方面得到發(fā)展,幾年來(lái),與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評為省級師德先進(jìn)個(gè)人,19年被評為省級優(yōu)秀教師。加強學(xué)習,努力提升自身修為。
2、在教學(xué)方面:我嚴格要求自己,用心備課上課,每一節課都精心準備課件,仔細研究每一道習題,真正做到講練結合,學(xué)以致用,形成了趣實(shí)活新的教學(xué)風(fēng)格,同時(shí),在教研方面,我積極去聽(tīng)課評課,認真學(xué)習別人上課的長(cháng)處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學(xué)科帶頭人。
3、在教導方面:在做好班主任工作的同時(shí),我作為校長(cháng)助理、教導主任,我能正確定位,努力做好校長(cháng)的助手,協(xié)調各種工作。
一直以來(lái)我總是以飽滿(mǎn)的.熱情對待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認真落實(shí)學(xué)校制定的教學(xué)教研常規,不斷規范教師教學(xué)行為。從學(xué)期初開(kāi)始,認真執行教學(xué)教研工作計劃和工作記錄,嚴格按照學(xué)校修訂的規章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現問(wèn)題及時(shí)反饋及時(shí)做好總結并進(jìn)行跟蹤檢查,期末對教案進(jìn)行歸納整理。規范日常巡課制度,定時(shí)巡課與不定時(shí)巡課相結合,不定時(shí)跟班聽(tīng)課,與執教教師共同切磋存在的問(wèn)題,加強對教學(xué)工作的監控,促進(jìn)教學(xué)質(zhì)量的提高。
學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊伍,同樣教師今后要生存要發(fā)展必須具有過(guò)硬的本領(lǐng)。我清楚的認識到必須加強骨干教師、青年教師的培養力度,也借助各種機遇,為教師搭建自我展示的平臺。加大新教師的培養力度,開(kāi)展“師徒結對子”活動(dòng),通過(guò)推門(mén)聽(tīng)課,領(lǐng)導聽(tīng)課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵教師參加各級各類(lèi)比賽、培訓活動(dòng)等形式,促進(jìn)新教師的迅速成長(cháng)。我精心制定了以人為本的校本培訓計劃,每學(xué)期開(kāi)展十多次骨干培訓活動(dòng),并進(jìn)行讀書(shū)交流活動(dòng),活動(dòng)做到人人有準備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準。
通過(guò)開(kāi)展語(yǔ)、數集體備課—上課—聽(tīng)課——評課研討這樣的教研活動(dòng)觀(guān)摩,讓更多的教師參與到校本教研活動(dòng)中來(lái),增強了教研活動(dòng)的實(shí)效性,提高了教師的課堂教學(xué)水平。新教師展示課活動(dòng),“中荷才露尖尖角”,新教師在歷練中成長(cháng);常態(tài)化的研討課,“萬(wàn)紫千紅總是春”,老師們取長(cháng)補短,共同促進(jìn);名師、骨干教師的精品課,“萬(wàn)綠叢中一點(diǎn)紅”,起了引領(lǐng)示范的作用。
教科研是教學(xué)的源泉,是教改的先導,我十分重視課題研究、管理。18年獨立承擔了省級重點(diǎn)課題研究已經(jīng)結題,并被評為科研課題先進(jìn)個(gè)人,19年又獨立承擔了中課題的研究,已經(jīng)接近尾聲。
4、自身提高方面:我能利用課余時(shí)間閱讀一些教育名著(zhù)及教育教學(xué)刊物,并及時(shí)做好讀書(shū)筆記,建立個(gè)人博客,發(fā)表自己原創(chuàng )的教學(xué)感想、教案設計、學(xué)習心得、教育理念等文章。一份耕耘,一份收獲”,一年來(lái),我積極參加各級各類(lèi)比賽,多次獲獎,還被評為縣級學(xué)科帶頭人。
三、存在的不足
回顧一年來(lái)的工作,我雖然取得了一些成績(jì),積累了一些經(jīng)驗,但是,實(shí)事求是地說(shuō),與領(lǐng)導的要求和自己的期待還有差距,主要表現在:
1、對教導處管理工作還須腳踏實(shí)地地去做,謙虛認真地去學(xué),以使自己取得更好的成績(jì)。
2、教學(xué)方面對差生主要是采取開(kāi)中灶、嚴要求的方式進(jìn)行強化管理,對其心理攻堅尚不到位,所以見(jiàn)效慢,容易激化師生間的矛盾,還得在實(shí)踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習。
3、教研方面,仍需強化、深化、細化地系統學(xué)習相關(guān)理論知識,所寫(xiě)隨感不能僅僅停留在表面現象,還應善于總結提升,以形成有一定深度的,并具有自我指導意義的理論型文字。
另外,意志仍不夠堅強,堅持還不夠徹底,實(shí)是欠缺“鐵杵磨成針”的精神?傊,回顧取得的成績(jì),固然可喜,值得欣慰,但面對未來(lái),仍感任重道遠、不敢懈怠。
最后,用一句話(huà)作為本年度的工作總結,下一年度的開(kāi)始,也就是:既然選擇了遠方,必然風(fēng)雨兼程。我將某某,繼續前行!
