初中數學(xué)《勾股定理》說(shuō)課稿5篇
作為一位杰出的老師,就難以避免地要準備說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。說(shuō)課稿應該怎么寫(xiě)才好呢?下面是小編為大家整理的初中數學(xué)《勾股定理》說(shuō)課稿,歡迎閱讀與收藏。
初中數學(xué)《勾股定理》說(shuō)課稿1
說(shuō)課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學(xué)法、授課程序等方面的思路、教學(xué)設計、|板書(shū)設計及其依據面對面地對同行(同學(xué)科教師)或其他聽(tīng)眾作全面講述的一項教研活動(dòng)或交流活動(dòng)。以下是小編整理的初中數學(xué)《勾股定理的逆定理》說(shuō)課稿,歡迎大家閱讀參考。
一、教材分析:
。ㄒ唬、本節課在教材中的地位作用
“勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學(xué)習的一個(gè)直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學(xué)習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時(shí)在應用中滲透了利用代數計算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學(xué)生必須掌握。
。ǘ、教學(xué)目標:
根據數學(xué)課標的要求和教材的具體內容,結合學(xué)生實(shí)際我確定了本節課的教學(xué)目標。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形
過(guò)程與方法:
1、通過(guò)對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過(guò)程
2、通過(guò)用三角形三邊的數量關(guān)系來(lái)判斷三角形的形狀,體驗數與形結合方法的應用
3、通過(guò)勾股定理的逆定理的證明,體會(huì )數與形結合方法在問(wèn)題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
1、通過(guò)用三角形三邊的數量關(guān)系來(lái)判斷三角形的形狀,體驗數與形的內在聯(lián)系,感受定理與逆定理之間的和諧及辯證統一的關(guān)系
2、在探究勾股定理的逆定理的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識和探究精神
。ㄈ、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據已知條件構造一個(gè)直角三角形,根據學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節的難點(diǎn),這樣如何添輔助線(xiàn)就是解決它的關(guān)鍵,這樣就確定了本節課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):勾股定理逆定理的應用
難點(diǎn):勾股定理逆定理的證明
關(guān)鍵:輔助線(xiàn)的添法探索
二、教學(xué)過(guò)程:
本節課的設計原則是:使學(xué)生在動(dòng)手操作的基礎上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認識結構與幾何知識結構之間筑了一個(gè)信息流通渠道,進(jìn)而達到完善學(xué)生的數學(xué)認識結構的目的。
。ㄒ唬、復習回顧:復習回顧與勾股定理有關(guān)的內容,建立新舊知識之間的聯(lián)系。
。ǘ、創(chuàng )設問(wèn)題情境
一開(kāi)課我就提出了與本節課關(guān)系密切、學(xué)生用現有的知識可探索卻又解決不好的問(wèn)題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長(cháng)繩打上等距離的13個(gè)結,然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習中來(lái),創(chuàng )造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識來(lái)源于實(shí)踐,不失時(shí)機地讓學(xué)生感到數學(xué)就在身邊。
。ㄈ、學(xué)生在教師的指導下嘗試解決問(wèn)題,總結規律(包括難點(diǎn)突破)
因為幾何來(lái)源于現實(shí)生活,對初二學(xué)生來(lái)說(shuō)選擇適當的時(shí)機,讓他們從個(gè)體實(shí)踐經(jīng)驗中開(kāi)始學(xué)習,可以提高學(xué)習的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙在具體的實(shí)踐中觀(guān)察滿(mǎn)足條件的三角形直觀(guān)感覺(jué)上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線(xiàn)的添法,為后面進(jìn)行邏輯推理論證提供了直觀(guān)的數學(xué)模型。
接下來(lái)就是利用這個(gè)數學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現了從生動(dòng)直觀(guān)向抽象思維的轉化,同時(shí)學(xué)生親身體會(huì )了動(dòng)手操作——觀(guān)察——猜測——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習興趣和學(xué)習積極性有所提高。使學(xué)生確實(shí)在學(xué)習過(guò)程中享受到自我創(chuàng )造的快樂(lè )。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過(guò)程嚴格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養成學(xué)生看書(shū)的習慣,這也是在培養學(xué)生的自學(xué)能力。
。ㄋ模、組織變式訓練
