97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)知識點(diǎn)總結

時(shí)間:2025-04-01 10:42:43 知識點(diǎn)總結 我要投稿

高中數學(xué)知識點(diǎn)總結【匯總15篇】

  總結在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習和工作生活等情況加以回顧和分析的一種書(shū)面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧。你所見(jiàn)過(guò)的總結應該是什么樣的?下面是小編收集整理的高中數學(xué)知識點(diǎn)總結,希望對大家有所幫助。

高中數學(xué)知識點(diǎn)總結【匯總15篇】

高中數學(xué)知識點(diǎn)總結1

 。浩矫

  1.經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn)確定一個(gè)面.

  注:兩兩相交且不過(guò)同一點(diǎn)的四條直線(xiàn)必在同一平面內.

  2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)

  3.過(guò)三條互相平行的直線(xiàn)可以確定1或3個(gè)平面.(①三條直線(xiàn)在一個(gè)平面內平行,②三條直線(xiàn)不在一個(gè)平面內平行)

  [注]:三條直線(xiàn)可以確定三個(gè)平面,三條直線(xiàn)的公共點(diǎn)有0或1個(gè).

  4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)

 。嚎臻g的直線(xiàn)與平面

 、逼矫娴幕拘再|(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途.、菩倍䴗y畫(huà)法.

 、部臻g兩條直線(xiàn)的位置關(guān)系:相交直線(xiàn)、平行直線(xiàn)、異面直線(xiàn).

 、殴硭(平行線(xiàn)的傳遞性).等角定理.

 、飘惷嬷本(xiàn)的判定:判定定理、反證法.

 、钱惷嬷本(xiàn)所成的角:定義(求法)、范圍.

 、持本(xiàn)和平面平行直線(xiàn)和平面的位置關(guān)系、直線(xiàn)和平面平行的判定與性質(zhì).

 、粗本(xiàn)和平面垂直

 、胖本(xiàn)和平面垂直:定義、判定定理.

 、迫咕(xiàn)定理及逆定理.

  5.平面和平面平行

  兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性質(zhì)定理.

  (二)直線(xiàn)與平面的平行和垂直的證明思路(見(jiàn)附圖)

  (三)夾角與距離

  7.直線(xiàn)和平面所成的角與二面角

 、牌矫娴男本(xiàn)和平面所成的角:三面角余弦公式、最小角定理、斜線(xiàn)和平

  面所成的角、直線(xiàn)和平面所成的角.

 、贫娼牵孩俣x、范圍、二面角的平面角、直二面角.

 、诨ハ啻怪钡钠矫婕捌渑卸ǘɡ、性質(zhì)定理.

  8.距離

 、劈c(diǎn)到平面的距離.

 、浦本(xiàn)到與它平行平面的距離.

 、莾蓚(gè)平行平面的距離:兩個(gè)平行平面的公垂線(xiàn)、公垂線(xiàn)段.

 、犬惷嬷本(xiàn)的距離:異面直線(xiàn)的公垂線(xiàn)及其性質(zhì)、公垂線(xiàn)段.

  (四)簡(jiǎn)單多面體與球

  9.棱柱與棱錐

 、哦嗝骟w.

 、评庵c它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).

 、瞧叫辛骟w與長(cháng)方體:平行六面體、直平行六面體、長(cháng)方體、正四棱柱、

  正方體;平行六面體的性質(zhì)、長(cháng)方體的性質(zhì).

 、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).

 、芍崩庵驼忮F的直觀(guān)圖的畫(huà)法.

  10.多面體歐拉定理的發(fā)現

 、藕(jiǎn)單多面體的歐拉公式.

 、普嗝骟w.

  11.球

 、徘蚝退男再|(zhì):球體、球面、球的大圓、小圓、球面距離.

 、魄虻捏w積公式和表面積公式.

 。撼S媒Y論、方法和公式

  1.異面直線(xiàn)所成角的求法:

  (1)平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);

  (2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長(cháng)方體等,其目的在于容易發(fā)現兩條異面直線(xiàn)間的關(guān)系;

  2.直線(xiàn)與平面所成的.角

  斜線(xiàn)和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線(xiàn)段、斜線(xiàn)段及斜線(xiàn)段在平面上的射影。通常通過(guò)斜線(xiàn)上某個(gè)特殊點(diǎn)作出平面的垂線(xiàn)段,垂足和斜足的連線(xiàn),是產(chǎn)生線(xiàn)面角的關(guān)鍵;

  3.二面角的求法

  (1)定義法:直接在二面角的棱上取一點(diǎn)(特殊點(diǎn)),分別在兩個(gè)半平面內作棱的垂線(xiàn),得出平面角,用定義法時(shí),要認真觀(guān)察圖形的特性;

