97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

中職數學(xué)等比數列說(shuō)課稿

時(shí)間:2023-07-10 18:12:15 說(shuō)課稿 我要投稿
  • 相關(guān)推薦

中職數學(xué)等比數列說(shuō)課稿

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,時(shí)常要開(kāi)展說(shuō)課稿準備工作,借助說(shuō)課稿可以更好地組織教學(xué)活動(dòng)。那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編幫大家整理的中職數學(xué)等比數列說(shuō)課稿,歡迎大家借鑒與參考,希望對大家有所幫助。

中職數學(xué)等比數列說(shuō)課稿

  中職數學(xué)等比數列說(shuō)課稿1

  一、地位作用

  數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。

  基于此,設計本節的數學(xué)思路上:

  利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。

  二、教學(xué)目標

  知識目標:

  1)理解等比數列的概念。

  2)掌握等比數列的通項公式。

  3)并能用公式解決一些實(shí)際問(wèn)題。

  能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數列的.通項公式的推導及應用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項公式解決一些問(wèn)題。

  五、教學(xué)過(guò)程設計

 。ㄒ唬╊A習自學(xué)環(huán)節。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問(wèn)題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。

  2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時(shí)是什么數列?

 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數列通項公式與函數關(guān)系怎樣?

 。ǘw納主導與總結環(huán)節(15分鐘)

  這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。

  通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;

 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。

 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。

  通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。

  法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。

  法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。

  中職數學(xué)等比數列說(shuō)課稿2

  一、教材分析

  1、從在教材中的地位與作用來(lái)看

  《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。

  2、從學(xué)生認知角度看

  從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。

  3、學(xué)情分析

  教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

  4、重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。

  教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用。

  公式推導所使用的"錯位相減法"是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

  二、目標分析

  知識與技能目標:

  理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題。

  過(guò)程與方法目標:

  通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

  情感與態(tài)度價(jià)值觀(guān):

  通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn)。

  三、過(guò)程分析

  學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:

  1、創(chuàng )設情境,提出問(wèn)題

  在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢?

  設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性。故事內容緊扣本節課的主題與重點(diǎn)。

  此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲。帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的`值,然后再求和。這時(shí)我對他們的這種思路給予肯定。

  設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的"無(wú)用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆、

  2、師生互動(dòng),探究問(wèn)題

  在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?

  探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現?

  設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變"加"為"減",在教師看來(lái)這是"天經(jīng)地義"的,但在學(xué)生看來(lái)卻是"不可思議"的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機。

  經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心。

  3、類(lèi)比聯(lián)想,解決問(wèn)題

  這時(shí)我再順勢引導學(xué)生將結論一般化,

  這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導。

  設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感。

  對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎。)

  再次追問(wèn):結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)

  設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力。這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用。

  4、討論交流,延伸拓展

  在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,那么我們能否利用這個(gè)關(guān)系而求出sn呢?根據等比數列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

  設計意圖:以疑導思,激發(fā)學(xué)生的探索欲望,營(yíng)造一個(gè)讓學(xué)生主動(dòng)觀(guān)察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個(gè)遞推式,遞推數列有非常重要的研究?jì)r(jià)值,是研究性學(xué)習和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用、

  5、變式訓練,深化認識

  首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來(lái)幻燈演示他們的解答,其它同學(xué)進(jìn)行評價(jià),然后師生共同進(jìn)行總結。

  設計意圖:采用變式教學(xué)設計題組,深化學(xué)生對公式的認識和理解,通過(guò)直接套用公式、變式運用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數學(xué)認知結構的形成。通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養學(xué)生的參與意識和競爭意識。

  6、例題講解,形成技能

  設計意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養學(xué)生對含有參數的問(wèn)題進(jìn)行分類(lèi)討論的數學(xué)思想。

  7、總結歸納,加深理解

  以問(wèn)題的形式出現,引導學(xué)生回顧公式、推導方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數學(xué)思想方法兩方面總結。

  設計意圖:以此培養學(xué)生的口頭表達能力,歸納概括能力。

  8、故事結束,首尾呼應

  最后我們回到故事中的問(wèn)題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽(yáng)鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現不了他的承諾。

  設計意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續積極思維。

  9、課后作業(yè),分層練習

  必做:P129練習1、2、3、4

  選作:

 。2)"遠望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問(wèn)尖頭幾盞燈?"這首中國古詩(shī)的答案是多少?

