97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)知識點(diǎn)總結

時(shí)間:2025-04-04 09:54:07 知識點(diǎn)總結 我要投稿

[集合]高中數學(xué)知識點(diǎn)總結15篇

  總結是指社會(huì )團體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績(jì),得到經(jīng)驗,找出差距,得出教訓和一些規律性認識的一種書(shū)面材料,通過(guò)它可以全面地、系統地了解以往的學(xué)習和工作情況,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧?偨Y怎么寫(xiě)才不會(huì )千篇一律呢?以下是小編整理的高中數學(xué)知識點(diǎn)總結 ,供大家參考借鑒,希望可以幫助到有需要的朋友。

[集合]高中數學(xué)知識點(diǎn)總結15篇

高中數學(xué)知識點(diǎn)總結 1

  1.等差數列的定義

  如果一個(gè)數列從第2項起,每一項與它的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示.

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項.

  4.等差數列的常用性質(zhì)

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

  (4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數,則S偶-S奇=nd/2;

  若n為奇數,則S奇-S偶=a中(中間項).

  注意:

  一個(gè)推導

  利用倒序相加法推導等差數列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數組成等差數列的一類(lèi)問(wèn)題,要善于設元.

  (1)若奇數個(gè)數成等差數列且和為定值時(shí),可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數個(gè)數成等差數列且和為定值時(shí),可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進(jìn)行對稱(chēng)設元.

  四種方法

  等差數列的判斷方法

  (1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來(lái)判斷是否為等差數列,而不能用來(lái)證明等差數列.

  5.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復遇到的,而且是以各種各樣的.問(wèn)題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問(wèn)題著(zhù)手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內容和功能,通過(guò)對問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  6.判定兩個(gè)平面平行的方法:

  (1)根據定義--證明兩平面沒(méi)有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線(xiàn)。

  7.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內的直線(xiàn)必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”;

  (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等;

  (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  8.乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

  |a-b||a|-|b| -|a|a|a|

  一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

  根與系數的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達定理

  判別式

  2-4ac=0 注:方程有兩個(gè)相等的實(shí)根

  2-4ac0 注:方程有兩個(gè)不等的實(shí)根

  2-4ac0 注:方程沒(méi)有實(shí)根,有共軛復數根

  9.三角函數公式

  兩角和公式

  in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

  cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

  tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

  ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數列前n項和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  10.圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

  拋物線(xiàn)標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c__h 斜棱柱側面積 S=c__h

  正棱錐側面積 S=1/2c__h 正棱臺側面積 S=1/2(c+c)h

  圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

  圓柱側面積 S=c__h=2pi__h 圓錐側面積 S=1/2__c__l=pi__r__l

  弧長(cháng)公式 l=a__r a是圓心角的弧度數r 0 扇形面積公式 s=1/2__l__r

  錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

  斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長(cháng)

  柱體體積公式 V=s__h 圓柱體 V=pi__r2h

  11.通項公式的求法:

  (1)構造等比數列:凡是出現關(guān)于后項和前項的一次遞推式都可以構造等比數列求通項公式;

  (2)構造等差數列:遞推式不能構造等比數列時(shí),構造等差數列;

  (3)遞推:即按照后項和前項的對應規律,再往前項推寫(xiě)對應式。

  已知遞推公式求通項常見(jiàn)方法:

 、僖阎猘1=a,an+1=qan+b,求an時(shí),利用待定系數法求解,其關(guān)鍵是確定待定系數,使an+1 +=q(an+)進(jìn)而得到。

 、谝阎猘1=a,an=an-1+f(n)(n2),求an時(shí),利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

 、垡阎猘1=a,an=f(n)an-1(n2),求an時(shí),利用累乘法求解。

高中數學(xué)知識點(diǎn)總結 2

  一、集合、簡(jiǎn)易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結詞;

  7、四種命題;

  8、充要條件。

  二、函數

  1、映射;

  2、函數;

  3、函數的單調性;

  4、反函數;

  5、互為反函數的函數圖象間的關(guān)系;

  6、指數概念的擴充;

  7、有理指數冪的運算;

  8、指數函數;

  9、對數;

  10、對數的運算性質(zhì);

  11、對數函數。

  12、函數的應用舉例。

  三、數列(12課時(shí),5個(gè))

  1、數列;

  2、等差數列及其通項公式;

  3、等差數列前n項和公式;

  4、等比數列及其通頂公式;

  5、等比數列前n項和公式。

  四、三角函數

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數;

  4、單位圓中的三角函數線(xiàn);

  5、同角三角函數的基本關(guān)系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數、余弦函數的圖象和性質(zhì);

  10、周期函數;

  11、函數的奇偶性;

  12、函數的圖象;

  13、正切函數的圖象和性質(zhì);

  14、已知三角函數值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實(shí)數與向量的積;

  4、平面向量的坐標表示;

  5、線(xiàn)段的定比分點(diǎn);

  6、平面向量的數量積;

  7、平面兩點(diǎn)間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的'基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線(xiàn)和圓的方程

  1、直線(xiàn)的傾斜角和斜率;

  2、直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;

  3、直線(xiàn)方程的一般式;

  4、兩條直線(xiàn)平行與垂直的條件;

  5、兩條直線(xiàn)的交角;

  6、點(diǎn)到直線(xiàn)的距離;

  7、用二元一次不等式表示平面區域;

  8、簡(jiǎn)單線(xiàn)性規劃問(wèn)題;

  9、曲線(xiàn)與方程的概念;

  10、由已知條件列出曲線(xiàn)方程;

  11、圓的標準方程和一般方程;

  12、圓的參數方程。

  八、圓錐曲線(xiàn)

  1、橢圓及其標準方程;

  2、橢圓的簡(jiǎn)單幾何性質(zhì);

  3、橢圓的參數方程;

  4、雙曲線(xiàn)及其標準方程;

  5、雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);

  6、拋物線(xiàn)及其標準方程;

  7、拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。

  九、直線(xiàn)、平面、簡(jiǎn)單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀(guān)圖的畫(huà)法;

  3、平面直線(xiàn);

  4、直線(xiàn)和平面平行的判定與性質(zhì);

  5、直線(xiàn)和平面垂直的判定與性質(zhì);

  6、三垂線(xiàn)定理及其逆定理;

  7、兩個(gè)平面的位置關(guān)系;

  8、空間向量及其加法、減法與數乘;

  9、空間向量的坐標表示;

  10、空間向量的數量積;

  11、直線(xiàn)的方向向量;

  12、異面直線(xiàn)所成的角;

  13、異面直線(xiàn)的公垂線(xiàn);

  14、異面直線(xiàn)的距離;

  15、直線(xiàn)和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點(diǎn)到平面的距離;

  18、直線(xiàn)和平面所成的角;

  19、向量在平面內的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個(gè)平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類(lèi)計數原理與分步計數原理;

  2、排列;

  3、排列數公式;

  4、組合;

  5、組合數公式;

  6、組合數的兩個(gè)性質(zhì);

  7、二項式定理;

  8、二項展開(kāi)式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個(gè)發(fā)生的概率;

  4、相互獨立事件同時(shí)發(fā)生的概率;

  5、獨立重復試驗。

  必修一函數重點(diǎn)知識整理

  1、函數的奇偶性

 。1)若f(x)是偶函數,那么f(x)=f(—x);

 。2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

 。3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);

 。4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

 。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

 。2)復合函數的'單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

 。1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

 。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a—x,2b—y)=0;

 。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

 。6)函數y=f(x—a)與y=f(b—x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

 。1)y=f(x)對x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

 。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

 。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

 。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

 。6)y=f(x)對x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

 。2)l og a N=(a>0,a≠1,b>0,b≠1);

 。3)l og a b的符號由口訣“同正異負”記憶;

 。4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時(shí),抓住兩點(diǎn):

