97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

2022高中數學(xué)知識點(diǎn)總結

時(shí)間:2025-03-04 07:17:13 知識點(diǎn)總結 我要投稿

2022有關(guān)高中數學(xué)知識點(diǎn)總結

  在現實(shí)學(xué)習生活中,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)在教育實(shí)踐中,是指對某一個(gè)知識的泛稱(chēng)。那么,都有哪些知識點(diǎn)呢?下面是小編精心整理的2022有關(guān)高中數學(xué)知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。

2022有關(guān)高中數學(xué)知識點(diǎn)總結

  2022高中數學(xué)知識點(diǎn)總結1

  空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

  1、直線(xiàn)與平面有三種位置關(guān)系:

 。1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 。2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

 。3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

  指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示aαa∩α=Aa∥α

  2、直線(xiàn)、平面平行的判定及其性質(zhì)

  1、直線(xiàn)與平面平行的判定

  2、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

 。1)用定義;

 。2)判定定理;

 。3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

  2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的.任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

  簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

  2022高中數學(xué)知識點(diǎn)總結2

  一、高中數列基本公式:

  1、一般數列的通項an與前n項和Sn的關(guān)系:an=

  2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時(shí),an是關(guān)于n的一次式;當d=0時(shí),an是一個(gè)常數。

  3、等差數列的前n項和公式:Sn=

  Sn=

  Sn=

  當d≠0時(shí),Sn是關(guān)于n的二次式且常數項為0;當d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數列的通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數列的前n項和公式:當q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

  當q≠1時(shí),Sn=

  Sn=

  二、高中數學(xué)中有關(guān)等差、等比數列的結論

  1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。

  2、等差數列{an}中,若m+n=p+q,則

  3、等比數列{an}中,若m+n=p+q,則

  4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。

  5、兩個(gè)等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。

  6、兩個(gè)等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。

  7、等差數列{an}的任意等距離的`項構成的數列仍為等差數列。

  8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。

  9、三個(gè)數成等差數列的設法:a-d,a,a+d;四個(gè)數成等差的設法:a-3d,a-d,,a+d,a+3d

  10、三個(gè)數成等比數列的設法:a/q,a,aq;

  四個(gè)數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)

  2022高中數學(xué)知識點(diǎn)總結3

 。1)不等關(guān)系

  感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

 。2)一元二次不等式

 、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

 、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。

 、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的`程序框圖。

 。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題

 、購膶(shí)際情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。

 、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

 。4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。

 、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。

  2022高中數學(xué)知識點(diǎn)總結4

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;

  公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:

  直線(xiàn)與直線(xiàn)—平行、相交、異面;

  直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);

  平面與平面—平行、相交。

  3、異面直線(xiàn):

  平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);

  所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);

  兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);

  異面直線(xiàn)不同在任何一個(gè)平面內。

  求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角

  二、空間中的平行關(guān)系

  1、直線(xiàn)與平面平行(核心)

  定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)

  判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)

  性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行

  2、平面與平面平行

  定義:兩個(gè)平面沒(méi)有公共點(diǎn)

  判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)

  三、空間中的垂直關(guān)系

  1、直線(xiàn)與平面垂直

  定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直

  判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直

  性質(zhì):垂直于同一直線(xiàn)的兩平面平行

  推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的.銳角,特別規定垂直90度,在平面內或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)

  判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直

  2022高中數學(xué)知識點(diǎn)總結5

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(cháng)稱(chēng)為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫

  做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內切圓,其圓心稱(chēng)為內心。

  5.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線(xiàn)。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長(cháng)/圓錐母線(xiàn)—l 周長(cháng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO

  2.圓是軸對稱(chēng)圖形,其對稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn)。圓也是中心對稱(chēng)圖形,其對稱(chēng)中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線(xiàn)上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內切圓的圓心是三角形各內角平分線(xiàn)的交點(diǎn),到三角形3邊距離相等。

  9.直線(xiàn)AB與圓O的'位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線(xiàn)垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。

  11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長(cháng)C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長(cháng)l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開(kāi),移項,合并同類(lèi)項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

  五、圓與直線(xiàn)的位置關(guān)系判斷

  平面內,直線(xiàn)Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線(xiàn)的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交

  如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切

  如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離

 。2)如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規定x1

  當x=-C/Ax2時(shí),直線(xiàn)與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時(shí),直線(xiàn)與圓相切

  圓的定理:

  1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11.定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角

  12.①直線(xiàn)L和⊙O相交 d

 、谥本(xiàn)L和⊙O相切 d=r

 、壑本(xiàn)L和⊙O相離 d>r

  13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內切 d=R-r(R>r) ⑤兩圓內含dr)

  21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 。2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)

  27.正三角形面積√3a/4 a表示邊長(cháng)

  28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長(cháng)計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

  2022高中數學(xué)知識點(diǎn)總結6

  一、求導數的方法

 。1)基本求導公式

 。2)導數的四則運算

 。3)復合函數的導數

  設在點(diǎn)x處可導,y=在點(diǎn)處可導,則復合函數在點(diǎn)x處可導,且即

  二、關(guān)于極限

  1、數列的極限:

  粗略地說(shuō),就是當數列的項n無(wú)限增大時(shí),數列的項無(wú)限趨向于A(yíng),這就是數列極限的描述性定義。記作:=A。如:

  2、函數的極限:

  當自變量x無(wú)限趨近于常數時(shí),如果函數無(wú)限趨近于一個(gè)常數,就說(shuō)當x趨近于時(shí),函數的極限是,記作

  三、導數的概念

  1、在處的導數。

  2、在的導數。

  3、函數在點(diǎn)處的導數的幾何意義:

  函數在點(diǎn)處的導數是曲線(xiàn)在處的切線(xiàn)的斜率,

  即k=,相應的切線(xiàn)方程是

  注:函數的導函數在時(shí)的函數值,就是在處的導數。

  例、若=2,則=()A—1B—2C1D

  四、導數的綜合運用

 。ㄒ唬┣(xiàn)的`切線(xiàn)

  函數y=f(x)在點(diǎn)處的導數,就是曲線(xiàn)y=(x)在點(diǎn)處的切線(xiàn)的斜率。由此,可以利用導數求曲線(xiàn)的切線(xiàn)方程。具體求法分兩步:

 。1)求出函數y=f(x)在點(diǎn)處的導數,即曲線(xiàn)y=f(x)在點(diǎn)處的切線(xiàn)的斜率k=

 。2)在已知切點(diǎn)坐標和切線(xiàn)斜率的條件下,求得切線(xiàn)方程為x。

【2022高中數學(xué)知識點(diǎn)總結】相關(guān)文章:

2022高中數學(xué)知識點(diǎn)總結02-25

高中數學(xué)知識點(diǎn)的總結12-19

高中數學(xué)導數知識點(diǎn)總結02-11

高中數學(xué)基本的知識點(diǎn)總結09-28

高中數學(xué)幾何知識點(diǎn)總結05-25

高中數學(xué)全部知識點(diǎn)總結02-20

高中數學(xué)知識點(diǎn)總結05-15

高中數學(xué)知識點(diǎn)總結09-22

高中數學(xué)必修二知識點(diǎn)總結06-15

高中數學(xué)考試知識點(diǎn)總結06-08