  設計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

  四、教法分析

  對公式的教學(xué),要使學(xué)生掌握與理解公式的來(lái)龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯(lián)系。在教學(xué)中,我采用"問(wèn)題――探究"的教學(xué)模式,把整個(gè)課堂分為呈現問(wèn)題、探索規律、總結規律、應用規律四個(gè)階段。

  利用多媒體輔助教學(xué),直觀(guān)地反映了教學(xué)內容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。

  五、評價(jià)分析

  本節課通過(guò)三種推導方法的研究,使學(xué)生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價(jià)轉化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì )到推導過(guò)程中所蘊含的數學(xué)思想,培養了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過(guò)精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎上,通過(guò)民主和諧的課堂氛圍,培養了學(xué)生自主學(xué)習、合作交流的學(xué)習習慣,也培養了學(xué)生勇于探索、不斷創(chuàng )新的思維品質(zhì)。

  中職數學(xué)等比數列說(shuō)課稿3

  一、教材分析

  1、教材的地位和作用:

  數列是高中數學(xué)重要內容之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學(xué)習數列也為進(jìn)一步學(xué)習數列的極限等內容做好準備。而等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。

  2、教學(xué)目標

  根據教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標。

  a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想;初步引入“數學(xué)建!钡乃枷敕椒ú⒛苓\用。

  b在能力上:培養學(xué)生觀(guān)察、分析、歸納、推理的能力;在領(lǐng)會(huì )函數與數列關(guān)系的前提下,把研究函數的方法遷移來(lái)研究數列,培養學(xué)生的知識、方法遷移能力;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  c在情感上:通過(guò)對等差數列的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據教學(xué)大綱的要求我確定本節課的教學(xué)重點(diǎn)為:

 、俚炔顢盗械母拍。

 、诘炔顢盗械耐椆降耐茖н^(guò)程及應用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數學(xué)思想解決實(shí)際問(wèn)題是本節課的另一個(gè)難點(diǎn)。

  二、學(xué)情分析

  對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的'抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導、啟發(fā)、研究和探討以符合這類(lèi)學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  二、教法分析

  針對高中生這一思維特點(diǎn)和心理特征,本節課我采用啟發(fā)式、討論式以及講練結合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題。

  三、學(xué)法指導

  在引導分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。

  四、教學(xué)程序

  本節課的教學(xué)過(guò)程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業(yè),六個(gè)教學(xué)環(huán)節構成。

  (一)復習引入:

  1.從函數觀(guān)點(diǎn)看,數列可看作是定義域為_(kāi)_________對應的一列函數值,從而數列的通項公式也就是相應函數的______ 。(N﹡;解析式)

  通過(guò)練習1復習上節內容,為本節課用函數思想研究數列問(wèn)題作準備。

  2. 小明目前會(huì )100個(gè)單詞,他她打算從今天起不再背單詞了,結果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

  3. 小芳只會(huì )5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內他的單詞量逐日依次遞增為 5,10,15,20,25 ②

  通過(guò)練習2和3 引出兩個(gè)具體的等差數列,初步認識等差數列的特征,為后面的概念學(xué)習建立基礎,為學(xué)習新知識創(chuàng )設問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀(guān)察兩個(gè)數列特點(diǎn),引出等差數列的概念,對問(wèn)題的總結又培養學(xué)生由具體到抽象、由特殊到一般的認知能力。

  (二) 新課探究

  1、由引入自然的給出等差數列的概念:

  如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列, 這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調:

 、 “從第二項起”滿(mǎn)足條件;

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個(gè)常數(強調“同一個(gè)常數” );

  在理解概念的基礎上,由學(xué)生將等差數列的文字語(yǔ)言轉化為數學(xué)語(yǔ)言,歸納出數學(xué)表達式:

  an+1-an=d (n≥1)

  同時(shí)為了配合概念的理解,我找了5組數列,由學(xué)生判斷是否為等差數列,是等差數列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一個(gè)數列公差<0,>0,第三個(gè)數列公差=0