本著(zhù)由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數字,繞了一個(gè)彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結論,這些作法培養了學(xué)生靈活轉換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓練中我還采用講、說(shuō)、練結合的方法,教師通過(guò)觀(guān)察、提問(wèn)、巡視、談話(huà)等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習過(guò)程,隨時(shí)反饋,調節教法,同時(shí)注意加強有針對性的個(gè)別指導,把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習效果結合起來(lái)。
。ㄎ澹、歸納小結,納入知識體系
本節課小結先讓學(xué)生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養能力方面,比如輔助線(xiàn)的添法,數形結合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現并證明的,這種討論問(wèn)題的方法是培養我們發(fā)現問(wèn)題認識問(wèn)題的好方法,希望同學(xué)在課外練習時(shí)注意用這種方法,這都是教給學(xué)習方法。
。、作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學(xué)生學(xué)習習慣的培養,以及提高他們學(xué)好數學(xué)的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓練和培養他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
三、說(shuō)教法、學(xué)法與教學(xué)手段
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養創(chuàng )新活動(dòng)的要求,根據本節課的教學(xué)內容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認知規律和認知水平,本節課我主要采用了以學(xué)生為主體,引導發(fā)現、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的學(xué)習積極性,發(fā)展學(xué)生的思維;有利于培養學(xué)生動(dòng)手、觀(guān)察、分析、猜想、驗證、推理能力和創(chuàng )新能力;有利于學(xué)生從感性認識上升到理性認識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現有的經(jīng)驗和感性認識,由最鄰近的知識去向本節課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨立探討、主動(dòng)獲取知識。
總之,本節課遵循從生動(dòng)直觀(guān)到抽象思維的認識規律,力爭最大限度地調動(dòng)學(xué)生學(xué)習的積極性;力爭把教師教的過(guò)程轉化為學(xué)生親自探索、發(fā)現知識的過(guò)程;力爭使學(xué)生在獲得知識的過(guò)程中得到能力的培養。
初中數學(xué)《勾股定理》說(shuō)課稿2
一、教材分析
。ㄒ唬┙滩牡匚
這節課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。
。ǘ┙虒W(xué)目標
1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。
2、過(guò)程與方法:經(jīng)歷探索及驗證勾股定理的過(guò)程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習慣,感受數形結合和從特殊到一般的思想。
3、情感態(tài)度與價(jià)值觀(guān): 激發(fā)學(xué)生愛(ài)國熱情,讓學(xué)生體驗自己努力得到結論的成就感,體驗數學(xué)充滿(mǎn)探索和創(chuàng )造,體驗數學(xué)的美感,從而了解數學(xué),喜歡數學(xué)。
。ㄈ┙虒W(xué)重點(diǎn)
經(jīng)歷探索及驗證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗,讓學(xué)生在實(shí)驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析
學(xué)情分析:
七年級學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來(lái)解決問(wèn)題的意識和能力還不夠。
另外,學(xué)生普遍學(xué)習積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強.
教法分析:
結合七年級學(xué)生和本節教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋?xiě)谩卣轨柟獭钡哪J剑?選擇引導探索法。
把教學(xué)過(guò)程轉化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結的過(guò)程。
學(xué)法分析:在教師的組織引導下,學(xué)生采用自主探究合作交流的研討式學(xué)習方式,使學(xué)生真正成為學(xué)習的主人。
三、教學(xué)過(guò)程設計
。ㄒ唬﹦(chuàng )設情境,提出問(wèn)題
。1)圖片欣賞勾股定理數形圖
1955年希臘發(fā)行美麗的勾股樹(shù)
20xx年國際數學(xué)的一枚紀念郵票
大會(huì )會(huì )標
設計意圖:通過(guò)圖形欣賞,感受數學(xué)美,感受勾股定理的文化價(jià)值。
。2)某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6。5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2。5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?