 。1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10、對于反函數,應掌握以下一些結論:

 。1)定義域上的單調函數必有反函數;

 。2)奇函數的反函數也是奇函數;

 。3)定義域為非單元素集的偶函數不存在反函數;

 。4)周期函數不存在反函數;

 。5)互為反函數的兩個(gè)函數具有相同的單調性;

 。6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12、依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題

  13、恒成立問(wèn)題的處理方法:

 。1)分離參數法;

 。2)轉化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數學(xué)復習方法

  1、把答案蓋住看例題

  例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。

  2、研究每題都考什么

  數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。

  學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。

高中數學(xué)知識點(diǎn)總結 3

  總體和樣本

 、僭诮y計學(xué)中,把研究對象的全體叫做總體。

 、诎衙總(gè)研究對象叫做個(gè)體。

 、郯芽傮w中個(gè)體的總數叫做總體容量。

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量。

  簡(jiǎn)單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨。

  機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。

  簡(jiǎn)單隨機抽樣常用的方法

 、俪楹灧

 、陔S機數表法

 、塾嬎銠C模擬法

 、苁褂媒y計軟件直接抽取。

  在簡(jiǎn)單隨機抽樣的樣本容量設計中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

  抽簽法

 、俳o調查對象群體中的每一個(gè)對象編號;

 、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;

 、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查。

  拓展閱讀:高二數學(xué)學(xué)習方法

  一、提高聽(tīng)課的效率是關(guān)鍵

  課前預習能提高聽(tīng)課的針對性。預習中發(fā)現的難點(diǎn),就是聽(tīng)課的重點(diǎn);對預習中遇到的.沒(méi)有掌握好的有關(guān)的舊知識,可進(jìn)行補缺,以減少聽(tīng)課過(guò)程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預習還可以培養自己的自學(xué)能力。其次就是聽(tīng)課要全神貫注。

  二、做好復習和總結工作

  做好及時(shí)的復習。課完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書(shū)或筆記,而是采取回憶式的復習,然后打開(kāi)筆記與書(shū)本,對照一下還有哪些沒(méi)記清的,把它補起來(lái),就使得當天上課內容鞏固下來(lái),同時(shí)也就檢查了當天課堂聽(tīng)課的效果如何,也為改進(jìn)聽(tīng)課方法及提高聽(tīng)課效果提出必要的改進(jìn)措施。

  三、指導做一定量的練習題

  做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎知識,把它們聯(lián)系起來(lái),你就會(huì )得到更多的經(jīng)驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學(xué)習。

高中數學(xué)知識點(diǎn)總結 4

  高考數學(xué)導數知識點(diǎn)

 。ㄒ唬⿲档谝欢x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時(shí),相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f'(x0),即導數第一定義

 。ǘ⿲档诙x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時(shí),相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f'(x0),即導數第二定義

 。ㄈ⿲Ш瘮蹬c導數

  如果函數y = f(x)在開(kāi)區間I內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間I內可導。這時(shí)函數y = f(x)對于區間I內的每一個(gè)確定的x值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數y = f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。

 。ㄋ模﹩握{性及其應用

  1。利用導數研究多項式函數單調性的一般步驟

 。1)求f¢(x)

 。2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

  2。用導數求多項式函數單調區間的一般步驟

 。1)求f¢(x)

 。2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

  高中數學(xué)重難點(diǎn)知識點(diǎn)

  高中數學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習兩本書(shū)。

  必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質(zhì)及應用(比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識較強。這部分知識高考占22———27分

  2、直線(xiàn)方程:高考時(shí)不單獨命題,易和圓錐曲線(xiàn)結合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學(xué)占到5分

  必修四:1、三角函數:(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數混合起來(lái)考查

  2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線(xiàn)結合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學(xué)占到13分左右2、數列:高考必考,17———22分3、不等式:(線(xiàn)性規劃,聽(tīng)課時(shí)易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

  高中數學(xué)知識點(diǎn)大全

  一、集合與簡(jiǎn)易邏輯

  1、集合的元素具有確定性、無(wú)序性和互異性。

  2、對集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設、推矛、得果。

  6、充要條件

  二、函數

  1、指數式、對數式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒(méi)有,也可任意個(gè));函數是“非空數集上的映射”,其中“值域是映射中像集的子集”。

 。2)函數圖像與軸垂線(xiàn)至多一個(gè)公共點(diǎn),但與軸垂線(xiàn)的公共點(diǎn)可能沒(méi)有,也可任意個(gè)。

 。3)函數圖像一定是坐標系中的曲線(xiàn),但坐標系中的曲線(xiàn)不一定能成為函數圖像。

  3、單調性和奇偶性

 。1)奇函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性完全相同。

  偶函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性恰恰相反。

 。2)復合函數的單調性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

  復合函數的奇偶性特點(diǎn)是:“內偶則偶,內奇同外”。復合函數要考慮定義域的變化。(即復合有意義)

  4、對稱(chēng)性與周期性(以下結論要消化吸收,不可強記)

 。1)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

  推廣一:如果函數對于一切,都有成立,那么的圖像關(guān)于直線(xiàn)(由“和的一半確定”)對稱(chēng)。

  推廣二:函數,的圖像關(guān)于直線(xiàn)對稱(chēng)。

 。2)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

 。3)函數與函數的圖像關(guān)于坐標原點(diǎn)中心對稱(chēng)。

  三、數列

  1、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關(guān)系

  2、等差數列中

 。1)等差數列公差的取值與等差數列的單調性。

 。2)也成等差數列。

 。3)兩等差數列對應項和(差)組成的新數列仍成等差數列。

 。4)仍成等差數列。

 。5)“首正”的遞等差數列中,前項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前項和的最小值是所有非正項之和;

 。6)有限等差數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和“奇數項和=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和—偶數項和”=此數列的中項。

 。7)兩數的等差中項惟一存在。在遇到三數或四數成等差數列時(shí),?紤]選用“中項關(guān)系”轉化求解。

 。8)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說(shuō)數列是等差數列的充要條件主要有這五種形式)。

  3、等比數列中:

 。1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性。

 。2)兩等比數列對應項積(商)組成的新數列仍成等比數列。

 。3)“首大于1”的正值遞減等比數列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數列中,前項積的最小值是所有小于或等于1的項的積;

 。4)有限等比數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和“首項”加上“公比”與“偶數項和”積的和。

 。5)并非任何兩數總有等比中項。僅當實(shí)數同號時(shí),實(shí)數存在等比中項。對同號兩實(shí)數的等比中項不僅存在,而且有一對。也就是說(shuō),兩實(shí)數要么沒(méi)有等比中項(非同號時(shí)),如果有,必有一對(同號時(shí))。在遇到三數或四數成等差數列時(shí),常優(yōu)先考慮選用“中項關(guān)系”轉化求解。

 。6)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說(shuō)數列是等比數列的充要條件主要有這四種形式)。

  4、等差數列與等比數列的聯(lián)系

 。1)如果數列成等差數列,那么數列(總有意義)必成等比數列。

 。2)如果數列成等比數列,那么數列必成等差數列。

 。3)如果數列既成等差數列又成等比數列,那么數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件。

 。4)如果兩等差數列有公共項,那么由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數。

  如果一個(gè)等差數列與一個(gè)等比數列有公共項順次組成新數列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,并構成新的`數列。

  5、數列求和的常用方法:

 。1)公式法:①等差數列求和公式(三種形式),

 、诘缺葦盗星蠛凸剑ㄈN形式),

 。2)分組求和法:在直接運用公式法求和有困難時(shí),常將“和式”中“同類(lèi)項”先合并在一起,再運用公式法求和。

 。3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數列前和公式的推導方法)。

 。4)錯位相減法:如果數列的通項是由一個(gè)等差數列的通項與一個(gè)等比數列的通項相乘構成,那么常選用錯位相減法,將其和轉化為“一個(gè)新的的等比數列的和”求解(注意:一般錯位相減后,其中“新等比數列的項數是原數列的項數減一的差”。ㄟ@也是等比數列前和公式的推導方法之一)。