關(guān)于數學(xué)常見(jiàn)誤區有哪些
1、被動(dòng)學(xué)習
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴(lài)心理,跟隨老師慣性運轉,沒(méi)有掌握學(xué)習主動(dòng)權.表現在不定計劃,坐等上課,課前沒(méi)有預習,對老師要上課的內容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”,沒(méi)有真正理解所學(xué)內容。
2、學(xué)不得法
老師上課一般都要講清知識的來(lái)龍去脈,剖析概念的內涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結果是事倍功半,收效甚微。
3、不重視基礎
一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書(shū)寫(xiě),但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進(jìn)一步學(xué)習條件不具備
高中數學(xué)與初中數學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進(jìn)一步學(xué)習作好準備。高中數學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數在閉區間上的最值問(wèn)題,函數值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實(shí)際應用問(wèn)題等?陀^(guān)上這些觀(guān)點(diǎn)就是分化點(diǎn),有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。
初中數學(xué)知識點(diǎn)總結3
在初中數學(xué)課堂教學(xué)中,教師不僅需要使用引人入勝的導語(yǔ)、精彩絕倫的講課過(guò)程,同時(shí)還應該為學(xué)生營(yíng)造一個(gè)回味無(wú)窮的課堂結尾,讓學(xué)生學(xué)有所思,學(xué)有所悟。不過(guò),在具體的初中數學(xué)課堂教學(xué)實(shí)踐中,不少教師往往忽視結尾的重要性,從而弱化了教學(xué)效果,而運用藝術(shù)性的課堂結尾,能夠有效提升學(xué)習效率。
1、初中數學(xué)課堂結尾的重要意義
初中數學(xué)課堂結尾指的是教師在結束講課過(guò)程時(shí),在更高層次方面挖掘數學(xué)知識之際的內在聯(lián)系,以及數學(xué)思想方法,同導入環(huán)節一樣,也是課堂教學(xué)的重要一部分。一節優(yōu)秀的初中數學(xué)課,從開(kāi)頭直到結尾,教師與學(xué)生都應該在思維活躍狀態(tài),師生雙方都是積極的投入者,應該充分利用課堂時(shí)間,使課堂教學(xué)效果最大化。在課堂結尾時(shí),學(xué)生的思想往往比較放松,容易松懈、疲勞,學(xué)習注意力不集中,如果教師運用藝術(shù)性的課堂結尾,能夠促使學(xué)生仍然保持較高的學(xué)習熱情,使課堂中學(xué)習的數學(xué)知識在歸納中升華,在總結中延續,在練習中鞏固,通過(guò)相互比較各個(gè)數學(xué)知識點(diǎn)之間的區別與聯(lián)系,設置懸念激發(fā)學(xué)生的求知欲望,使學(xué)生對教學(xué)成果有更深層次的認知更加加深了學(xué)生對已學(xué)到的知識的認知。在初中數學(xué)課堂上,結尾與其它環(huán)節有機整合,可以使整節數學(xué)課產(chǎn)生和諧美與整體美,讓學(xué)生回味悠長(cháng),從而提升數學(xué)知識的審美情趣。
2、初中數學(xué)課堂藝術(shù)性結尾方法
2.1運用歸納式結尾,訓練思維的發(fā)散性:在初中數學(xué)課堂結束之前,教師可以使用歸納式的結尾方式,訓練學(xué)生思維的發(fā)散性與集中性。初中數學(xué)課堂上的歸納式結尾,要求教師使用簡(jiǎn)潔、準確的表格、文字和圖示等,對本節課已經(jīng)前面所學(xué)習的數學(xué)知識進(jìn)行歸納與總結,不僅可以幫助學(xué)生掌握數學(xué)知識的重點(diǎn)與系統性,還能夠促使他們集中精力思考問(wèn)題,以及運用數學(xué)信息綜合分析問(wèn)題的發(fā)散性思維能力,有利于提升學(xué)習效率。例如,在進(jìn)行《直線(xiàn)、射線(xiàn)、線(xiàn)段》教學(xué)時(shí),教師可以讓學(xué)生對這三種線(xiàn)的異同點(diǎn)進(jìn)行歸納和總結,通過(guò)對三者之間的對比與總結,對于直線(xiàn)、射線(xiàn)、線(xiàn)段之間的'區別,學(xué)生能夠掌握的更加深刻,通過(guò)生活中實(shí)例,讓學(xué)生找出不同類(lèi)型的直線(xiàn)、射線(xiàn)與線(xiàn)段,使他們的思維得以發(fā)散和集中。