設計意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現了知識的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程,從而引出下面的環(huán)節。
。ǘ⿲(shí)驗操作模型構建
1、等腰直角三角形(數格子)
2、一般直角三角形(割補)
問(wèn)題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設計意圖:這樣做利于學(xué)生參與探索,利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。
問(wèn)題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補法是本節的難點(diǎn),組織學(xué)生合作交流)
設計意圖:不僅有利于突破難點(diǎn),而且為歸納結論打下基礎,讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。
通過(guò)以上實(shí)驗歸納總結勾股定理。
設計意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認知規律。
。ㄈ┗貧w生活應用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應,增強學(xué)生學(xué)數學(xué)、用數學(xué)的意識,增加學(xué)以致用的樂(lè )趣和信心。
。ㄋ模┲R拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習,照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運用得到升華。
基礎題: 直角三角形的一直角邊長(cháng)為3,斜邊為5,另一直角邊長(cháng)為X,你可以根據條件提出多少個(gè)數學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設計意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng )設情境 ,鍛煉了發(fā)散思維。
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學(xué)生的生活常識,也體現了數學(xué)源于生活,并用于生活。
探索題: 做一個(gè)長(cháng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(cháng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識說(shuō)明。
設計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
。ㄎ澹└形蚴斋@布置作業(yè)
這節課你的收獲是什么?
作業(yè):
1、課本習題2.1
2、搜集有關(guān)勾股定理證明的資料。
四、板書(shū)設計
探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說(shuō)明:
1、探索定理采用面積法,為學(xué)生創(chuàng )設一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì )數形結合及從特殊到一般的思想方法。
2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現出來(lái)的思維水平、表達水平。
圖文搜集自網(wǎng)絡(luò ),如有侵權,請聯(lián)系刪除。
鐵樹(shù)老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴
初中數學(xué)《勾股定理》說(shuō)課稿3
一、說(shuō)教材
本課時(shí)是華師大版八年級(上)數學(xué)第14章第二節內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數學(xué)的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線(xiàn)是否互相垂直的一個(gè)重要方法,這些成果被廣泛應用于數學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀(guān)的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應用。 據此,制定教學(xué)目標如下:
1、知識和方法目標:通過(guò)對一些典型題目的思考,練習,能正確熟練地進(jìn)行勾股定理有關(guān)計算,深入對勾股定理的理解。
2、過(guò)程與方法目標:通過(guò)對一些題目的探討,以達到掌握知識的目的。
3、情感與態(tài)度目標:感受數學(xué)在生活中的應用,感受數學(xué)定理的美。
教學(xué)重點(diǎn):勾股定理的應用。
教學(xué)難點(diǎn):勾股定理的正確使用。
教學(xué)關(guān)鍵:在現實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。
二、說(shuō)教法和學(xué)法
1、以自學(xué)輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學(xué)習欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習全過(guò)程。
2、切實(shí)體現學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
3、通過(guò)演示實(shí)物,引導學(xué)生觀(guān)察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節內容的教學(xué)主要體現在學(xué)生的動(dòng)手,動(dòng)腦方面,根據學(xué)生的認知規律和學(xué)習心理,教學(xué)程序設置如下:
一、回顧問(wèn):
勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習這個(gè)定理在實(shí)際生活中的應用。
二、新授課例
1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長(cháng)等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對的C點(diǎn)處的食物,沿圓柱側面爬行的最短路線(xiàn)是多少?(課本P57圖14.2.1)
、賹W(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側面畫(huà)出幾條路線(xiàn)。思考:那條路線(xiàn)最短?
、谌鐖D,將圓柱側面剪開(kāi)展成一個(gè)長(cháng)方形,從A點(diǎn)到C點(diǎn)的最短路線(xiàn)是什么?你畫(huà)得對嗎?
、畚浵亸腁點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側面爬行的最短路線(xiàn)是什么?