 。5)裂項相消法:如果數列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和

 。6)通項轉換法。

  四、三角函數

  1、終邊與終邊相同(的終邊在終邊所在射線(xiàn)上)。

  終邊與終邊共線(xiàn)(的終邊在終邊所在直線(xiàn)上)。

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于原點(diǎn)對稱(chēng)

  一般地:終邊與終邊關(guān)于角的終邊對稱(chēng)。

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

  2、弧長(cháng)公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數符號特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數線(xiàn)的特征是:正弦線(xiàn)“站在軸上(起點(diǎn)在軸上)”、余弦線(xiàn)“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數值的大小與單位圓上相應點(diǎn)的坐標之間的關(guān)系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務(wù)必記。?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5、三角函數同角關(guān)系中,平方關(guān)系的運用中,務(wù)必重視“根據已知角的范圍和三角函數的取值,精確確定角的范圍,并進(jìn)行定號”;

  6、三角函數誘導公式的本質(zhì)是:奇變偶不變,符號看象限。

  7、三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數性質(zhì)、圖像及其變換:

 。1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性

  注意:正切函數、余切函數的定義域;絕對值對三角函數周期性的影響:一般說(shuō)來(lái),某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數y=cos|x|,,y=cos|x|是周期函數嗎?

 。2)三角函數圖像及其幾何性質(zhì):

 。3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

 。4)三角函數圖像的作法:三角函數線(xiàn)法、五點(diǎn)法(五點(diǎn)橫坐標成等差數列)和變換法。

  9、三角形中的三角函數:

 。1)內角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補,任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

 。2)正弦定理:(R為三角形外接圓的半徑)。

 。3)余弦定理:常選用余弦定理鑒定三角形的類(lèi)型。

  五、向量

  1、向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點(diǎn)、終點(diǎn)及其坐標的特征。

  2、幾個(gè)概念:零向量、單位向量(與共線(xiàn)的單位向量是,平行(共線(xiàn))向量(無(wú)傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線(xiàn))的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對該平面內的任一向量a,有且只有一對實(shí)數,使a= e1+ e2。

  5、三點(diǎn)共線(xiàn);

  6、向量的數量積:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應方程的根或不等式有意義范圍的端點(diǎn)值。

 。2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數變?yōu)檎,標根及奇穿過(guò)偶彈回);

 。3)含有兩個(gè)絕對值的不等式如何去絕對值?(一般是根據定義分類(lèi)討論、平方轉化或換元轉化);

 。4)解含參不等式常分類(lèi)等價(jià)轉化,必要時(shí)需分類(lèi)討論。注意:按參數討論,最后按參數取值分別說(shuō)明其解集,但若按未知數討論,最后應求并集。

  2、利用重要不等式以及變式等求函數的最值時(shí),務(wù)必注意a,b(或a,b非負),且“等號成立”時(shí)的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時(shí))。

  3、常用不等式有:(根據目標不等式左右的運算結構選用)

  a、b、c R,(當且僅當時(shí),取等號)

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質(zhì)法、綜合法、分析法

  5、含絕對值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問(wèn)題

 。1)恒成立問(wèn)題

  若不等式在區間上恒成立,則等價(jià)于在區間上

  若不等式在區間上恒成立,則等價(jià)于在區間上

 。2)能成立問(wèn)題

 。3)恰成立問(wèn)題

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為。

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為,

  七、直線(xiàn)和圓

  1、直線(xiàn)傾斜角與斜率的存在性及其取值范圍;直線(xiàn)方向向量的意義(或)及其直線(xiàn)方程的向量式((為直線(xiàn)的方向向量))。應用直線(xiàn)方程的點(diǎn)斜式、斜截式設直線(xiàn)方程時(shí),一般可設直線(xiàn)的斜率為k,但你是否注意到直線(xiàn)垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線(xiàn)縱截距,常設其方程為或;知直線(xiàn)橫截距,常設其方程為(直線(xiàn)斜率k存在時(shí),為k的倒數)或知直線(xiàn)過(guò)點(diǎn),常設其方程為。

 。2)直線(xiàn)在坐標軸上的截距可正、可負、也可為0。直線(xiàn)兩截距相等直線(xiàn)的斜率為—1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距互為相反數直線(xiàn)的斜率為1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距絕對值相等直線(xiàn)的斜率為或直線(xiàn)過(guò)原點(diǎn)。

 。3)在解析幾何中,研究?jì)蓷l直線(xiàn)的位置關(guān)系時(shí),有可能這兩條直線(xiàn)重合,而在立體幾何中一般提到的兩條直線(xiàn)可以理解為它們不重合。

  3、相交兩直線(xiàn)的夾角和兩直線(xiàn)間的到角是兩個(gè)不同的概念:夾角特指相交兩直線(xiàn)所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線(xiàn)性規劃中幾個(gè)概念:約束條件、可行解、可行域、目標函數、最優(yōu)解。

  5、圓的方程:最簡(jiǎn)方程;標準方程;

  6、解決直線(xiàn)與圓的關(guān)系問(wèn)題有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(cháng)、弦心距構成直角三角形,切線(xiàn)長(cháng)定理、割線(xiàn)定理、弦切角定理等等)的作用!”

 。1)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  如果點(diǎn)在圓外,那么上述直線(xiàn)方程表示過(guò)點(diǎn)兩切線(xiàn)上兩切點(diǎn)的“切點(diǎn)弦”方程。

  如果點(diǎn)在圓內,那么上述直線(xiàn)方程表示與圓相離且垂直于(為圓心)的直線(xiàn)方程,(為圓心到直線(xiàn)的距離)。

  7、曲線(xiàn)與的交點(diǎn)坐標方程組的解;

  過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當且僅當無(wú)平方項時(shí),為兩圓公共弦所在直線(xiàn)方程。

  八、圓錐曲線(xiàn)

  1、圓錐曲線(xiàn)的兩個(gè)定義,及其“括號”內的限制條件,在圓錐曲線(xiàn)問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線(xiàn)第一定義;如果涉及到其焦點(diǎn)、準線(xiàn)(一定點(diǎn)和不過(guò)該點(diǎn)的一定直線(xiàn))或離心率,那么將優(yōu)先選用圓錐曲線(xiàn)第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應用。

 。1)注意:①圓錐曲線(xiàn)第一定義與配方法的綜合運用;

 、趫A錐曲線(xiàn)第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線(xiàn)距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是小于1的正數,雙曲線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是大于1的正數,拋物線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是等于1。

  2、圓錐曲線(xiàn)的幾何性質(zhì):圓錐曲線(xiàn)的對稱(chēng)性、圓錐曲線(xiàn)的范圍、圓錐曲線(xiàn)的特殊點(diǎn)線(xiàn)、圓錐曲線(xiàn)的變化趨勢。其中,橢圓中、雙曲線(xiàn)中。

  重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準線(xiàn)等相互之間與坐標系無(wú)關(guān)的幾何性質(zhì)’”,尤其是雙曲線(xiàn)中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

  3、在直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解。特別是:

 、僦本(xiàn)與圓錐曲線(xiàn)相交的必要條件是他們構成的方程組有實(shí)數解,當出現一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應用韋達定理解決問(wèn)題時(shí),必須先有“判別式≥0”。

 、谥本(xiàn)與拋物線(xiàn)(相交不一定交于兩點(diǎn))、雙曲線(xiàn)位置關(guān)系(相交的四種情況)的特殊性,應謹慎處理。

 、墼谥本(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,常與“弦”相關(guān),“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達定理”或“小小直角三角形”或“點(diǎn)差法”、“長(cháng)度(弦長(cháng))”問(wèn)題關(guān)鍵是長(cháng)度(弦長(cháng))公式