2.2運用懸念式結尾,訓練思維的創(chuàng )造性:在初中數學(xué)課堂教學(xué)中,為培養學(xué)生的創(chuàng )造性思維,教師可以運用懸念式的課堂結尾模式,促使學(xué)生在懸念中活躍思維,然后發(fā)現新的問(wèn)題,研究新規律,并且尋求解決問(wèn)題的新手段。懸念式的初中數學(xué)課堂結尾意識形式,指的是教師根據本節課所講的內容,設置一些與本節或下節知識相關(guān)的問(wèn)題,然后引發(fā)學(xué)生對問(wèn)題進(jìn)行思考和分析,促使他們產(chǎn)生積極的學(xué)習狀態(tài),引發(fā)學(xué)生通過(guò)思考和分析探究新知識、得出新方法和總結新規律,從而培養學(xué)生的創(chuàng )造性思維。這個(gè)方法也可以通俗的講為“吊胃口”,這個(gè)方法的好處在于可以調動(dòng)學(xué)生的好奇心,引起他們的興趣,再加一些獎勵的措施,可以起到事半功倍的效果,好奇心和興趣是學(xué)習的最大動(dòng)力。例如,在進(jìn)行《等腰三角形》教學(xué)時(shí),為訓練學(xué)生的創(chuàng )造性思維,在課堂結尾時(shí)教師可以設置這樣一個(gè)懸念式問(wèn)題:為什么等腰三角形會(huì )三線(xiàn)合一,讓學(xué)生對其進(jìn)行分析和研究,從而為下一節課《等邊三角形》做鋪墊,引導他們發(fā)現等邊三角形是最為特殊的等腰三角形,激發(fā)學(xué)習動(dòng)力。
2.3運用討論式結尾,訓練思維的求異性:初中生對于新數學(xué)知識的學(xué)習與認識,往往是由區別它們的性質(zhì)開(kāi)始,所以,求異思維在初中數學(xué)教學(xué)中十分重要。同時(shí),培養它們的求異思維也是初中數學(xué)教學(xué)的主要目標之一。求異思維(DivergentThinking),又稱(chēng)輻射思維、放射思維、擴散思維或發(fā)散思維,是指大腦在思維時(shí)呈現的一種擴散狀態(tài)的思維模式,它表現為思維視野廣闊,思維呈現出多維發(fā)散狀。如“一題多解”、“一事多寫(xiě)”、“一物多用”等方式,培養發(fā)散思維能力。不少心理學(xué)家認為,發(fā)散思維是創(chuàng )造性思維的最主要的特點(diǎn),是測定創(chuàng )造力的主要標志之一。為訓練學(xué)生的求異思維,初中數學(xué)教師可以運用討論式的課堂結尾,讓他們對某一數學(xué)問(wèn)題進(jìn)行探討,通過(guò)互相討論,彼此分享自己的看法與觀(guān)點(diǎn),然后進(jìn)行比較和鑒別,發(fā)現數學(xué)知識的不同點(diǎn)與相同點(diǎn),從而認識正確認識到數學(xué)知識的多元化,訓練學(xué)生的求異思維。例如,在進(jìn)行《正方形》教學(xué)時(shí),針對課堂結尾,教師為培養學(xué)生的求異思維,可以讓他們根據本節課的具體教學(xué)內容,從定義、性質(zhì)和判定等方面,討論正方形、菱形和矩形之間異同,促使學(xué)生在求異思維中構建數學(xué)知識的縱向聯(lián)系與橫向聯(lián)系,加強對數學(xué)知識點(diǎn)的理解。
2.4運用練習式結尾,訓練思維的系統性:初中數學(xué)教師在課堂教學(xué)中運用練習式的結尾藝術(shù),指的是在課堂臨近結尾時(shí),教師給學(xué)生布置一些練習作業(yè),通過(guò)練習回顧和訓練本節課的主要教學(xué)內容,從而訓練他們的系統性思維。學(xué)生通過(guò)對練習題的分析和解決,可以使本節知識掌握的更加牢固和更深層次的理解,從而養成熟練的解題技巧;通過(guò)有效的課堂練習,可以檢測學(xué)生對數學(xué)知識的掌握和運用情況,考察學(xué)生的數學(xué)學(xué)習能力和知識應用水平。例如,在進(jìn)行《一次函數》中“函數的圖象”教學(xué)時(shí),針對課堂結尾,教師可以給學(xué)生布置一些課堂練習題,像:y=2x+3、y=7x-4和7=1/4x+8等,讓他們畫(huà)出這些一次函數的圖像,以此來(lái)檢測學(xué)生對知識的掌握與使用情況,促使他們數學(xué)知識學(xué)習的更加整體,訓練學(xué)生的系統性思維。