  由此強調:公差可以是正數、負數,也可以是0

  中職數學(xué)等比數列說(shuō)課稿4

  一、大綱與教材

  等比數列前n項和一節是人教社高中數學(xué)必修教材試驗修訂本第一冊第三章第五節的內容,教學(xué)對象為高一學(xué)生,教學(xué)時(shí)數2課時(shí)。

  第三章《數列》是高中數學(xué)的重要內容之一,之所以在新大綱里保留下來(lái),這是由其在整個(gè)高中數學(xué)領(lǐng)域里的重要地位和作用決定的。

  1、數列有著(zhù)廣泛的實(shí)際應用。例如產(chǎn)品的規格設計、儲蓄、分期付款的有關(guān)計算等。

  2、數列有著(zhù)承前啟后的作用。數列是函數的延續,它實(shí)質(zhì)上是一種特殊的函數;學(xué)習數列又為進(jìn)一步學(xué)習數列的極限等內容打下基礎。

  3、數列是培養提高學(xué)生思維能力的好題材。學(xué)習數列要經(jīng)常觀(guān)察、分析、猜想,還要綜合運用前面的知識解決數列中的一些問(wèn)題,這些都有利于學(xué)生數學(xué)能力的提高。

  本節課既是本章的重點(diǎn),同時(shí)也是教材的重點(diǎn)。等比數列前n項和前面承接了數列的定義、等差數列的知識內容,又是后面學(xué)習數列求和、數列極限的基礎。

  本節的重點(diǎn)是等比數列前n項和公式及應用,難點(diǎn)是公式的推導。

  二、教學(xué)目標

  1、知識目標:理解等比數列前n項和公式的推導方法,掌握等比數列前n項和公式及應用。

  2、能力目標:培養學(xué)生觀(guān)察問(wèn)題、思考問(wèn)題的能力,并能靈活運用基本概念分析問(wèn)題解決問(wèn)題的能力,鍛煉數學(xué)思維能力。

  3、思想目標:培養學(xué)生學(xué)習數學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng )新的精神。

  三、教學(xué)程序設計

  1、導言:

  本節課是由印度國王西拉謨與國際象棋發(fā)明家的故事引入的,發(fā)明者要國王在他的棋盤(pán)上的64格中的第 1格放入1粒麥粒,第2格放入2粒麥粒,第3格放入4粒麥粒,第4格放入8粒麥!瓎(wèn)應給發(fā)明家多少粒麥粒?

  這樣引入課題有以下三點(diǎn)好處:

  (1)利用學(xué)生求知好奇心理,以一個(gè)小故事為切入點(diǎn),便于調動(dòng)學(xué)生學(xué)習本節課的趣味性和積極性。

  (2)故事內容緊扣本節課教學(xué)內容的主題與重點(diǎn)。

  (3)有利于知識的遷移,使學(xué)生明確知識的現實(shí)應用性。

  2、講授新課:

  本節課有兩項主要內容,等比數列的.前n項和公式的推導和等比數列的前n項和公式及應用。

  等比數列的前n項和公式的推導是本節課的難點(diǎn)。

  依據如下:

  (1)從認知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類(lèi)中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。

  (2) 從學(xué)科知識上講,推導屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問(wèn)題迎刃而解。

  (3) 從心理學(xué)上講,學(xué)生對這項學(xué)習內容的“熟悉度”不高,原有知識薄弱,不易理解。

  突破難點(diǎn)方法:

  (1)明確難點(diǎn)、分解難點(diǎn),采用層層推導延伸法,利用學(xué)生已有的知識切入 ,淺化知識內容。比如可以先求麥粒的總數,通過(guò)設問(wèn)使學(xué)生得到麥粒的總數為 ,然后引導學(xué)生觀(guān)察上式的特點(diǎn),發(fā)現上式中,每一項乘以2后都得它的后一項,即有 ,發(fā)現兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問(wèn)題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數列前n項和 ……+ 的關(guān)鍵也應是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式 ,也掌握了這種常用的數列求和方法——錯位相減法,說(shuō)明這種方法的用途。

  (2)值得一提的是公式的證明還有兩種方法:

  方法二:由等比數列的定義得: 運用連比定理,后兩種方法可以啟發(fā)引導學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導公式,從而培養學(xué)生的創(chuàng )造性思維。

  等比數列前n項和公式及應用是本節課的重點(diǎn)內容。

  依據如下:

  (1)新大綱中有較高層次的要求。

  (2)教學(xué)地位重要,是教學(xué)中全部學(xué)習任務(wù)中必須優(yōu)先完成的任務(wù)。

  (3)這項知識內容有廣泛的實(shí)際應用,很多問(wèn)題都要轉化為等比數列的求和上來(lái)。

  突出重點(diǎn)方法:

  (1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數學(xué)思維能力,運用比較法來(lái)突出公式的內容(彩色粉筆板書(shū)): ,強調公式的應用范圍: 中可知三求二。

  (2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件 ,以精練的語(yǔ)言給予強調,并指出q=1時(shí), 。再有就是有些數列求和的項數易錯,例如 的項數是n+1而不是n。

  (3)創(chuàng )設條件、充分保證。設置低、中、高三個(gè)層次的例題,即公式的直接應用、公式的變形應用和實(shí)際應用來(lái)突出這一重點(diǎn)。對應用題師生要共同分析討論,從問(wèn)題中抽象出等比數列,然后用公式求和。

  四、習題訓練

  本節課設置如下兩種類(lèi)型的習題:

  1. 中知三求二的解答題;

  2.實(shí)際應用題.

  這樣設置主要依據:

  (1)練習題與大綱中規定的教學(xué)目標與任務(wù)及本節課的重點(diǎn)、難點(diǎn)有相對應的匹配關(guān)系。

  (2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統的思想確立這樣的習題 。

  (3)應用題比較切合對智力技能進(jìn)行檢測,有利于數學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習中保持興趣的持續性和學(xué)習的主動(dòng)性。

  五、策略、方法與手段

  根據高一學(xué)生心理特點(diǎn)、教材內容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節課的教學(xué)策略與方法我采用規則學(xué)習和問(wèn)題解決策略,即“案例—公式—應用”,簡(jiǎn)稱(chēng)“例—規”法。

  案例為淺層次要求,使學(xué)生有概括印象。

  公式為中層次要求,由淺入深,重難點(diǎn)集中推導講解,便于突破。

  應用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節教學(xué)目標的落實(shí)。

  其中,案例是基礎,是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習為應用,是學(xué)生鞏固知識,舉一反三。

  在這三步教學(xué)中,以啟發(fā)性強的小設問(wèn)層層推導,輔之以學(xué)生的分組小討論并充分運用直觀(guān)完整的板書(shū)、棋盤(pán)教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽(tīng)的填鴨式教學(xué)模式,充分體現學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過(guò)“案例—公式—應用”,由淺入深,由感性到理性,由直觀(guān)到抽象,加深了學(xué)生理解鞏固與應用,有利于培養學(xué)生思維能力,落實(shí)好教學(xué)任務(wù)。

  六、個(gè)人見(jiàn)解

  在提倡教育改革的今天,對學(xué)生進(jìn)行思維技能培養已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習已在全國范圍內展開(kāi),等比數列就是一個(gè)進(jìn)行研究性學(xué)習的好題材。在我們學(xué)?梢园凑誌ntel未來(lái)教育計劃培訓的模式,學(xué)完本節課后,教師可以給學(xué)生布置一個(gè)研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò )資源,多方查找資料,并通過(guò)完成多媒體演示文稿和網(wǎng)頁(yè)制作來(lái)共同解決這一問(wèn)題。這樣不僅培養了學(xué)生主動(dòng)探究問(wèn)題、解決問(wèn)題的能力,而且還提高了他們的創(chuàng )新意識和團結協(xié)作的精神。

【中職數學(xué)等比數列說(shuō)課稿】相關(guān)文章:

中職數學(xué)說(shuō)課稿07-15

中職數學(xué)說(shuō)課稿12-24

中職數學(xué)《集合的概念》說(shuō)課稿03-01

《等比數列》高中數學(xué)說(shuō)課稿(精選7篇)10-20

中職數學(xué)說(shuō)課稿5篇06-29

中職數學(xué)說(shuō)課稿(5篇)12-24

《等比數列》說(shuō)課稿范文(精選10篇)08-22

等比數列的概念說(shuō)課稿(精選10篇)11-03

中職英語(yǔ)說(shuō)課稿06-07

中職英語(yǔ)說(shuō)課稿11-07