 、苋绻谝粭l直線(xiàn)上出現“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應用“斜率”為橋梁轉化。

  4、要重視常見(jiàn)的尋求曲線(xiàn)方程的方法(待定系數法、定義法、直譯法、代點(diǎn)法、參數法、交軌法、向量法等),以及如何利用曲線(xiàn)的方程討論曲線(xiàn)的幾何性質(zhì)(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類(lèi)討論思想和等價(jià)轉化思想等),這是解析幾何的兩類(lèi)基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)。

  注意:①如果問(wèn)題中涉及到平面向量知識,那么應從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉化,還是選擇向量的代數形式進(jìn)行“摘帽子或脫靴子”轉化。

 、谇(xiàn)與曲線(xiàn)方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。

 、墼谂c圓錐曲線(xiàn)相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數形結合(如角平分線(xiàn)的雙重身份)、“方程與函數性質(zhì)”化解析幾何問(wèn)題為代數問(wèn)題、“分類(lèi)討論思想”化整為零分化處理、“求值構造等式、求變量范圍構造不等關(guān)系”等等。

  九、直線(xiàn)、平面、簡(jiǎn)單多面體

  1、計算異面直線(xiàn)所成角的關(guān)鍵是平移(補形)轉化為兩直線(xiàn)的夾角計算

  2、計算直線(xiàn)與平面所成的角關(guān)鍵是作面的垂線(xiàn)找射影,或向量法(直線(xiàn)上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點(diǎn)到直線(xiàn)的距離,后虛擬直角三角形求解。注:一斜線(xiàn)與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線(xiàn)在平面上射影為角的平分線(xiàn)。

  3、空間平行垂直關(guān)系的證明,主要依據相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線(xiàn)面平行關(guān)系、線(xiàn)面垂直關(guān)系(三垂線(xiàn)定理及其逆定理)的橋梁作用。注意:書(shū)寫(xiě)證明過(guò)程需規范。

  4、直棱柱、正棱柱、平行六面體、長(cháng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側棱、側面、對角面、平行于底的截面的幾何體性質(zhì)。

  如長(cháng)方體中:對角線(xiàn)長(cháng),棱長(cháng)總和為,全(表)面積為,(結合可得關(guān)于他們的等量關(guān)系,結合基本不等式還可建立關(guān)于他們的不等關(guān)系式),

  如三棱錐中:側棱長(cháng)相等(側棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(cháng)相等(側面與底面所成相等)且頂點(diǎn)在底上在底面內頂點(diǎn)在底上射影為底面內心。

  5、求幾何體體積的常規方法是:公式法、割補法、等積(轉換)法、比例(性質(zhì)轉換)法等。注意:補形:三棱錐三棱柱平行六面體

  6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個(gè)面都是相同邊數的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數。

  十、導數

  1、導數的意義:曲線(xiàn)在該點(diǎn)處的切線(xiàn)的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數的導數,C為常數)

  2、多項式函數的導數與函數的單調性

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為增函數。

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為減函數。

  3、導數與極值、導數與最值:

 。1)函數處有且“左正右負”在處取極大值;

  函數在處有且左負右正”在處取極小值。

  注意:①在處有是函數在處取極值的必要非充分條件。

 、谇蠛瘮禈O值的方法:先找定義域,再求導,找出定義域的分界點(diǎn),列表求出極值。特別是給出函數極大(。┲档臈l件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記。

 、蹎握{性與最值(極值)的研究要注意列表!

 。2)函數在一閉區間上的最大值是此函數在此區間上的極大值與其端點(diǎn)值中的“最大值”

  函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點(diǎn)值中的“最小值”;

  注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導數為0的點(diǎn)對應函數值的大小,其中最大的就是最大值,最小就為最小。

高中數學(xué)知識點(diǎn)總結 5

  數學(xué)選修2-2導數及其應用知識點(diǎn)必記

  1.函數的平均變化率是什么?答:平均變化率為

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負,可零。

  注2:函數的平均變化率可以看作是物體運動(dòng)的平均速度。

  2、導函數的概念是什么?

  答:函數yf(x)在xx0處的瞬時(shí)變化率是limf(x0x)f(x0)y,則稱(chēng)limx0xx0x函數yf(x)在點(diǎn)x0處可導,并把這個(gè)極限叫做yf(x)在x0處的導數,記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均變化率和導數的幾何意義是什么?

  答:函數的平均變化率的幾何意義是割線(xiàn)的斜率;函數的導數的幾何意義是切線(xiàn)的斜率。

  4導數的背景是什么?

  答:(1)切線(xiàn)的斜率;(2)瞬時(shí)速度;(3)邊際成本。

  5、常見(jiàn)的函數導數和積分公式有哪些?函數導函數不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常見(jiàn)的導數和定積分運算公式有哪些?答:若fx,gx均可導(可積),則有:和差的導數運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導數運算特別地:Cfx"Cf"x商的導數運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復合函數的導數yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區間可加性bakf(x)dxkf(x)dx(k為常數)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用導數求函數單調區間的步驟是什么?答:①求函數f(x)的導數f"(x)

 、诹頵"(x)>0,解不等式,得x的范圍就是遞增區間.③令f"(x)

  8.利用導數求函數的最值的步驟是什么?

  答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;

 、茖(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。

  注:實(shí)際問(wèn)題的開(kāi)區間唯一極值點(diǎn)就是所求的最值點(diǎn);

  9.求曲邊梯形的思想和步驟是什么?

  答:分割近似代替求和取極限(“以直代曲”的思想)

  10.定積分的性質(zhì)有哪些?

  根據定積分的定義,不難得出定積分的'如下性質(zhì):

  11.

  ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0

 、偻茝V:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定積分的取值情況有哪幾種?

  答:定積分的值可能取正值,也可能取負值,還可能是0.

  (l)當對應的曲邊梯形位于x軸上方時(shí),定積分的值取正值,且等于x軸上方的圖形面積;

 。2)當對應的曲邊梯形位于x軸下方時(shí),定積分的值取負值,且等于x軸上方圖形面積的相反數;

 。3)當位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時(shí),定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.

  12.物理中常用的微積分知識有哪些?答:(1)位移的導數為速度,速度的導數為加速度。(2)力的積分為功。

  數學(xué)選修2-2推理與證明知識點(diǎn)必記

  13.歸納推理的定義是什么?答:從個(gè)別事實(shí)中推演出一般性的結論,像這樣的推理通常稱(chēng)為歸納推理。歸納推理是由部分到整體,由個(gè)別到一般的推理。

  14.歸納推理的思維過(guò)程是什么?答:大致如圖:

  實(shí)驗、觀(guān)察概括、推廣猜測一般性結論

  15.歸納推理的特點(diǎn)有哪些?

  答:①歸納推理的前提是幾個(gè)已知的特殊現象,歸納所得的結論是尚屬未知的一般現象。

 、谟蓺w納推理得到的結論具有猜測的性質(zhì),結論是否真實(shí),還需經(jīng)過(guò)邏輯證明和實(shí)驗檢驗,因此,它不能作為數學(xué)證明的工具。③歸納推理是一種具有創(chuàng )造性的推理,通過(guò)歸納推理的猜想,可以作為進(jìn)一步研究的起點(diǎn),幫助人們發(fā)現問(wèn)題和提出問(wèn)題。

  16.類(lèi)比推理的定義是什么?

  答:根據兩個(gè)(或兩類(lèi))對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱(chēng)為類(lèi)比推理。類(lèi)比推理是由特殊到特殊的推理。

  17.類(lèi)比推理的思維過(guò)程是什么?答:

  觀(guān)察、比較聯(lián)想、類(lèi)推推測新的結論

  18.演繹推理的定義是什么?