3、總結
總之,在初中數學(xué)課堂教學(xué)中,結尾環(huán)節十分重要,許多初入課堂的教師講課結束得太過(guò)突然,對結尾不夠重視,有的虎頭蛇尾、草草結尾,有的拖堂、拖泥帶水啰嗦式的結尾,降低教學(xué)效果。他們的結束方法不夠平順,缺乏修飾。正確地說(shuō),他們沒(méi)有結尾,只是突然而急驟地停止。這種方式造成的效果令人感到不愉快,也顯示教師本人是個(gè)十足的外行。教師在具體的教學(xué)實(shí)踐中對于結尾藝術(shù)應該給予特別關(guān)照,充分利用課堂結尾,幫助學(xué)生鞏固數學(xué)知識,加強對數學(xué)知識的理解與記憶,為下節課做好鋪墊工作,從而提升學(xué)生的學(xué)習效率。
初中數學(xué)知識點(diǎn)總結4
基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理xxx兩邊的和大于第三邊
16、推論xxx兩邊的差小于第三邊
17、xxx內角和定理xxx三個(gè)內角的和等于180°
18、推論1直角xxx的兩個(gè)銳角互余
19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)xxx全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)xxx全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的`兩個(gè)xxx全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角xxx全等
27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對等角)
31、推論1等腰xxx頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰xxx的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°
34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35、推論1三個(gè)角都相等的xxx是等邊xxx
36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線(xiàn)等于斜邊上的一半
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果xxx的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°
初中數學(xué)知識點(diǎn)總結5
一元一次方程定義
通過(guò)化簡(jiǎn),只含有一個(gè)未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個(gè)未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。
即一元一次方程必須同時(shí)滿(mǎn)足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。
一元一次方程的五個(gè)核心問(wèn)題
一、什么是等式?1+1=1是等式嗎?
表示相等關(guān)系的式子叫做等式,等式可分三類(lèi):第一類(lèi)是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類(lèi)是條件等式,也就是方程,這類(lèi)等式只能取某些數值代替等式中的字母時(shí),等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類(lèi)是矛盾等式,就是無(wú)論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個(gè)等式中,如果等號多于一個(gè),叫做連等式,連等式可以化為一組只含有一個(gè)等號的等式。
等式與代數式不同,等式中含有等號,代數式中不含等號。
等式有兩個(gè)重要性質(zhì)1)等式的兩邊都加上或減去同一個(gè)數或同一個(gè)整式,所得結果仍然是一個(gè)等式;(2)等式的兩邊都乘以或除以同一個(gè)數除數不為零,所得結果仍然是一個(gè)等式。
二、什么是方程,什么是一元一次方程?
