2022高中數學(xué)知識點(diǎn)總結
在現實(shí)學(xué)習生活中,大家對知識點(diǎn)應該都不陌生吧?知識點(diǎn)是知識中的最小單位,最具體的內容,有時(shí)候也叫“考點(diǎn)”。為了幫助大家掌握重要知識點(diǎn),以下是小編為大家整理的2022高中數學(xué)知識點(diǎn)總結,僅供參考,歡迎大家閱讀。
高中數學(xué)知識點(diǎn)總結1
★高中數學(xué)導數知識點(diǎn)
一、早期導數概念————特殊的形式大約在1629年法國數學(xué)家費馬研究了作曲線(xiàn)的切線(xiàn)和求函數極值的方法1637年左右他寫(xiě)一篇手稿《求最大值與最小值的方法》。在作切線(xiàn)時(shí)他構造了差分f(A+E)—f(A),發(fā)現的因子E就是我們所說(shuō)的導數f(A)。
二、17世紀————廣泛使用的“流數術(shù)”17世紀生產(chǎn)力的發(fā)展推動(dòng)了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng )造性研究的基礎上大數學(xué)家牛頓、萊布尼茨等從不同的角度開(kāi)始系統地研究微積分。牛頓的微積分理論被稱(chēng)為“流數術(shù)”他稱(chēng)變量為流量稱(chēng)變量的變化率為流數相當于我們所說(shuō)的導數。牛頓的有關(guān)“流數術(shù)”的主要著(zhù)作是《求曲邊形面積》、《運用無(wú)窮多項方程的計算法》和《流數術(shù)和無(wú)窮級數》流數理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數而不在于多變量的方程在于自變量的變化與函數的變化的比的構成最在于決定這個(gè)比當變化趨于零時(shí)的極限。
三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學(xué)家院出版的《百科全書(shū)》第五版寫(xiě)的“微分”條目中提出了關(guān)于導數的一種觀(guān)點(diǎn)可以用現代符號簡(jiǎn)單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無(wú)窮小分析概論》中定義導數如果函數y=f(x)在變量x的兩個(gè)給定的界限之間保持連續并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無(wú)窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng )造了ε—δ語(yǔ)言對微積分中出現的各種類(lèi)型的極限重加表達導數的定義也就獲得了今天常見(jiàn)的形式。
四、實(shí)無(wú)限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎大體可以分為兩個(gè)部分。一個(gè)是實(shí)無(wú)限理論即無(wú)限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無(wú)限指一種意識形態(tài)上的過(guò)程比如無(wú)限接近。就歷史來(lái)看兩種理論都有一定的道理。其中實(shí)無(wú)限用了150年后來(lái)極限論就是現在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長(cháng)期爭論的問(wèn)題后來(lái)由波粒二象性來(lái)統一。微積分無(wú)論是用現代極限論還是150年前的理論都不是最好的手段。
★高中數學(xué)導數要點(diǎn)
1、求函數的單調性:
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數。
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的`不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過(guò)來(lái),也可以利用導數由函數的單調性解決相關(guān)問(wèn)題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,
。1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
。2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);
。3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立。
2、求函數的極值:
設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數f(x)的極小值(或極大值)。
可導函數的極值,可通過(guò)研究函數的單調性求得,基本步驟是:
。1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區間,并列表:x變化時(shí),f(x)和f(x)值的
變化情況:
。4)檢查f(x)的符號并由表格判斷極值。
3、求函數的最大值與最小值:
如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數在定義域上的最大值。函數在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。
求函數f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。
4、解決不等式的有關(guān)問(wèn)題:
。1)不等式恒成立問(wèn)題(絕對不等式問(wèn)題)可考慮值域。
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
。2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。
5、導數在實(shí)際生活中的應用:
實(shí)際生活求解最大(。┲祮(wèn)題,通常都可轉化為函數的最值。在利用導數來(lái)求函數最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數,極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。
高中數學(xué)知識點(diǎn)總結2
一、求導數的方法
。1)基本求導公式
。2)導數的四則運算
。3)復合函數的導數
設在點(diǎn)x處可導,y=在點(diǎn)處可導,則復合函數在點(diǎn)x處可導,且即
二、關(guān)于極限
1、數列的極限:
粗略地說(shuō),就是當數列的項n無(wú)限增大時(shí),數列的項無(wú)限趨向于A(yíng),這就是數列極限的描述性定義。記作:=A。如:
2、函數的極限:
當自變量x無(wú)限趨近于常數時(shí),如果函數無(wú)限趨近于一個(gè)常數,就說(shuō)當x趨近于時(shí),函數的極限是,記作
三、導數的概念
1、在處的導數。
2、在的導數。
3。函數在點(diǎn)處的導數的幾何意義:
函數在點(diǎn)處的導數是曲線(xiàn)在處的切線(xiàn)的斜率,
即k=,相應的切線(xiàn)方程是
注:函數的導函數在時(shí)的函數值,就是在處的導數。
例、若=2,則=()A—1B—2C1D
四、導數的綜合運用
。ㄒ唬┣(xiàn)的切線(xiàn)
函數y=f(x)在點(diǎn)處的.導數,就是曲線(xiàn)y=(x)在點(diǎn)處的切線(xiàn)的斜率。由此,可以利用導數求曲線(xiàn)的切線(xiàn)方程。具體求法分兩步:
。1)求出函數y=f(x)在點(diǎn)處的導數,即曲線(xiàn)y=f(x)在點(diǎn)處的切線(xiàn)的斜率k=
。2)在已知切點(diǎn)坐標和切線(xiàn)斜率的條件下,求得切線(xiàn)方程為x。
高中數學(xué)知識點(diǎn)總結3
。1)不等關(guān)系
感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
。2)一元二次不等式
、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。
、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。
、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。
。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題
、購膶(shí)際情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降腵幾何意義,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。
、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。
。4)基本不等式
、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。
、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。
高中數學(xué)知識點(diǎn)總結4
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。
3、a—邊長(cháng),S=6a2,V=a3。
4、長(cháng)方體a—長(cháng),b—寬,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱錐S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圓柱r—底半徑,h—高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)。
11、r—底半徑h—高V=πr^2h/3。
12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。
16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。
17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)。
高中數學(xué)知識點(diǎn)總結5
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1、建立適當的坐標系,設出動(dòng)點(diǎn)M的坐標;
2、寫(xiě)出點(diǎn)M的集合;
3、列出方程=0;
4、化簡(jiǎn)方程為最簡(jiǎn)形式;
5、檢驗。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數法:當動(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的`方法叫做參數法。
5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
、俳ㄏ怠⑦m當的坐標系;
、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);
、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高中數學(xué)知識點(diǎn)總結6
有界性
設函數f(x)在區間X上有定義,如果存在M>0,對于一切屬于區間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區間X上有界,否則稱(chēng)f(x)在區間上無(wú)界.
單調性
設函數f(x)的定義域為D,區間I包含于D.如果對于區間上任意兩點(diǎn)x1及x2,當x1f(x2),則稱(chēng)函數f(x)在區間I上是單調遞減的單調遞增和單調遞減的`函數統稱(chēng)為單調函數.
奇偶性
設為一個(gè)實(shí)變量實(shí)值函數,若有f(—x)=—f(x),則f(x)為奇函數.
幾何上,一個(gè)奇函數關(guān)于原點(diǎn)對稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉后不會(huì )改變.
奇函數的例子有x、sin(x)、sinh(x)和erf(x).
設f(x)為一實(shí)變量實(shí)值函數,若有f(x)=f(—x),則f(x)為偶函數.
幾何上,一個(gè)偶函數關(guān)于y軸對稱(chēng),亦即其圖在對y軸映射后不會(huì )改變.
偶函數的例子有|x|、x2、cos(x)和cosh(x).
偶函數不可能是個(gè)雙射映射.
連續性
在數學(xué)中,連續是函數的一種屬性.直觀(guān)上來(lái)說(shuō),連續的函數就是當輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì )隨之足夠小的函數.如果輸入值的某種微小的變化會(huì )產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數被稱(chēng)為是不連續的函數(或者說(shuō)具有不連續性).
【高中數學(xué)知識點(diǎn)總結】相關(guān)文章:
高中數學(xué)知識點(diǎn)總結05-15
高中數學(xué)知識點(diǎn)總結09-22