  答:演繹推理是根據已有的事實(shí)和正確的結論(包括定義、公理、定理等)按照嚴格的邏輯法則得到新結論的推理過(guò)程。演繹推理是由一般到特殊的推理。

  19.演繹推理的主要形式是什么?答:三段論

  20.“三段論”可以表示為什么?

  答:①大前題:M是P②小前提:S是M③結論:S是P。

  其中①是大前提,它提供了一個(gè)一般性的原理;②是小前提,它指出了一個(gè)特殊對象;③是結論,它是根據一般性原理,對特殊情況做出的判斷。

  21.什么是直接證明?它包括哪幾種證明方法?

  答:直接證明是從命題的條件或結論出發(fā),根據已知的定義、公理、定理,直接推證結論的真實(shí)性。直接證明包括綜合法和分析法。

  22.什么是綜合法?

  答:綜合法就是“由因導果”,從已知條件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結論。

  23.什么是分析法?答:分析法就是從所要證明的結論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱(chēng)為“由果索因”。

  要注意敘述的形式:要證A,只要證B,B應是A成立的充分條件.分析法和綜合法常結合使用,不要將它們割裂開(kāi)。

  24什么是間接證明?

  答:即反證法:是指從否定的結論出發(fā),經(jīng)過(guò)邏輯推理,導出矛盾,證實(shí)結論的否定是錯誤的,從而肯定原結論是正確的證明方法。

  25.反證法的一般步驟是什么?

  答:(1)假設命題結論不成立,即假設結論的反面成立;

 。2)從假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 。3)從矛盾判定假設不正確,即所求證命題正確。

  26常見(jiàn)的“結論詞”與“反義詞”有哪些?原結論詞反義詞原結論詞至少有一個(gè)至多有一個(gè)至少有n個(gè)至多有n個(gè)一個(gè)也沒(méi)有至少有兩個(gè)至多有n-1個(gè)至少有n+1個(gè)對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立

  27.反證法的思維方法是什么?答:正難則反....

  28.如何歸繆矛盾?

  答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;

 。3)自相矛盾.

  29.數學(xué)歸納法(只能證明與正整數有關(guān)的數學(xué)命題)的步驟是什么?nnN答:(1)證明:當n取第一個(gè)值時(shí)命題成立;00

  (2)假設當n=k(k∈N*,且k≥n0)時(shí)命題成立,證明當n=k+1時(shí)命題也成立由(1),(2)可知,命題對于從n0開(kāi)始的所有正整數n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。

  數學(xué)選修2-2數系的擴充和復數的概念知識點(diǎn)必記

  30.復數的概念是什么?答:形如a+bi的數叫做復數,其中i叫虛數單位,a叫實(shí)部,b叫虛部,數集

  Cabi|a,bR叫做復數集。

  規定:abicdia=c且,強調:兩復數不能比較大小,只有相等或不相b=d等。實(shí)數(b0)

  31.數集的關(guān)系有哪些?答:復數Z一般虛數(a0)

  虛數(b0)純虛數(a0)

  32.復數的幾何意義是什么?答:復數與平面內的點(diǎn)或有序實(shí)數對一一對應。

  33.什么是復平面?

  答:根據復數相等的定義,任何一個(gè)復數zabi,都可以由一個(gè)有序實(shí)數對

  (a,b)唯一確定。由于有序實(shí)數對(a,b)與平面直角坐標系中的點(diǎn)一一對應,因此

  復數集與平面直角坐標系中的點(diǎn)集之間可以建立一一對應。這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。實(shí)軸上的點(diǎn)都表示實(shí)數,除了原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數。

  34.如何求復數的模(絕對值)?答:與復數z對應的向量OZ的模r叫做復數zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2

  35.復數的加、減法運算及幾何意義是什么?

  答:①復數的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。

  注:復數的加、減法運算也可以按向量的加、減法來(lái)進(jìn)行。

 、趶蛿档某朔ǚ▌t:(abi)(cdi)acbdadbci。

 、蹚蛿档某ǚ▌t:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實(shí)數化因子

  36.什么是共軛復數?

  答:兩復數abi與abi互為共軛復數,當b0時(shí),它們叫做共軛虛數。

高中數學(xué)知識點(diǎn)總結 6

  1、必修課程由5個(gè)模塊組成:

  必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上所有的知識點(diǎn)是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1—1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何。

  選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖

  系列2:3個(gè)模塊

  選修2—1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何

  選修2—2:導數及其應用、推理與證明、數系的擴充與復數

  選修2—3:計數原理、隨機變量及其分布列、統計案例

  選修4—1:幾何證明選講

  選修4—4:坐標系與參數方程

  選修4—5:不等式選講

  2、重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數,數列,三角函數,平面向量,圓錐曲線(xiàn),立體幾何,導數

  難點(diǎn):函數,圓錐曲線(xiàn)

  高考相關(guān)考點(diǎn):

  1、集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

  2、函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數函數、對數函數、函數的應用

  3、數列:數列的有關(guān)概念、等差數列、等比數列、數列求通項、求和

  4、三角函數:有關(guān)概念、同角關(guān)系與誘導公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數的圖像及其性質(zhì)、應用

  5、平面向量:初等運算、坐標運算、數量積及其應用

  6、不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現在大題的選做題里)、不等式的應用

  7、直線(xiàn)與圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的位置關(guān)系

  8、圓錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用

  9、直線(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量

  10、排列、組合和概率:排列、組合應用題、二項式定理及其應用

  11、概率與統計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  12、導數:導數的概念、求導、導數的應用

  13、復數:復數的概念與運算

  高中數學(xué)學(xué)習要注意的方法

  1、用心感受數學(xué),欣賞數學(xué),掌握數學(xué)思想。有位數學(xué)家曾說(shuō)過(guò):數學(xué)是用最小的空間集中了的理想。

  2、要重視數學(xué)概念的理解。高一數學(xué)與初中數學(xué)的區別是概念多并且較抽象,學(xué)起來(lái)“味道”同以往很不一樣,解題方法通常就來(lái)自概念本身。學(xué)習概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著(zhù)的深層次的含義并掌握各種等價(jià)的表達方式。例如,為什么函數y=f(x)與y=f—1(x)的圖象關(guān)于直線(xiàn)y=x對稱(chēng),而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當f(x—1)=f(1—x)時(shí),函數y=f(x)的圖象關(guān)于y軸對稱(chēng),而y=f(x—1)與y=f(1—x)的圖象卻關(guān)于直線(xiàn)x=1對稱(chēng),不透徹理解一個(gè)圖象的對稱(chēng)性與兩個(gè)圖象的對稱(chēng)關(guān)系的區別,兩者很容易混淆。

  3、對數學(xué)學(xué)習應抱著(zhù)二個(gè)詞――“嚴謹,創(chuàng )新”,所謂嚴謹,就是在平時(shí)訓練的時(shí)候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬(wàn)不可以抱著(zhù)“好像是對的”的心態(tài),蒙混過(guò)關(guān)。至于創(chuàng )新呢,要求就高一點(diǎn)了,要求在你會(huì )解決此問(wèn)題的情況下,你還會(huì )不會(huì )用另一種更簡(jiǎn)單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規方法,總愛(ài)自己創(chuàng )造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學(xué)會(huì )用常規的方法,在此基礎上你才能創(chuàng )新,你的創(chuàng )新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現。當然我們要有創(chuàng )新意識,但是,創(chuàng )新是有條件的,必須有扎實(shí)的基礎,因此我想勸一下那些基礎不牢,而平時(shí)總愛(ài)用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬(wàn)不要繼續鉆那可憐的牛角尖!