思路點(diǎn)撥:引導學(xué)生在自制的圓柱側面上尋找最短路線(xiàn);提醒學(xué)生將圓柱側面展開(kāi)成長(cháng)方形,引導學(xué)生觀(guān)察分析發(fā)現“兩點(diǎn)之間的所有線(xiàn)中,線(xiàn)段最短”。 學(xué)生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發(fā)現螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著(zhù)直徑爬向C點(diǎn)爬行的路線(xiàn)是最短的!我也意外的發(fā)現了這種爬法是正確的,但是課本上是順著(zhù)側面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒(méi)有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)
思路點(diǎn)撥:廠(chǎng)門(mén)的寬度是足夠的,這個(gè)問(wèn)題的關(guān)鍵是觀(guān)察當卡車(chē)位于廠(chǎng)門(mén)正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠(chǎng)門(mén)中線(xiàn)0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見(jiàn)卡車(chē)能順利通過(guò) 。詳細解題過(guò)程看課本 引導學(xué)生完成P58做一做。
三、課堂小練
1、課本P58練習第1,2題。
2、探究: 一門(mén)框的尺寸如圖所示,一塊長(cháng)3米,寬2.2米的薄木板是否能從門(mén)框內通過(guò)?為什么?
四、小結
直角三角形在實(shí)際生活中有更為廣泛的應用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應用,那樣就能很輕松的解決現實(shí)生活中的許多問(wèn)題,達到事倍功半的效果。
五、布置作業(yè)
課本P60習題14.2第1,2,3題。
初中數學(xué)《勾股定理》說(shuō)課稿4
各位專(zhuān)家領(lǐng)導:
上午好!今天我說(shuō)課的課題是《勾股定理》
一、教材分析:
(一)本節內容在全書(shū)和章節的地位
這節課是九年制義務(wù)教育課程標準實(shí)驗教科書(shū)(華東版),八年級第十九章第二節“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形的主要依據之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和觀(guān)察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運用。
(二)三維教學(xué)目標:
1.【知識與能力目標】
、崩斫獠⒄莆展垂啥ɡ淼膬热莺妥C明,能夠靈活運用勾股定理及其計算;
、餐ㄟ^(guò)觀(guān)察分析,大膽猜想,并探索勾股定理,培養學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
2.【過(guò)程與方法目標】
在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察-猜想-歸納-驗證”的數學(xué)思想,并體會(huì )數形結合和從特殊到一般的思想方法。
3.【情感態(tài)度與價(jià)值觀(guān)】通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國和熱愛(ài)祖國悠久文化的思想感情,培養學(xué)生的民族自豪感和鉆研精神。
(三)教學(xué)重點(diǎn)、難點(diǎn):
【教學(xué)重點(diǎn)】勾股定理的證明與運用
【教學(xué)難點(diǎn)】用面積法等方法證明勾股定理
【難點(diǎn)成因】對于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀(guān)察的基礎上,大膽猜想數學(xué)結論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運用數學(xué)的思想意識,但學(xué)生在這一方面的可預見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。
【突破措施】:
、眲(chuàng )設情景,激發(fā)思維:創(chuàng )設生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習過(guò)程;
、沧灾魈剿,敢于猜想:充分讓自己動(dòng)手操作,大膽猜想數學(xué)問(wèn)題的結論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;
、硰垞P個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書(shū)記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調動(dòng)了學(xué)生的學(xué)習積極性。
二、教法與學(xué)法分析
【教法分析】
數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng )設情景-動(dòng)手操作-歸納驗證-問(wèn)題解決-課堂小結-布置作業(yè)”六個(gè)方面。
【學(xué)法分析】
新課標明確提出要培養“可持續發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導學(xué)生并參入到學(xué)習活動(dòng)中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習方式,培養學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習慣與能力,使學(xué)生真正成為學(xué)習的主人。
三、教學(xué)過(guò)程設計
(一)創(chuàng )設情景
多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?
問(wèn)題的設計有一定的挑戰性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導學(xué)生將實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì )感到一些困難,從而老師指出學(xué)習了今天的這節課后,同學(xué)們就會(huì )有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導入新課,不僅自然,而且也反映了“數學(xué)來(lái)源于生活”,學(xué)習數學(xué)是為更好“服務(wù)于生活”。
(二)動(dòng)手操作
、闭n件出示課本P99圖19.2.1:
觀(guān)察圖中用陰影畫(huà)出的三個(gè)正方形,你從中能夠得出什么結論?