  (2)三垂線(xiàn)法:已知二面角其中一個(gè)面內一點(diǎn)到一個(gè)面的垂線(xiàn),用三垂線(xiàn)定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)半平面的交線(xiàn)所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;

  (4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫(huà)出平面角;

  特別:對于一類(lèi)沒(méi)有給出棱的二面角,應先延伸兩個(gè)半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。

  4.空間距離的求法

  (1)兩異面直線(xiàn)間的距離,高考要求是給出公垂線(xiàn),所以一般先利用垂直作出公垂線(xiàn),然后再進(jìn)行計算;

  (2)求點(diǎn)到直線(xiàn)的距離,一般用三垂線(xiàn)定理作出垂線(xiàn)再求解;

  (3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來(lái)作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線(xiàn),轉化為求三棱錐的高,利用等體積法列方程求解;

高中數學(xué)知識點(diǎn)總結2

  一、函數對稱(chēng)性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱(chēng)

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱(chēng)f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對稱(chēng)f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對稱(chēng)

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對稱(chēng)y=f(x)與y=f(-x)關(guān)于x=0對稱(chēng)y=f(x)與y=-f(x)關(guān)于y=0對稱(chēng)y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對稱(chēng)

  例1:證明函數y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱(chēng)。

  【解析】求兩個(gè)不同函數的對稱(chēng)軸,用設點(diǎn)和對稱(chēng)原理作解。

  證明:假設任意一點(diǎn)P(m,n)在函數y=f(a+x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對稱(chēng)軸為x=(b-a)/2.

  例2:證明函數y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱(chēng)。

  證明:假設任意一點(diǎn)P(m,n)在函數y=f(a-x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對稱(chēng)軸為x=(a+b)/2.

  二、函數的周期性

  令a,b均不為零,若:

  1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a|

  2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a|

  3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a|

  4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a|

  5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a|

  這里只對第2~5點(diǎn)進(jìn)行解析。

  第2點(diǎn)解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

 、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數最小正周期T=|2a|

  第4點(diǎn)解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數最小正周期T=|2a|

  第5點(diǎn)解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數最小正周期T=|4a|

  擴展閱讀:函數對稱(chēng)性、周期性和奇偶性的規律總結

  函數對稱(chēng)性、周期性和奇偶性規律總結

 。ㄒ唬┩缓瘮档暮瘮档钠媾夹耘c對稱(chēng)性:(奇偶性是一種特殊的對稱(chēng)性)

  1、奇偶性:

 。1)奇函數關(guān)于(0,0)對稱(chēng),奇函數有關(guān)系式f(x)f(x)0

 。2)偶函數關(guān)于y(即x=0)軸對稱(chēng),偶函數有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數的'對稱(chēng)性

 。1)函數的軸對稱(chēng):

  函數yf(x)關(guān)于xa對稱(chēng)f(ax)f(ax)

  f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)

  若寫(xiě)成:f(ax)f(bx),則函數yf(x)關(guān)于直線(xiàn)x稱(chēng)

 。╝x)(bx)ab對22證明:設點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對稱(chēng)。得證。

  說(shuō)明:關(guān)于xa對稱(chēng)要求橫坐標之和為2a,縱坐標相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(x)f(2ax)

 。2)函數的點(diǎn)對稱(chēng):

  函數yf(x)關(guān)于點(diǎn)(a,b)對稱(chēng)f(ax)f(ax)2b

  上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫(xiě)成:f(ax)f(bx)c,函數yf(x)關(guān)于點(diǎn)(abc,)對稱(chēng)2證明:設點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱(chēng)。得證。

  說(shuō)明:關(guān)于點(diǎn)(a,b)對稱(chēng)要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。

 。3)函數yf(x)關(guān)于點(diǎn)yb對稱(chēng):假設函數關(guān)于yb對稱(chēng),即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對應,顯然這不符合函數的定義,故函數自身不可能關(guān)于yb對稱(chēng)。但在曲線(xiàn)c(x,y)=0,則有可能會(huì )出現關(guān)于yb對稱(chēng),比如圓c(x,y)x2y240它會(huì )關(guān)于y=0對稱(chēng)。

 。4)復合函數的奇偶性的性質(zhì)定理:

  性質(zhì)1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。

  性質(zhì)3、復合函數y=f(x+a)為偶函數,則y=f(x)關(guān)于直線(xiàn)x=a軸對稱(chēng)。復合函數y=f(x+a)為奇函數,則y=f(x)關(guān)于點(diǎn)(a,0)中心對稱(chēng)。

  總結:x的系數一個(gè)為1,一個(gè)為-1,相加除以2,可得對稱(chēng)軸方程

  總結:x的系數一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數是為1,另一個(gè)為-1,存在對稱(chēng)中心。