  4、建立良好的學(xué)習數學(xué)習慣,習慣是經(jīng)過(guò)重復練習而鞏固下來(lái)的穩重持久的條件反射和自然需要。建立良好的學(xué)習數學(xué)習慣,會(huì )使自己學(xué)習感到有序而輕松。高中數學(xué)的良好習慣應是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應用。學(xué)生在學(xué)習數學(xué)的過(guò)程中,要把教師所傳授的知識翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的`腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養自己再學(xué)習能力。

  5、多聽(tīng)、多作、多想、多問(wèn):此“四多”乃培養數學(xué)能力的要訣,“聽(tīng)”就是在“學(xué)”,作是“練習”(作課本上的習題或其它問(wèn)題),也就是把您所學(xué)的,應用到解決問(wèn)題上!奥(tīng)”與“作”難免會(huì )碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來(lái)就要“問(wèn)”――問(wèn)同學(xué)、問(wèn)老師或參考書(shū),務(wù)必將疑難解決為止。這就是所謂的學(xué)問(wèn):既學(xué)又問(wèn)。

  6、要有毅力、要有恒心:基本上要有一個(gè)認識:數學(xué)能力乃是長(cháng)期努力累積的結果,而不是一朝一夕之功所能達到的。您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數學(xué),但到頭來(lái)數學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。

  高中數學(xué)復習的五大要點(diǎn)分析

一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復習的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現象。主要表現為平時(shí)復習覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因為:

 。1)對復習的知識點(diǎn)缺乏系統的理解,解題時(shí)缺乏思維層次結構。第一輪復習著(zhù)重對基礎知識點(diǎn)的挖掘,數學(xué)老師一定都會(huì )反復強調基礎的重要性。如果不重視對知識點(diǎn)的系統化分析,不能構成一個(gè)整體的知識網(wǎng)絡(luò )構架,自然在解題時(shí)就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。

 。2)復習的時(shí)候心不靜。心不靜就會(huì )導致思維不清晰,而思維不清晰就會(huì )促使復習沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復習之前,先靜下心來(lái)認真想一想接下來(lái)需要復習哪一塊兒,需要做多少事情,然后認真去做,同時(shí)需要很高的注意力,只有這樣才會(huì )有很好的效果。

 。3)在第一輪復習階段,學(xué)習的重心應該轉移到基礎復習上來(lái)。

  因此,建議廣大同學(xué)在一輪復習的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認真的揣摩每個(gè)知識點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復習才能顯出成效。

  二、注重教材、注重基礎,忌盲目做題

  要把書(shū)本中的常規題型做好,所謂做好就是要用最少的時(shí)間把題目做對。部分同學(xué)在第一輪復習時(shí)對基礎題不予以足夠的重視,認為題目看上去會(huì )做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡(jiǎn)單的歸結為粗心,從而忽視了對基本概念的掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實(shí)際成績(jì)與心理感覺(jué)的偏差。

  可見(jiàn),數學(xué)的基本概念、定義、公式,數學(xué)知識點(diǎn)的聯(lián)系,基本的數學(xué)解題思路與方法,是第一輪復習的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數部分為例,就必須掌握函數的概念,建立函數關(guān)系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱(chēng)性等性質(zhì),學(xué)會(huì )利用圖像即數形結合。

  每個(gè)同學(xué)在數學(xué)學(xué)習上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復習課上,老師只能針對性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補上才能提高。復習的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復習的效果就實(shí)現了。同時(shí),也請同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因為這并不能起到更大作用。

  高三的復習一定是有計劃、有目標的,所以千萬(wàn)不要盲目做題。第一輪復習非常具有針對性,對于所有知識點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達不到一輪復習應該具有的效果。而且盲目做題沒(méi)有針對性,更不會(huì )有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點(diǎn)運用方法的總結。

  三、在平時(shí)做題中要養成良好的解題習慣,忌不思

  1、樹(shù)立信心,養成良好的運算習慣。部分同學(xué)平時(shí)學(xué)習過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對答案,也不認真找出錯誤原因并加以改正!皶(huì )而不對”是高三數學(xué)學(xué)習的大忌,常見(jiàn)的有審題失誤、計算錯誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無(wú)窮?山Y合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢(xún)。

  2、做好解題后的開(kāi)拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開(kāi)拓引申,即一道數學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開(kāi)拓引申,引申出新題和新解法,有利于培養同學(xué)們的發(fā)散思維,激發(fā)創(chuàng )造精神,提高解題能力:

 。1)把題目條件開(kāi)拓引申。

 、侔烟厥鈼l件一般化;

 、诎岩话銞l件特殊化;

 、郯烟厥鈼l件和一般條件交替變化。

 。2)把題目結論開(kāi)拓引申。

 。3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱(chēng)為“一題多變”但其解法仍類(lèi)似,按其解法而言,這些題又可稱(chēng)為“多題一解”或“一法多用”。

  3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對常規解法的掌握是否達到高度的熟練程度。

  四、學(xué)會(huì )總結、歸納,訓練到位,忌題量不足

  我在暑期上課的時(shí)候發(fā)現,很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點(diǎn)的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時(shí)復習的知識再回顧一下,梳理知識體系,回顧各個(gè)知識點(diǎn),對所學(xué)的知識結構要有一個(gè)完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會(huì )總結歸納不留下任何知識的盲點(diǎn),在一輪復習中要注意對各個(gè)知識點(diǎn)的細化。這個(gè)過(guò)程不需要很長(cháng)的時(shí)間,而且到了后續階段會(huì )越來(lái)越熟練。因此,養成良好的做題習慣,有助于訓練自己的解題思維,提高自己的解題能力。

  實(shí)踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實(shí)的掌握知識點(diǎn),還可以更深入的了解知識點(diǎn),避免出現“會(huì )而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個(gè)直接反映,尤其是數學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會(huì )有較大的提升。有句話(huà)說(shuō)的好,“量變導致質(zhì)變”,因此,同學(xué)們在每章復習的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點(diǎn)的熟練運用。

  但是,大量訓練絕對不是題海戰術(shù)。因為針對每章節做題都有目標,同時(shí)做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話(huà)說(shuō),如果隨機抽取一些近幾年關(guān)于這一章的高考題都會(huì )做,那我認為就可以了。

  五、解析幾何

  這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。

  六、壓軸題

  同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數學(xué)直線(xiàn)方程知識點(diǎn):什么是直線(xiàn)方程

  從平面解析幾何的角度來(lái)看,平面上的直線(xiàn)就是由平面直角坐標系中的一個(gè)二元一次方程所表示的圖形。求兩條直線(xiàn)的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線(xiàn)平行;有無(wú)窮多解時(shí),兩直線(xiàn)重合;只有一解時(shí),兩直線(xiàn)相交于一點(diǎn)。常用直線(xiàn)向上方向與X軸正向的夾角(叫直線(xiàn)的傾斜角)或該角的正切(稱(chēng)直線(xiàn)的斜率)來(lái)表示平面上直線(xiàn)(對于X軸)的傾斜程度?梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線(xiàn)是否互相平行或互相垂直,也可計算它們的交角。直線(xiàn)與某個(gè)坐標軸的交點(diǎn)在該坐標軸上的坐標,稱(chēng)為直線(xiàn)在該坐標軸上的截距。直線(xiàn)在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線(xiàn)為一條直線(xiàn)。因此,在空間直角坐標系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線(xiàn)的方程。

高中數學(xué)知識點(diǎn)總結 7

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面。

  按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法。

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面。

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行。

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角;b、直線(xiàn)與平面平行或在平面內,所成的角為0°角。

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角。

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直。

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  數學(xué)常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來(lái)高考數學(xué)試題的設置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結構。在實(shí)體設置的結構中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結構;A差的就是644,先把自己能做的、會(huì )做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì )做怎么辦?應先跳過(guò)去,不是這道題不會(huì )做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩定下來(lái)以后再回過(guò)頭來(lái)看會(huì )頓悟,豁然開(kāi)朗。

