- 相關(guān)推薦
最新高一下冊數學(xué)教案
作為一名老師,就不得不需要編寫(xiě)教案,借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編精心整理的最新高一下冊數學(xué)教案,歡迎閱讀,希望大家能夠喜歡。
最新高一下冊數學(xué)教案1
一、教學(xué)目標
1.知識與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì )三視圖的作用。
3.情感態(tài)度與價(jià)值觀(guān):提高學(xué)生空間想象力,體會(huì )三視圖的作用。
二、教學(xué)重點(diǎn):畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識別三視圖所表示的空間幾何體。
三、學(xué)法指導:觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比。
四、教學(xué)過(guò)程
(一)創(chuàng )設情景,揭開(kāi)課題
展示廬山的風(fēng)景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線(xiàn)照射下形成的投影。
正投影:在平行投影中,投影線(xiàn)正對著(zhù)投影面。
2、三視圖:
正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱(chēng)為幾何體的三視圖。
三視圖的畫(huà)法規則:長(cháng)對正,高平齊,寬相等。
長(cháng)對正:正視圖與俯視圖的長(cháng)相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫(huà)長(cháng)方體的.三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀(guān)察到有幾何體的正投影圖,它們都是平面圖形。
長(cháng)方體的三視圖都是長(cháng)方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長(cháng)相等。
4、畫(huà)圓柱、圓錐的三視圖:
5、探究:畫(huà)出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本P15練習1、2;P20習題1.2[A組]2。
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本P20習題1.2[A組]1。
最新高一下冊數學(xué)教案2
教學(xué)過(guò)程
(一)創(chuàng )設情景,揭示課題
1、復習初中所學(xué)函數的概念,強調函數的模型化思想;
2、閱讀課本引例,體會(huì )函數是描述客觀(guān)事物變化規律的數學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;
(3)“八五”計劃以來(lái)我國城鎮居民的恩格爾系數與時(shí)間的變化關(guān)系問(wèn)題.
3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);
4、引導學(xué)生應用集合與對應的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴(lài)關(guān)系;
5、根據初中所學(xué)函數的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數關(guān)系.
(二)研探新知
1、函數的.有關(guān)概念
(1)函數的概念:
設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).
注意:
、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.
(2)構成函數的三要素是什么?
定義域、對應關(guān)系和值域
(3)區間的概念
、賲^間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;
、跓o(wú)窮區間;
、蹍^間的數軸表示.
(4)初中學(xué)過(guò)哪些函數?它們的定義域、值域、對應法則分別是什么?
通過(guò)三個(gè)已知的函數:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì ).
師:歸納總結
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數的定義域
例1:已知函數f(x)=+
(1)求函數的定義域;
(2)求f(-3),f()的值;
(3)當a>0時(shí),求f(a),f(a-1)的值.
分析:函數的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,那么函數的定義域就是指能使這個(gè)式子有意義的實(shí)數的集合,函數的定義域、值域要寫(xiě)成集合或區間的形式.
例2、設一個(gè)矩形周長(cháng)為80,其中一邊長(cháng)為x,求它的面積關(guān)于x的函數的解析式,并寫(xiě)出定義域.
分析:由題意知,另一邊長(cháng)為x,且邊長(cháng)x為正數,所以0
所以s==(40-x)x(0
引導學(xué)生小結幾類(lèi)函數的定義域:
(1)如果f(x)是整式,那么函數的定義域是實(shí)數集R.
2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實(shí)數的集合.
(3)如果f(x)是二次根式,那么函數的定義域是使根號內的式子大于或等于零的實(shí)數的集合.
(4)如果f(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合.(即求各集合的交集)
最新高一下冊數學(xué)教案3
教學(xué)目標:
1、結合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2、學(xué)會(huì )用分層抽樣的方法從總體中抽取樣本;
3、并對簡(jiǎn)單隨機抽樣、系統抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法。
教學(xué)難點(diǎn):
分層抽樣的步驟。
教學(xué)過(guò)程:
一、問(wèn)題情境
1、復習簡(jiǎn)單隨機抽樣、系統抽樣的概念、特征以及適用范圍。
2、實(shí)例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣,為什么?
指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣不能準確反映客觀(guān)實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機會(huì )相等,還要注意總體中個(gè)體的層次性。
由于樣本的容量與總體的個(gè)體數的比為100∶2500=1∶25,所以在各年級抽取的個(gè)體數依次是。即40,32,28。
三、建構數學(xué)
1、分層抽樣:當已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀(guān)地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。
說(shuō)明:
、俜謱映闃訒r(shí),由于各部分抽取的個(gè)體數與這一部分個(gè)體數的比等于樣本容量與總體的個(gè)體數的'比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著(zhù)非常廣泛的應用。
最新高一下冊數學(xué)教案4
一、教學(xué)目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會(huì )貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
二、教學(xué)重點(diǎn):
向量的性質(zhì)及相關(guān)知識的綜合應用。
三、教學(xué)過(guò)程:
(一)主要知識:
1、掌握向量的.概念、坐標表示、運算性質(zhì),做到融會(huì )貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
(二)例題分析:略
四、小結:
1、進(jìn)一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應用問(wèn)題
2、滲透數學(xué)建模的思想,切實(shí)培養分析和解決問(wèn)題的能力。
【最新高一下冊數學(xué)教案】相關(guān)文章:
最新高一數學(xué)教案09-27
最新高一數學(xué)下冊教案09-27
最新五年級下冊數學(xué)教案03-16
高一數學(xué)教案06-20
高一數學(xué)教案12-21
小班下冊數學(xué)教案02-28