  總結:x的系數同為為1,具有周期性。

 。ǘ﹥蓚(gè)函數的圖象對稱(chēng)性

  1、yf(x)與yf(x)關(guān)于X軸對稱(chēng)。

  證明:設yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對稱(chēng),∴y1f(x1)與yf(x)關(guān)于X軸對稱(chēng).注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿(mǎn)足f(x)g(x),即它們關(guān)于y0對稱(chēng)。

高中數學(xué)知識點(diǎn)總結3

  軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

  1、建立適當的坐標系,設出動(dòng)點(diǎn)M的坐標;

  2、寫(xiě)出點(diǎn)M的集合;

  3、列出方程=0;

  4、化簡(jiǎn)方程為最簡(jiǎn)形式;

  5、檢驗。

  二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

  4、參數法:當動(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的'方法叫做參數法。

  5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動(dòng)點(diǎn)軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當的坐標系;

 、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);

 、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;

 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);

 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

高中數學(xué)知識點(diǎn)總結4

  1、必修課程由5個(gè)模塊組成:

  必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上所有的知識點(diǎn)是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1—1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何。

  選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖

  系列2:3個(gè)模塊

  選修2—1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何

  選修2—2:導數及其應用、推理與證明、數系的擴充與復數

  選修2—3:計數原理、隨機變量及其分布列、統計案例

  選修4—1:幾何證明選講

  選修4—4:坐標系與參數方程

  選修4—5:不等式選講

  2、重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數,數列,三角函數,平面向量,圓錐曲線(xiàn),立體幾何,導數

  難點(diǎn):函數,圓錐曲線(xiàn)

  高考相關(guān)考點(diǎn):

  1、集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

  2、函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數函數、對數函數、函數的應用

  3、數列:數列的有關(guān)概念、等差數列、等比數列、數列求通項、求和

  4、三角函數:有關(guān)概念、同角關(guān)系與誘導公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數的圖像及其性質(zhì)、應用

  5、平面向量:初等運算、坐標運算、數量積及其應用

  6、不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現在大題的選做題里)、不等式的應用

  7、直線(xiàn)與圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的位置關(guān)系

  8、圓錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用

  9、直線(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量

  10、排列、組合和概率:排列、組合應用題、二項式定理及其應用

  11、概率與統計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  12、導數:導數的概念、求導、導數的應用

  13、復數:復數的概念與運算

  高中數學(xué)學(xué)習要注意的方法

  1、用心感受數學(xué),欣賞數學(xué),掌握數學(xué)思想。有位數學(xué)家曾說(shuō)過(guò):數學(xué)是用最小的空間集中了的理想。

  2、要重視數學(xué)概念的理解。高一數學(xué)與初中數學(xué)的區別是概念多并且較抽象,學(xué)起來(lái)“味道”同以往很不一樣,解題方法通常就來(lái)自概念本身。學(xué)習概念時(shí),僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著(zhù)的深層次的含義并掌握各種等價(jià)的表達方式。例如,為什么函數y=f(x)與y=f—1(x)的圖象關(guān)于直線(xiàn)y=x對稱(chēng),而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當f(x—1)=f(1—x)時(shí),函數y=f(x)的圖象關(guān)于y軸對稱(chēng),而y=f(x—1)與y=f(1—x)的圖象卻關(guān)于直線(xiàn)x=1對稱(chēng),不透徹理解一個(gè)圖象的對稱(chēng)性與兩個(gè)圖象的對稱(chēng)關(guān)系的區別,兩者很容易混淆。

  3、對數學(xué)學(xué)習應抱著(zhù)二個(gè)詞――“嚴謹,創(chuàng )新”,所謂嚴謹,就是在平時(shí)訓練的時(shí)候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬(wàn)不可以抱著(zhù)“好像是對的”的心態(tài),蒙混過(guò)關(guān)。至于創(chuàng )新呢,要求就高一點(diǎn)了,要求在你會(huì )解決此問(wèn)題的情況下,你還會(huì )不會(huì )用另一種更簡(jiǎn)單,更有效的方法,這就需要扎實(shí)的基本功。平時(shí),我們看到一些人,做題時(shí)從不用常規方法,總愛(ài)自己創(chuàng )造一些方法以“偏方”解題,雖然有時(shí)候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學(xué)會(huì )用常規的方法,在此基礎上你才能創(chuàng )新,你的創(chuàng )新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現。當然我們要有創(chuàng )新意識,但是,創(chuàng )新是有條件的,必須有扎實(shí)的基礎,因此我想勸一下那些基礎不牢,而平時(shí)總愛(ài)用“偏方”的同學(xué)們,該是清醒一下的時(shí)候了,千萬(wàn)不要繼續鉆那可憐的牛角尖!