  第四,做選擇題的時(shí)候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過(guò)程,因此在這個(gè)過(guò)程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開(kāi)始也不看它的四個(gè)選項,從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì )比較快,正確地找出結果來(lái)。再就是數形結合法。最后實(shí)在不行了,就將四個(gè)選項代入驗證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數形結合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規范答題可以減少失分。簡(jiǎn)單地說(shuō),規范答題就是從上一步的原因到下一步的結論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因為什么所以什么是一個(gè)必然的過(guò)程,這是規范答題。

  學(xué)霸分享的數學(xué)復習技巧

  1、把答案蓋住看例題

  例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的`“題眼”及巧妙之處,收獲會(huì )更大。

  2、研究每題都考什么

  數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。

  學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。

  數學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。

  6、構造法

  在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。

  數學(xué)經(jīng)常遇到的問(wèn)題解答

  1、要提高數學(xué)成績(jì)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數學(xué)成績(jì),首先就應該從基礎知識學(xué)起。不少同學(xué)覺(jué)得基礎知識過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì )了。這種“自我感覺(jué)良好”其實(shí)是一種錯覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎不牢的表現,因此要提高數學(xué)成績(jì)先要把基礎夯實(shí)。

  2、基礎不好怎么學(xué)好數學(xué)?

  對于基礎差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個(gè)好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術(shù)?

  方法君曾不止一次提到了“題海戰術(shù)”,題海戰術(shù)究竟可不可取呢?“題海戰術(shù)”其實(shí)也是一種學(xué)習方法,但很多學(xué)生只知道做題,不懂得總結,體現不出任何的學(xué)習效果。因此在做題后要總結至關(guān)重要,只有認真總結才能不斷積累做題經(jīng)驗,這樣才能取得理想成績(jì)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jì)不好,會(huì )說(shuō)自己是因為粗心導致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒(méi)有清晰的解題思路、計算能力不強。因此在平時(shí)的學(xué)習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習弱點(diǎn),所以,要告訴自己,高中數學(xué)沒(méi)有“粗心”只有“不用心”。

高中數學(xué)知識點(diǎn)總結 8

  數學(xué)立體幾何知識點(diǎn)

  1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì )說(shuō)明共點(diǎn)、共線(xiàn)、共面問(wèn)題。

  能夠用斜二測法作圖。

  2.空間兩條直線(xiàn)的位置關(guān)系:平行、相交、異面的概念;

  會(huì )求異面直線(xiàn)所成的角和異面直線(xiàn)間的距離;證明兩條直線(xiàn)是異面直線(xiàn)一般用反證法。

  3.直線(xiàn)與平面

 、傥恢藐P(guān)系:平行、直線(xiàn)在平面內、直線(xiàn)與平面相交。

 、谥本(xiàn)與平面平行的判斷方法及性質(zhì),判定定理是證明平行問(wèn)題的依據。

 、壑本(xiàn)與平面垂直的證明方法有哪些?

 、苤本(xiàn)與平面所成的角:關(guān)鍵是找它在平面內的射影,范圍是

 、萑咕(xiàn)定理及其逆定理:每年高考試題都要考查這個(gè)定理. 三垂線(xiàn)定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線(xiàn)垂直,確定二面角的平面角,確定點(diǎn)到直線(xiàn)的垂線(xiàn).

  4.平面與平面

  (1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質(zhì)。

  (3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據性質(zhì)定理,可以證明線(xiàn)面垂直。

  (4)兩平面間的距離問(wèn)題→點(diǎn)到面的距離問(wèn)題→

  (5)二面角。二面角的平面交的作法及求法:

 、俣x法,一般要利用圖形的對稱(chēng)性;一般在計算時(shí)要解斜三角形;

 、诖咕(xiàn)、斜線(xiàn)、射影法,一般要求平面的垂線(xiàn)好找,一般在計算時(shí)要解一個(gè)直角三角形。

 、凵溆懊娣e法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線(xiàn)不容易找到時(shí)用此法。

  高中數學(xué)立體幾何知識點(diǎn)

  數學(xué)知識點(diǎn)1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖

  是一個(gè)矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。

  (7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  數學(xué)知識點(diǎn)2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(cháng)度;俯視圖反映了物體的長(cháng)度和寬度;側視圖反映了物體的高度和寬度。

  數學(xué)知識點(diǎn)3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法

  斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;

 、谠瓉(lái)與y軸平行的.線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。

  快速提高數學(xué)成績(jì)的方法

  1、運算是學(xué)好數學(xué)的基本功.初中階段是培養數學(xué)運算能力的黃金時(shí)期,初中代數的主要內容都和運算有關(guān),如有初中數學(xué)理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程.初中運算能力不過(guò)關(guān),會(huì )直接影響以后數學(xué)的學(xué)習。

  2、做完一節的全部練習后,對照答案進(jìn)行批改.千萬(wàn)別做一道對一道的答案,因為這樣會(huì )造成思維中斷和對答案的依賴(lài)心理;

  先易后難,遇到不會(huì )的題一定要先跳過(guò)去,以平穩的速度過(guò)一遍所有題目,先徹底解決會(huì )做的初中數學(xué);不會(huì )的題過(guò)多時(shí),千萬(wàn)別急躁、泄氣,其實(shí)你認為困難的題,對其他人來(lái)講也是如此,只不過(guò)需要點(diǎn)時(shí)間和耐心;對于例題,有兩種處理方式:“先做后看”與“先看后測”。

  3、最重要就是興趣問(wèn)題,學(xué)習興趣是一件非常重要的事情,如何培養我們的學(xué)習興趣呢?首先,我們自己要做的就是調整好我們的情緒,很多同學(xué)一提起數學(xué)這兩個(gè)字,負面情緒馬上出現,這樣,不用其他人,你自己已經(jīng)把自己給放棄了!因此,想學(xué)好初中數學(xué),最重要的是調整好自己的情緒,只有有了積極的情緒,才會(huì )有高效率的學(xué)習。

高中數學(xué)知識點(diǎn)總結 9

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp.空間向量法

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

  (2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:

  a、直線(xiàn)與平面垂直時(shí),所成的角為直角,

  b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的.判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

高中數學(xué)知識點(diǎn)總結 10

  1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等?4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內錯角相等,兩直線(xiàn)平行11同旁?xún)冉腔パa,兩直線(xiàn)平行12兩直線(xiàn)平行,同位角相等13兩直線(xiàn)平行,內錯角相等14兩直線(xiàn)平行,同旁?xún)冉腔パa

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°

  50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形

  78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的.直線(xiàn),必平分另一腰

  80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r

  122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公*弦137定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142正三角形面積√3a/4a表示邊長(cháng)

  143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(cháng)撲愎劍=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)(還有一些,大家幫補充吧)實(shí)用工具:常用數學(xué)公式公式分類(lèi)公式表達式

  乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac拋物線(xiàn)標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側面積S=c*h斜棱柱側面積S=c"*h

  正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

  弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=s*h圓柱體V=pi*r2h

高中數學(xué)知識點(diǎn)總結 11

  集合的分類(lèi):

 。1)按元素屬性分類(lèi),如點(diǎn)集,數集。

 。2)按元素的個(gè)數多少,分為有/無(wú)限集

  關(guān)于集合的概念:

 。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對象就不能構成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。

 。2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的.任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

 。3)無(wú)序性:判斷一些對象時(shí)候構成集合,關(guān)鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個(gè)數分為兩類(lèi):

  含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

  非負整數全體構成的集合,叫做自然數集,記作N。

  在自然數集內排除0的集合叫做正整數集,記作N+或N_。

  整數全體構成的集合,叫做整數集,記作Z。

  有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱(chēng),一切有理數都可以化成分數的形式。)