學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語(yǔ)言進(jìn)行描述,引導學(xué)生發(fā)現SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的`面積之間的關(guān)系發(fā)現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數學(xué)學(xué)習的過(guò)程,也有利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。
、簿o接著(zhù)讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預先準備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現:對于一般的以整數為邊長(cháng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識,這樣設計有利于突破難點(diǎn),也讓學(xué)生體會(huì )到觀(guān)察、猜想、歸納的數學(xué)思想及學(xué)習過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。
、吃賳(wèn):當邊長(cháng)不為整數的直角三角形是否也存在這一結論呢?投影例題:一個(gè)邊長(cháng)分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學(xué)生計算。這樣設計的目的是讓學(xué)生體會(huì )到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。
(三)歸納驗證
【歸納】通過(guò)動(dòng)手操作、合作交流,探索邊長(cháng)為整數的等腰直角三角形到一般的直角三角形,再到邊長(cháng)為小數的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習過(guò)程中感受學(xué)數學(xué)的樂(lè )趣,,使學(xué)生學(xué)會(huì )“文字語(yǔ)言”與“數學(xué)語(yǔ)言”這兩種表達方式,各小組“發(fā)言人”的積極表現,整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問(wèn)題。
【驗證】先后三次驗證“勾股定理”這一結論,期間學(xué)生動(dòng)手進(jìn)行了畫(huà)圖、剪圖、拼圖,還有測量、計算等活動(dòng),使學(xué)生從中體會(huì )到數形結合和從特殊到一般的數學(xué)思想,而且這一過(guò)程也有利于培養學(xué)生嚴謹、科學(xué)的學(xué)習態(tài)度。
(四)問(wèn)題解決
、弊寣W(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應,讓學(xué)生體會(huì )到成功的快樂(lè )。
、沧詫W(xué)課本P101例1,然后完成P102練習。
(五)課堂小結
1.小組成員從內容、數學(xué)思想方法、獲取知識的途徑進(jìn)行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個(gè)小組表現最佳。
2.教師用多媒體介紹“勾股定理史話(huà)”
、佟吨荀滤銖健罚何髦艿纳谈(公元一千多年前)發(fā)現了“勾三股四弦五”這一規律。
、诳滴鯏祵W(xué)專(zhuān)著(zhù)《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng )。
目的是對學(xué)生進(jìn)行愛(ài)國主義教育,激勵學(xué)生奮發(fā)向上。
(六)布置作業(yè)
課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì )定理與實(shí)際生活的聯(lián)系。
以上內容,我僅從“說(shuō)教材”,“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)學(xué)法”、“說(shuō)教學(xué)過(guò)程”上來(lái)說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專(zhuān)家領(lǐng)導對本次說(shuō)課提出寶貴的意見(jiàn),謝謝!
初中數學(xué)《勾股定理》說(shuō)課稿5
今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數學(xué)下冊第十八章第一節的第一課時(shí)。
一、教學(xué)背景分析
1、教材分析
本節課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,通過(guò)20xx年國際數學(xué)家大會(huì )的會(huì )徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數量關(guān)系,并應用它解決問(wèn)題。學(xué)好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學(xué)習解直角三角形奠定基礎,在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數量關(guān)系,將數與形密切地聯(lián)系起來(lái),它有著(zhù)豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過(guò)前面的學(xué)習,學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀(guān)教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習知識的樂(lè )趣。
3、教學(xué)目標:
根據八年級學(xué)生的認知水平,依據新課程標準和教學(xué)大綱的要求,我制定了如下的教學(xué)目標:
知識與能力目標:了解勾股定理的發(fā)現過(guò)程,掌握勾股定理的內容,會(huì )用面積法證明勾股定理;培養在實(shí)際生活中發(fā)現問(wèn)題總結規律的意識和能力.