  4、建立良好的學(xué)習數學(xué)習慣,習慣是經(jīng)過(guò)重復練習而鞏固下來(lái)的穩重持久的條件反射和自然需要。建立良好的學(xué)習數學(xué)習慣,會(huì )使自己學(xué)習感到有序而輕松。高中數學(xué)的良好習慣應是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應用。學(xué)生在學(xué)習數學(xué)的過(guò)程中,要把教師所傳授的知識翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養自己再學(xué)習能力。

  5、多聽(tīng)、多作、多想、多問(wèn):此“四多”乃培養數學(xué)能力的要訣,“聽(tīng)”就是在“學(xué)”,作是“練習”(作課本上的習題或其它問(wèn)題),也就是把您所學(xué)的,應用到解決問(wèn)題上!奥(tīng)”與“作”難免會(huì )碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來(lái)就要“問(wèn)”――問(wèn)同學(xué)、問(wèn)老師或參考書(shū),務(wù)必將疑難解決為止。這就是所謂的學(xué)問(wèn):既學(xué)又問(wèn)。

  6、要有毅力、要有恒心:基本上要有一個(gè)認識:數學(xué)能力乃是長(cháng)期努力累積的結果,而不是一朝一夕之功所能達到的。您可能花一天或一個(gè)晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時(shí)對答如流而獲高分,也有可能花了一兩個(gè)禮拜的時(shí)間拼命學(xué)數學(xué),但到頭來(lái)數學(xué)可能還考不好,這時(shí)候您可不能氣餒,也不必為花掉的時(shí)間惋惜。

  高中數學(xué)復習的五大要點(diǎn)分析

一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復習的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現象。主要表現為平時(shí)復習覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因為:

 。1)對復習的知識點(diǎn)缺乏系統的理解,解題時(shí)缺乏思維層次結構。第一輪復習著(zhù)重對基礎知識點(diǎn)的挖掘,數學(xué)老師一定都會(huì )反復強調基礎的重要性。如果不重視對知識點(diǎn)的系統化分析,不能構成一個(gè)整體的知識網(wǎng)絡(luò )構架,自然在解題時(shí)就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。

 。2)復習的時(shí)候心不靜。心不靜就會(huì )導致思維不清晰,而思維不清晰就會(huì )促使復習沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復習之前,先靜下心來(lái)認真想一想接下來(lái)需要復習哪一塊兒,需要做多少事情,然后認真去做,同時(shí)需要很高的注意力,只有這樣才會(huì )有很好的效果。

 。3)在第一輪復習階段,學(xué)習的重心應該轉移到基礎復習上來(lái)。

  因此,建議廣大同學(xué)在一輪復習的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認真的揣摩每個(gè)知識點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復習才能顯出成效。

  二、注重教材、注重基礎,忌盲目做題

  要把書(shū)本中的常規題型做好,所謂做好就是要用最少的時(shí)間把題目做對。部分同學(xué)在第一輪復習時(shí)對基礎題不予以足夠的重視,認為題目看上去會(huì )做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡(jiǎn)單的歸結為粗心,從而忽視了對基本概念的.掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實(shí)際成績(jì)與心理感覺(jué)的偏差。

  可見(jiàn),數學(xué)的基本概念、定義、公式,數學(xué)知識點(diǎn)的聯(lián)系,基本的數學(xué)解題思路與方法,是第一輪復習的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數部分為例,就必須掌握函數的概念,建立函數關(guān)系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱(chēng)性等性質(zhì),學(xué)會(huì )利用圖像即數形結合。

  每個(gè)同學(xué)在數學(xué)學(xué)習上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復習課上,老師只能針對性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補上才能提高。復習的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復習的效果就實(shí)現了。同時(shí),也請同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因為這并不能起到更大作用。

  高三的復習一定是有計劃、有目標的,所以千萬(wàn)不要盲目做題。第一輪復習非常具有針對性,對于所有知識點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達不到一輪復習應該具有的效果。而且盲目做題沒(méi)有針對性,更不會(huì )有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點(diǎn)運用方法的總結。

  三、在平時(shí)做題中要養成良好的解題習慣,忌不思

  1、樹(shù)立信心,養成良好的運算習慣。部分同學(xué)平時(shí)學(xué)習過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對答案,也不認真找出錯誤原因并加以改正!皶(huì )而不對”是高三數學(xué)學(xué)習的大忌,常見(jiàn)的有審題失誤、計算錯誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無(wú)窮?山Y合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢(xún)。

  2、做好解題后的開(kāi)拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開(kāi)拓引申,即一道數學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開(kāi)拓引申,引申出新題和新解法,有利于培養同學(xué)們的發(fā)散思維,激發(fā)創(chuàng )造精神,提高解題能力:

 。1)把題目條件開(kāi)拓引申。

 、侔烟厥鈼l件一般化;

 、诎岩话銞l件特殊化;

 、郯烟厥鈼l件和一般條件交替變化。

 。2)把題目結論開(kāi)拓引申。

 。3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱(chēng)為“一題多變”但其解法仍類(lèi)似,按其解法而言,這些題又可稱(chēng)為“多題一解”或“一法多用”。

  3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對常規解法的掌握是否達到高度的熟練程度。

  四、學(xué)會(huì )總結、歸納,訓練到位,忌題量不足

  我在暑期上課的時(shí)候發(fā)現,很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點(diǎn)的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時(shí)復習的知識再回顧一下,梳理知識體系,回顧各個(gè)知識點(diǎn),對所學(xué)的知識結構要有一個(gè)完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會(huì )總結歸納不留下任何知識的盲點(diǎn),在一輪復習中要注意對各個(gè)知識點(diǎn)的細化。這個(gè)過(guò)程不需要很長(cháng)的時(shí)間,而且到了后續階段會(huì )越來(lái)越熟練。因此,養成良好的做題習慣,有助于訓練自己的解題思維,提高自己的解題能力。

  實(shí)踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實(shí)的掌握知識點(diǎn),還可以更深入的了解知識點(diǎn),避免出現“會(huì )而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個(gè)直接反映,尤其是數學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會(huì )有較大的提升。有句話(huà)說(shuō)的好,“量變導致質(zhì)變”,因此,同學(xué)們在每章復習的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點(diǎn)的熟練運用。

  但是,大量訓練絕對不是題海戰術(shù)。因為針對每章節做題都有目標,同時(shí)做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話(huà)說(shuō),如果隨機抽取一些近幾年關(guān)于這一章的高考題都會(huì )做,那我認為就可以了。

  五、解析幾何

  這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。

  六、壓軸題

  同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數學(xué)直線(xiàn)方程知識點(diǎn):什么是直線(xiàn)方程

  從平面解析幾何的角度來(lái)看,平面上的直線(xiàn)就是由平面直角坐標系中的一個(gè)二元一次方程所表示的圖形。求兩條直線(xiàn)的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線(xiàn)平行;有無(wú)窮多解時(shí),兩直線(xiàn)重合;只有一解時(shí),兩直線(xiàn)相交于一點(diǎn)。常用直線(xiàn)向上方向與X軸正向的夾角(叫直線(xiàn)的傾斜角)或該角的正切(稱(chēng)直線(xiàn)的斜率)來(lái)表示平面上直線(xiàn)(對于X軸)的傾斜程度?梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線(xiàn)是否互相平行或互相垂直,也可計算它們的交角。直線(xiàn)與某個(gè)坐標軸的交點(diǎn)在該坐標軸上的坐標,稱(chēng)為直線(xiàn)在該坐標軸上的截距。直線(xiàn)在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線(xiàn)為一條直線(xiàn)。因此,在空間直角坐標系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線(xiàn)的方程。

高中數學(xué)知識點(diǎn)總結5

  平均值等于每個(gè)小長(cháng)方形面積(即概率)乘每組橫坐標的中點(diǎn),然后加和。

  平均數,首先得直方圖應該歸一化,也就是說(shuō)所有矩形的面積之和為1,然后每個(gè)矩形的面積代表其底邊中點(diǎn)橫坐標的數的頻率,那么面積乘以橫坐標就相當于頻率乘以橫坐標,得到的當然是平均數。

  頻率直方圖中是沒(méi)有樣本數據的在某一個(gè)分組里,分布在這個(gè)分組的樣本數據沒(méi)法找得出來(lái),然后也分布不均勻,所以就用這個(gè)組的中點(diǎn)的橫坐標來(lái)表示這個(gè)分組的樣本數據的平均值。

  而每一個(gè)小長(cháng)方形的.面積是表示相應的頻率,(相當于相應數據的百分比)所以平均數等于每個(gè)小長(cháng)方形的面積乘以相應的分組的底邊中點(diǎn)橫坐標的之和。

  頻率分布直方圖的運用

  頻率分布直方圖能清楚顯示各組頻數分布情況又易于顯示各組之間頻數的差別。它主要是為了將我們獲取的數據直觀(guān)、形象地表示出來(lái),讓我們能夠更好了解數據的分布情況,因此其中組距、組數起關(guān)鍵作用。

  分組過(guò)少,數據就非常集中;分組過(guò)多,數據就非常分散,這就掩蓋了分布的特征。當數據在100以?xún)葧r(shí),一般分5~12組為宜。

  從頻率分布直方圖可以估計出的幾個(gè)數據:

  眾數:頻率分布直方圖中最高矩形的底邊中點(diǎn)的橫坐標 。

  算術(shù)平均數:頻率分布直方圖每組數值的中間值乘以頻率后相加。

  加權平均數:加權平均數就是所有的頻率乘以數值后的和相加。

  中位數:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于Y軸的直線(xiàn)橫坐標。

高中數學(xué)知識點(diǎn)總結6

 。1)不等關(guān)系

  感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的'實(shí)際背景。

 。2)一元二次不等式

 、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

 、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。

 、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

 。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題

 、購膶(shí)際情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。

 、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

 。4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。

 、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。

高中數學(xué)知識點(diǎn)總結7

  高考數學(xué)導數知識點(diǎn)

 。ㄒ唬⿲档谝欢x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時(shí),相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f'(x0),即導數第一定義

 。ǘ⿲档诙x

  設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時(shí),相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f'(x0),即導數第二定義

 。ㄈ⿲Ш瘮蹬c導數

  如果函數y = f(x)在開(kāi)區間I內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間I內可導。這時(shí)函數y = f(x)對于區間I內的每一個(gè)確定的x值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數y = f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。

 。ㄋ模﹩握{性及其應用

  1。利用導數研究多項式函數單調性的一般步驟

 。1)求f¢(x)

 。2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

  2。用導數求多項式函數單調區間的一般步驟

 。1)求f¢(x)

 。2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

  高中數學(xué)重難點(diǎn)知識點(diǎn)

  高中數學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習兩本書(shū)。

  必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質(zhì)及應用(比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識較強。這部分知識高考占22———27分

  2、直線(xiàn)方程:高考時(shí)不單獨命題,易和圓錐曲線(xiàn)結合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學(xué)占到5分

  必修四:1、三角函數:(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數混合起來(lái)考查

  2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線(xiàn)結合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學(xué)占到13分左右2、數列:高考必考,17———22分3、不等式:(線(xiàn)性規劃,聽(tīng)課時(shí)易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

  高中數學(xué)知識點(diǎn)大全

  一、集合與簡(jiǎn)易邏輯

  1、集合的元素具有確定性、無(wú)序性和互異性。

  2、對集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設、推矛、得果。

  6、充要條件

  二、函數

  1、指數式、對數式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒(méi)有,也可任意個(gè));函數是“非空數集上的映射”,其中“值域是映射中像集的子集”。

 。2)函數圖像與軸垂線(xiàn)至多一個(gè)公共點(diǎn),但與軸垂線(xiàn)的公共點(diǎn)可能沒(méi)有,也可任意個(gè)。

 。3)函數圖像一定是坐標系中的曲線(xiàn),但坐標系中的曲線(xiàn)不一定能成為函數圖像。

  3、單調性和奇偶性

 。1)奇函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性完全相同。

  偶函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性恰恰相反。

 。2)復合函數的單調性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

  復合函數的奇偶性特點(diǎn)是:“內偶則偶,內奇同外”。復合函數要考慮定義域的變化。(即復合有意義)

  4、對稱(chēng)性與周期性(以下結論要消化吸收,不可強記)

 。1)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

  推廣一:如果函數對于一切,都有成立,那么的圖像關(guān)于直線(xiàn)(由“和的一半確定”)對稱(chēng)。

  推廣二:函數,的圖像關(guān)于直線(xiàn)對稱(chēng)。

 。2)函數與函數的圖像關(guān)于直線(xiàn)(軸)對稱(chēng)。

 。3)函數與函數的圖像關(guān)于坐標原點(diǎn)中心對稱(chēng)。

  三、數列

  1、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關(guān)系

  2、等差數列中

 。1)等差數列公差的取值與等差數列的單調性。

 。2)也成等差數列。

 。3)兩等差數列對應項和(差)組成的新數列仍成等差數列。

 。4)仍成等差數列。

 。5)“首正”的遞等差數列中,前項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前項和的最小值是所有非正項之和;

 。6)有限等差數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和“奇數項和=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和—偶數項和”=此數列的中項。

 。7)兩數的等差中項惟一存在。在遇到三數或四數成等差數列時(shí),?紤]選用“中項關(guān)系”轉化求解。

 。8)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說(shuō)數列是等差數列的充要條件主要有這五種形式)。

  3、等比數列中:

 。1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性。

 。2)兩等比數列對應項積(商)組成的新數列仍成等比數列。

 。3)“首大于1”的正值遞減等比數列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數列中,前項積的最小值是所有小于或等于1的項的積;

 。4)有限等比數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和“首項”加上“公比”與“偶數項和”積的和。