  實(shí)數全體構成的集合,叫做實(shí)數集,記作R。(包括有理數和無(wú)理數。其中無(wú)理數就是無(wú)限不循環(huán)小數,有理數就包括整數和分數。數學(xué)上,實(shí)數直觀(guān)地定義為和數軸上的'點(diǎn)一一對應的數。)

  1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號“{}”內表示這個(gè)集合,例如,由兩個(gè)元素0,1構成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。

  無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

  例如:正偶數構成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線(xiàn)左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數集合中取值,在豎線(xiàn)右邊寫(xiě)出只有集合內的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數學(xué)知識點(diǎn)總結 12

  第一章 算法初步

  算法與程序框圖

  基本算法語(yǔ)句

  算法案例

  閱讀與思考 割圓術(shù)

  復習參考題

  第二章 統計

  隨機抽樣

  閱讀與思考 一個(gè)著(zhù)名的案例

  閱讀與思考廣告中數據的可靠性

  閱讀與思考 如何得到敏感性問(wèn)題的誠實(shí)反應

  用樣本估計總體

  閱讀與思考 生產(chǎn)過(guò)程中的質(zhì)量控制圖

  變量間的相關(guān)關(guān)系

  閱讀與思考 相關(guān)關(guān)系的強與弱

  實(shí)習作業(yè)

  復習參考題

  第三章 概率

  隨機事件的概率

  閱讀與思考 天氣變化的認識過(guò)程

  古典概型

  幾何概型

  閱讀與思考 概率與密碼

  復習參考題

  高中數學(xué)必修三知識點(diǎn)

  程序框圖

  程序框圖的概念:

  程序框圖又稱(chēng)流程圖,是一種用程序框、流程線(xiàn)及文字說(shuō)明來(lái)表示算法的圖形;

  程序框圖的構成:

  一個(gè)程序框圖包括以下幾部分:實(shí)現不同算_能的相對應的程序框;帶箭頭的流程線(xiàn);程序框內必要的說(shuō)明文字。

  設計程序框圖的步驟:

  第一步,用自然語(yǔ)言表述算法步驟;

  第二步,確定每一個(gè)算法步驟所包含的邏輯結構,并用相應的程序框圖表示,得到該步驟的程序框圖;

  第三步,將所有步驟的程序框圖用流程線(xiàn)連接起來(lái),并加上終端框,得到表示整個(gè)算法的程序框圖。

  畫(huà)程序框圖的規則:

 。1)使用標準的框圖符號;

 。2)框圖一般按從上到下、從左到右的方向畫(huà);

 。3)除判斷框外,大多數程序框圖中的.程序框只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是具有超過(guò)一個(gè)退出點(diǎn)的唯一符號;

 。4)在圖形符號內描述的語(yǔ)言要非常簡(jiǎn)練清楚。

  幾種重要的結構:

  順序結構、條件結構、循環(huán)結構。

  輸入語(yǔ)句:

  在該程序中的第1行中的INPUT語(yǔ)句就是輸入語(yǔ)句。這個(gè)語(yǔ)句的一般格式是:

  其中,“提示內容”一般是提示用戶(hù)輸入什么樣的信息。如每次運行上述程序時(shí),依次輸入-5,-4,-3,-2,-1,0,1,2,3,4,5,計算機每次都把新輸入的值賦給變量“x”,并按“x”新獲得的值執行下面的語(yǔ)句。

  輸出語(yǔ)句:

  在該程序中,第3行和第4行中的PRINT語(yǔ)句是輸出語(yǔ)句。它的一般格式是:

  同輸入語(yǔ)句一樣,表達式前也可以有“提示內容”。

  賦值語(yǔ)句:

  用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句。

  除了輸入語(yǔ)句,在該程序中第2行的賦值語(yǔ)句也可以給變量提供初值。它的一般格式是:

  賦值語(yǔ)句中的“=”叫做賦值號。

  算法語(yǔ)句的作用:

  輸入語(yǔ)句的作用:輸入信息。

  輸出語(yǔ)句的作用:輸出信息。

  賦值語(yǔ)句的作用:先計算出賦值號右邊表達式的值,然后把這個(gè)值賦給賦值號左邊的變量,使該變量的值等于表達式的值。

高中數學(xué)知識點(diǎn)總結 13

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;

  公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:

  直線(xiàn)與直線(xiàn)—平行、相交、異面;

  直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);

  平面與平面—平行、相交。

  3、異面直線(xiàn):

  平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);

  所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);

  兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);

  異面直線(xiàn)不同在任何一個(gè)平面內。

  求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角

  二、空間中的平行關(guān)系

  1、直線(xiàn)與平面平行(核心)

  定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)

  判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)

  性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的'交線(xiàn)平行

  2、平面與平面平行

  定義:兩個(gè)平面沒(méi)有公共點(diǎn)

  判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)

  三、空間中的垂直關(guān)系

  1、直線(xiàn)與平面垂直

  定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直

  判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直

  性質(zhì):垂直于同一直線(xiàn)的兩平面平行

  推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)

  判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直

高中數學(xué)知識點(diǎn)總結 14

  1、你掌握了空間圖形在平面上的直觀(guān)畫(huà)法嗎?(斜二測畫(huà)法)。

  2、線(xiàn)面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線(xiàn)線(xiàn)平行、線(xiàn)面平行、面面平行這三者之間的聯(lián)系和轉化在解決立幾問(wèn)題中的應用是怎樣的?每種平行之間轉換的條件是什么?

  3、三垂線(xiàn)定理及其逆定理你記住了嗎?你知道三垂線(xiàn)定理的關(guān)鍵是什么嗎?(一面、四線(xiàn)、三垂直、立柱即面的垂線(xiàn)是關(guān)鍵)一面四直線(xiàn),立柱是關(guān)鍵,垂直三處見(jiàn)

  3、線(xiàn)面平行的判定定理和性質(zhì)定理在應用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個(gè)平面內的兩條相交直線(xiàn)與另一個(gè)平面內的兩條相交直線(xiàn)分別平行”而導致證明過(guò)程跨步太大。

  4、求兩條異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線(xiàn)所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線(xiàn)所成角,應用時(shí)一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  7、兩條異面直線(xiàn)所成的角的范圍:0°《α≤90°

  直線(xiàn)與平面所成的角的'范圍:0o≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  8、你知道異面直線(xiàn)上兩點(diǎn)間的距離公式如何運用嗎?

  9、平面圖形的翻折,立體圖形的展開(kāi)等一類(lèi)問(wèn)題,要注意翻折,展開(kāi)前后有關(guān)幾何元素的“不變量”與“不變性”。

  10、立幾問(wèn)題的求解分為“作”,“證”,“算”三個(gè)環(huán)節,你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節?

  11、棱柱及其性質(zhì)、平行六面體與長(cháng)方體及其性質(zhì)。這些知識你掌握了嗎?(注意運用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線(xiàn)面角、球面距離的求法;球的表面積和體積公式。

高中數學(xué)知識點(diǎn)總結 15

  空間中的垂直問(wèn)題

 。1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

 、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

 、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

 、倬(xiàn)面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

 。1)側棱交于一點(diǎn)。側面都是三角形

 。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的'比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

 。1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

 。2)多個(gè)特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

【高中數學(xué)知識點(diǎn)總結】相關(guān)文章:

高中數學(xué)知識點(diǎn)總結05-15

高中數學(xué)導數知識點(diǎn)總結02-11

高中數學(xué)幾何知識點(diǎn)總結05-25

高中數學(xué)知識點(diǎn)的總結12-19

高中數學(xué)知識點(diǎn)的總結03-13

高中數學(xué)全部知識點(diǎn)總結02-20

高中數學(xué)基本的知識點(diǎn)總結09-28

高中數學(xué)知識點(diǎn)總結09-22

高中數學(xué)知識點(diǎn)總結(實(shí)用)05-15

高中數學(xué)知識點(diǎn)總結[集合]05-18