過(guò)程與方法目標:通過(guò)創(chuàng )設情境,導入新課,引導學(xué)生探索勾股定理,并應用它解決問(wèn)題,運用了觀(guān)察、演示、實(shí)驗、操作等方法學(xué)習新知。
情感態(tài)度價(jià)值觀(guān)目標:感受數學(xué)文化,激發(fā)學(xué)生學(xué)習的熱情,體驗合作學(xué)習成功的喜悅,滲透數形結合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過(guò)分析可見(jiàn),勾股定理是平面幾何的重要定理,有著(zhù)承上啟下的作用,在今后的生活實(shí)踐中有著(zhù)廣泛應用。因此我確定本課的教學(xué)
重難點(diǎn)為探索和證明勾股定理.
二、教材處理
根據學(xué)生情況,為有效培養學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng )設問(wèn)題情境為先導,運用直觀(guān)教具、多媒體等手段,激發(fā)學(xué)生學(xué)習興趣,調動(dòng)學(xué)生學(xué)習積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無(wú)定法”,只有方法恰當,才會(huì )有效。根據本課內容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導發(fā)現教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結合的方法。
2、學(xué)法
“授人以魚(yú),不如授人以漁”,通過(guò)設計問(wèn)題序列,引導學(xué)生主動(dòng)探究新知,合作交流,體現學(xué)習的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力的目的,發(fā)掘學(xué)生的創(chuàng )新精神。
3、教學(xué)模式
根據新課標要求,要積極倡導自主、合作、探究的學(xué)習方式,我采用了創(chuàng )設情境——探究新知——反饋訓練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。
四、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境,引入新課
利用多媒體課件,給學(xué)生出示20xx年國際數學(xué)家大會(huì )的場(chǎng)面,通過(guò)觀(guān)察會(huì )徽圖案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
。ǘ┮龑W(xué)生,探究新知
1、初步感知定理:這一環(huán)節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時(shí)發(fā)現用磚鋪成的地面,其中含有直角三角形三邊的數量關(guān)系,創(chuàng )設感知情境,提出問(wèn)題:現在也請你觀(guān)察,看看有什么發(fā)現?教師配合演示,使問(wèn)題更形象、具體。適當補充等腰直角三角形邊長(cháng)為1、2時(shí),所形成的規律,使學(xué)生再次感知發(fā)現的規律。
2、提出猜想:在活動(dòng)1的基礎上,學(xué)生已發(fā)現一些規律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導學(xué)生利用直觀(guān)教具,進(jìn)行拼圖實(shí)驗,在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵創(chuàng )新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng )造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習的過(guò)程中,感受到自我創(chuàng )造的快樂(lè ),從而分散了教學(xué)難點(diǎn),發(fā)現了利用面積相等去證明勾股定理的方法。培養了學(xué)生的發(fā)散思維、一題多解和探究數學(xué)問(wèn)題的能力。
4、總結定理:讓學(xué)生自己總結定理,不完善之處由教師補充。在前面探究活動(dòng)的基礎上,學(xué)生很容易得出直角三角形的三邊數量關(guān)系即勾股定理,培養了學(xué)生的語(yǔ)言表達能力和歸納概括能力。
。ㄈ┓答佊柧,鞏固新知
學(xué)生對所學(xué)的知識是否掌握了,達到了什么程度?為了檢測學(xué)生對本課目標的達成情況和加強對學(xué)生能力的培養,設計一組有坡度的練習題:A組動(dòng)腦筋,想一想,是本節基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養學(xué)生綜合運用知識的能力。C組議一議,是一道實(shí)際應用題型,給學(xué)生施展才智的機會(huì ),讓學(xué)生獨立思考后,討論交流得出解決問(wèn)題的方法,增強了數學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應用意識,達到了學(xué)以致用的目的。
。ㄋ模w納小結,深化新知
本節課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結,使學(xué)生進(jìn)一步明確掌握教學(xué)目標,使知識成為體系。
。ㄎ澹┎贾米鳂I(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學(xué)生能力和思維的深刻性,讓學(xué)生感受數學(xué)深厚的文化底蘊。
。┌鍟(shū)設計,明確新知
本節課的板書(shū)設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。
【初中數學(xué)《勾股定理》說(shuō)課稿】相關(guān)文章:
初中數學(xué)《勾股定理》說(shuō)課稿范文03-22