 。5)并非任何兩數總有等比中項。僅當實(shí)數同號時(shí),實(shí)數存在等比中項。對同號兩實(shí)數的等比中項不僅存在,而且有一對。也就是說(shuō),兩實(shí)數要么沒(méi)有等比中項(非同號時(shí)),如果有,必有一對(同號時(shí))。在遇到三數或四數成等差數列時(shí),常優(yōu)先考慮選用“中項關(guān)系”轉化求解。

 。6)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說(shuō)數列是等比數列的充要條件主要有這四種形式)。

  4、等差數列與等比數列的聯(lián)系

 。1)如果數列成等差數列,那么數列(總有意義)必成等比數列。

 。2)如果數列成等比數列,那么數列必成等差數列。

 。3)如果數列既成等差數列又成等比數列,那么數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件。

 。4)如果兩等差數列有公共項,那么由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數。

  如果一個(gè)等差數列與一個(gè)等比數列有公共項順次組成新數列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,并構成新的'數列。

  5、數列求和的常用方法:

 。1)公式法:①等差數列求和公式(三種形式),

 、诘缺葦盗星蠛凸剑ㄈN形式),

 。2)分組求和法:在直接運用公式法求和有困難時(shí),常將“和式”中“同類(lèi)項”先合并在一起,再運用公式法求和。

 。3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數列前和公式的推導方法)。

 。4)錯位相減法:如果數列的通項是由一個(gè)等差數列的通項與一個(gè)等比數列的通項相乘構成,那么常選用錯位相減法,將其和轉化為“一個(gè)新的的等比數列的和”求解(注意:一般錯位相減后,其中“新等比數列的項數是原數列的項數減一的差”。ㄟ@也是等比數列前和公式的推導方法之一)。

 。5)裂項相消法:如果數列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和

 。6)通項轉換法。

  四、三角函數

  1、終邊與終邊相同(的終邊在終邊所在射線(xiàn)上)。

  終邊與終邊共線(xiàn)(的終邊在終邊所在直線(xiàn)上)。

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于軸對稱(chēng)

  終邊與終邊關(guān)于原點(diǎn)對稱(chēng)

  一般地:終邊與終邊關(guān)于角的終邊對稱(chēng)。

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

  2、弧長(cháng)公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數符號特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數線(xiàn)的特征是:正弦線(xiàn)“站在軸上(起點(diǎn)在軸上)”、余弦線(xiàn)“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數值的大小與單位圓上相應點(diǎn)的坐標之間的關(guān)系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務(wù)必記。?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5、三角函數同角關(guān)系中,平方關(guān)系的運用中,務(wù)必重視“根據已知角的范圍和三角函數的取值,精確確定角的范圍,并進(jìn)行定號”;

  6、三角函數誘導公式的本質(zhì)是:奇變偶不變,符號看象限。

  7、三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數性質(zhì)、圖像及其變換:

 。1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性

  注意:正切函數、余切函數的定義域;絕對值對三角函數周期性的影響:一般說(shuō)來(lái),某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數y=cos|x|,,y=cos|x|是周期函數嗎?

 。2)三角函數圖像及其幾何性質(zhì):

 。3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

 。4)三角函數圖像的作法:三角函數線(xiàn)法、五點(diǎn)法(五點(diǎn)橫坐標成等差數列)和變換法。

  9、三角形中的三角函數:

 。1)內角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補,任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

 。2)正弦定理:(R為三角形外接圓的半徑)。

 。3)余弦定理:常選用余弦定理鑒定三角形的類(lèi)型。

  五、向量

  1、向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點(diǎn)、終點(diǎn)及其坐標的特征。

  2、幾個(gè)概念:零向量、單位向量(與共線(xiàn)的單位向量是,平行(共線(xiàn))向量(無(wú)傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線(xiàn))的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對該平面內的任一向量a,有且只有一對實(shí)數,使a= e1+ e2。

  5、三點(diǎn)共線(xiàn);

  6、向量的數量積:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對應方程的根或不等式有意義范圍的端點(diǎn)值。

 。2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數變?yōu)檎,標根及奇穿過(guò)偶彈回);

 。3)含有兩個(gè)絕對值的不等式如何去絕對值?(一般是根據定義分類(lèi)討論、平方轉化或換元轉化);

 。4)解含參不等式常分類(lèi)等價(jià)轉化,必要時(shí)需分類(lèi)討論。注意:按參數討論,最后按參數取值分別說(shuō)明其解集,但若按未知數討論,最后應求并集。

  2、利用重要不等式以及變式等求函數的最值時(shí),務(wù)必注意a,b(或a,b非負),且“等號成立”時(shí)的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時(shí))。

  3、常用不等式有:(根據目標不等式左右的運算結構選用)

  a、b、c R,(當且僅當時(shí),取等號)