含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個(gè)式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數,兩者缺一不可。
只含有一個(gè)未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個(gè)整式方程的"元"和"次"是將這個(gè)方程化成最簡(jiǎn)形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡(jiǎn)后,它實(shí)際上是一個(gè)一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡(jiǎn)的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡(jiǎn),則為x=2,這時(shí)再去作判斷,將得到錯誤的結論。
凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。
三、等式有什么牛掰的基本性質(zhì)嗎?
將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質(zhì)1。
移項時(shí)不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時(shí)就可以把含未知數的'項移到右邊,而把常數項移到左邊,這樣會(huì )顯得簡(jiǎn)便些。
去分母,將未知數的系數化為1,則是依據等式的基本性質(zhì)2進(jìn)行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說(shuō),等式包含方程;反過(guò)來(lái),方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說(shuō)法是不對的。
五、"解方程"與"方程的解"是一回事兒?jiǎn)?
方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無(wú)解的過(guò)程。即方程的解是結果,而解方程是一個(gè)過(guò)程。方程的解中的"解"是名詞,而解方程中的"解"是動(dòng)詞,二者不能混淆。
初中數學(xué)知識點(diǎn)總結6
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
如數軸所示,化簡(jiǎn)下列各數
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對值的性質(zhì)
任何一個(gè)有理數的絕對值都是非負數,也就是說(shuō)絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;
、埔粋(gè)數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
、侨魏螖档慕^對值都不小于原數。即:|a|≥a;
、冉^對值是相同正數的數有兩個(gè),它們互為相反數。即:若|x|=a(a>0),則x=±a;
、苫橄喾磾档膬蓴档慕^對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
、式^對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
、巳魩讉(gè)數的絕對值的和等于0,則這幾個(gè)數就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。
(非負數的常用性質(zhì):若幾個(gè)非負數的和為0,則有且只有這幾個(gè)非負數同時(shí)為0)
如何整理數學(xué)學(xué)科課堂筆記
一、內容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì )將一堂課的線(xiàn)索脈絡(luò )、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現在黑板上。同時(shí),教師會(huì )使之富有條理性和直觀(guān)性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。
二、疑難問(wèn)題。將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應的,一些問(wèn)題對部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時(shí)記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規律,融會(huì )貫通課堂內容都很有作用。同時(shí),很多有經(jīng)驗的老師在課后小結時(shí),一方面是承上歸納所學(xué)內容,另一方面又是啟下布置預習任務(wù)或點(diǎn)明后面所要學(xué)的內容,做好筆記可以把握學(xué)習的主動(dòng)權,提前作準備,做到目標任務(wù)明確。
五、錯誤反思。學(xué)習過(guò)程中不可避免地會(huì )犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時(shí)也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學(xué)常用解題技巧有哪些
第一,應堅持由易到難的做題順序。近年來(lái)高考數學(xué)試題的設置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結構。在實(shí)體設置的結構中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結構;A差的就是644,先把自己能做的、會(huì )做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì )做怎么辦?應先跳過(guò)去,不是這道題不會(huì )做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩定下來(lái)以后再回過(guò)頭來(lái)看會(huì )頓悟,豁然開(kāi)朗。
第四,做選擇題的時(shí)候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過(guò)程,因此在這個(gè)過(guò)程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開(kāi)始也不看它的四個(gè)選項,從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì )比較快,正確地找出結果來(lái)。再就是數形結合法。最后實(shí)在不行了,就將四個(gè)選項代入驗證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數形結合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規范答題可以減少失分。簡(jiǎn)單地說(shuō),規范答題就是從上一步的原因到下一步的結論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因為什么所以什么是一個(gè)必然的過(guò)程,這是規范答題。
學(xué)霸分享的數學(xué)復習技巧
1、把答案蓋住看例題
例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。
經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。
2、研究每題都考什么
數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。
學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.
4、分析試卷總結經(jīng)驗
每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。
數學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。
5、待定系數法
在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結10-24
初中數學(xué)知識點(diǎn)總結06-24
初中數學(xué)知識點(diǎn)總結03-07
初中數學(xué)知識點(diǎn)總結03-04