初中數學(xué)勾股定理說(shuō)課稿模板
現在,“說(shuō)課”越來(lái)越受到關(guān)注,已逐漸成為各學(xué)科衡量一節課好壞的重要標尺. 通過(guò)說(shuō)課,展示你對某節課的思考和處理過(guò)程,為大家分享了數學(xué)勾股定理說(shuō)課稿,歡迎借鑒!
今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數學(xué)下冊第十八章第一節的第一課時(shí)。
一、教學(xué)背景分析
1、教材分析
本節課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,通過(guò)2002年國際數學(xué)家大會(huì )的會(huì )徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數量關(guān)系,并應用它解決問(wèn)題。學(xué)好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學(xué)習解直角三角形奠定基礎,在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數量關(guān)系,將數與形密切地聯(lián)系起來(lái),它有著(zhù)豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過(guò)前面的學(xué)習,學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀(guān)教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習知識的樂(lè )趣。
3、教學(xué)目標:
根據八年級學(xué)生的認知水平,依據新課程標準和教學(xué)大綱的要求,我制定了如下的教學(xué)目標:
知識與能力目標:了解勾股定理的發(fā)現過(guò)程,掌握勾股定理的內容,會(huì )用面積法證明勾股定理;培養在實(shí)際生活中發(fā)現問(wèn)題總結規律的意識和能力.
過(guò)程與方法目標:通過(guò)創(chuàng )設情境,導入新課,引導學(xué)生探索勾股定理,并應用它解決問(wèn)題,運用了觀(guān)察、演示、實(shí)驗、操作等方法學(xué)習新知。
情感態(tài)度價(jià)值觀(guān)目標:感受數學(xué)文化,激發(fā)學(xué)生學(xué)習的熱情,體驗合作學(xué)習成功的喜悅,滲透數形結合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過(guò)分析可見(jiàn),勾股定理是平面幾何的重要定理,有著(zhù)承上啟下的作用,在今后的生活實(shí)踐中有著(zhù)廣泛應用。因此我確定本課的教學(xué)
重難點(diǎn)為探索和證明勾股定理.
二、教材處理
根據學(xué)生情況,為有效培養學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng )設問(wèn)題情境為先導,運用直觀(guān)教具、多媒體等手段,激發(fā)學(xué)生學(xué)習興趣,調動(dòng)學(xué)生學(xué)習積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無(wú)定法”,只有方法恰當,才會(huì )有效。根據本課內容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導發(fā)現教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結合的方法。
2、學(xué)法
“授人以魚(yú),不如授人以漁”,通過(guò)設計問(wèn)題序列,引導學(xué)生主動(dòng)探究新知,合作交流,體現學(xué)習的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力的目的,發(fā)掘學(xué)生的創(chuàng )新精神。
3、教學(xué)模式
根據新課標要求,要積極倡導自主、合作、探究的學(xué)習方式,我采用了創(chuàng )設情境——探究新知——反饋訓練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。
四、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境,引入新課
利用多媒體課件,給學(xué)生出示2002年國際數學(xué)家大會(huì )的場(chǎng)面,通過(guò)觀(guān)察會(huì )徽圖案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
。ǘ┮龑W(xué)生,探究新知
1、初步感知定理:這一環(huán)節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時(shí)發(fā)現用磚鋪成的'地面,其中含有直角三角形三邊的數量關(guān)系,創(chuàng )設感知情境,提出問(wèn)題:現在也請你觀(guān)察,看看有什么發(fā)現?教師配合演示,使問(wèn)題更形象、具體。適當補充等腰直角三角形邊長(cháng)為1、2時(shí),所形成的規律,使學(xué)生再次感知發(fā)現的規律。
2、提出猜想:在活動(dòng)1的基礎上,學(xué)生已發(fā)現一些規律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導學(xué)生利用直觀(guān)教具,進(jìn)行拼圖實(shí)驗,在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵創(chuàng )新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng )造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習的過(guò)程中,感受到自我創(chuàng )造的快樂(lè ),從而分散了教學(xué)難點(diǎn),發(fā)現了利用面積相等去證明勾股定理的方法。培養了學(xué)生的發(fā)散思維、一題多解和探究數學(xué)問(wèn)題的能力。
4、總結定理:讓學(xué)生自己總結定理,不完善之處由教師補充。在前面探究活動(dòng)的基礎上,學(xué)生很容易得出直角三角形的三邊數量關(guān)系即勾股定理,培養了學(xué)生的語(yǔ)言表達能力和歸納概括能力。
。ㄈ┓答佊柧,鞏固新知
學(xué)生對所學(xué)的知識是否掌握了,達到了什么程度?為了檢測學(xué)生對本課目標的達成情況和加強對學(xué)生能力的培養,設計一組有坡度的練習題:A組動(dòng)腦筋,想一想,是本節基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養學(xué)生綜合運用知識的能力。C組議一議,是一道實(shí)際應用題型,給學(xué)生施展才智的機會(huì ),讓學(xué)生獨立思考后,討論交流得出解決問(wèn)題的方法,增強了數學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應用意識,達到了學(xué)以致用的目的。
。ㄋ模w納小結,深化新知
本節課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結,使學(xué)生進(jìn)一步明確掌握教學(xué)目標,使知識成為體系。
。ㄎ澹┎贾米鳂I(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學(xué)生能力和思維的深刻性,讓學(xué)生感受數學(xué)深厚的文化底蘊。
。┌鍟(shū)設計,明確新知
本節課的板書(shū)設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。
【初中數學(xué)勾股定理說(shuō)課稿】相關(guān)文章:
初中數學(xué)《勾股定理》說(shuō)課稿范文03-22
初中數學(xué)《勾股定理》說(shuō)課稿(精選6篇)08-19
初中數學(xué)說(shuō)課稿《探索勾股定理》12-31
初中數學(xué)《勾股定理》說(shuō)課稿5篇07-21
數學(xué)勾股定理說(shuō)課稿04-20