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質(zhì)法、綜合法、分析法

  5、含絕對值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問(wèn)題

 。1)恒成立問(wèn)題

  若不等式在區間上恒成立,則等價(jià)于在區間上

  若不等式在區間上恒成立,則等價(jià)于在區間上

 。2)能成立問(wèn)題

 。3)恰成立問(wèn)題

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為。

  若不等式在區間上恰成立,則等價(jià)于不等式的解集為,

  七、直線(xiàn)和圓

  1、直線(xiàn)傾斜角與斜率的存在性及其取值范圍;直線(xiàn)方向向量的意義(或)及其直線(xiàn)方程的向量式((為直線(xiàn)的方向向量))。應用直線(xiàn)方程的點(diǎn)斜式、斜截式設直線(xiàn)方程時(shí),一般可設直線(xiàn)的斜率為k,但你是否注意到直線(xiàn)垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線(xiàn)縱截距,常設其方程為或;知直線(xiàn)橫截距,常設其方程為(直線(xiàn)斜率k存在時(shí),為k的倒數)或知直線(xiàn)過(guò)點(diǎn),常設其方程為。

 。2)直線(xiàn)在坐標軸上的截距可正、可負、也可為0。直線(xiàn)兩截距相等直線(xiàn)的斜率為—1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距互為相反數直線(xiàn)的斜率為1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距絕對值相等直線(xiàn)的斜率為或直線(xiàn)過(guò)原點(diǎn)。

 。3)在解析幾何中,研究?jì)蓷l直線(xiàn)的位置關(guān)系時(shí),有可能這兩條直線(xiàn)重合,而在立體幾何中一般提到的兩條直線(xiàn)可以理解為它們不重合。

  3、相交兩直線(xiàn)的夾角和兩直線(xiàn)間的到角是兩個(gè)不同的概念:夾角特指相交兩直線(xiàn)所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線(xiàn)性規劃中幾個(gè)概念:約束條件、可行解、可行域、目標函數、最優(yōu)解。

  5、圓的方程:最簡(jiǎn)方程;標準方程;

  6、解決直線(xiàn)與圓的關(guān)系問(wèn)題有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(cháng)、弦心距構成直角三角形,切線(xiàn)長(cháng)定理、割線(xiàn)定理、弦切角定理等等)的作用!”

 。1)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  如果點(diǎn)在圓外,那么上述直線(xiàn)方程表示過(guò)點(diǎn)兩切線(xiàn)上兩切點(diǎn)的“切點(diǎn)弦”方程。

  如果點(diǎn)在圓內,那么上述直線(xiàn)方程表示與圓相離且垂直于(為圓心)的直線(xiàn)方程,(為圓心到直線(xiàn)的距離)。

  7、曲線(xiàn)與的交點(diǎn)坐標方程組的解;

  過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當且僅當無(wú)平方項時(shí),為兩圓公共弦所在直線(xiàn)方程。

  八、圓錐曲線(xiàn)

  1、圓錐曲線(xiàn)的兩個(gè)定義,及其“括號”內的限制條件,在圓錐曲線(xiàn)問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線(xiàn)第一定義;如果涉及到其焦點(diǎn)、準線(xiàn)(一定點(diǎn)和不過(guò)該點(diǎn)的一定直線(xiàn))或離心率,那么將優(yōu)先選用圓錐曲線(xiàn)第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應用。

 。1)注意:①圓錐曲線(xiàn)第一定義與配方法的綜合運用;

 、趫A錐曲線(xiàn)第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線(xiàn)距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是小于1的正數,雙曲線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是大于1的正數,拋物線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是等于1。

  2、圓錐曲線(xiàn)的幾何性質(zhì):圓錐曲線(xiàn)的對稱(chēng)性、圓錐曲線(xiàn)的范圍、圓錐曲線(xiàn)的特殊點(diǎn)線(xiàn)、圓錐曲線(xiàn)的變化趨勢。其中,橢圓中、雙曲線(xiàn)中。

  重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準線(xiàn)等相互之間與坐標系無(wú)關(guān)的幾何性質(zhì)’”,尤其是雙曲線(xiàn)中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

  3、在直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,有“函數方程思想”和“數形結合思想”兩種思路,等價(jià)轉化求解。特別是:

 、僦本(xiàn)與圓錐曲線(xiàn)相交的必要條件是他們構成的方程組有實(shí)數解,當出現一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應用韋達定理解決問(wèn)題時(shí),必須先有“判別式≥0”。

 、谥本(xiàn)與拋物線(xiàn)(相交不一定交于兩點(diǎn))、雙曲線(xiàn)位置關(guān)系(相交的四種情況)的特殊性,應謹慎處理。

 、墼谥本(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,常與“弦”相關(guān),“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達定理”或“小小直角三角形”或“點(diǎn)差法”、“長(cháng)度(弦長(cháng))”問(wèn)題關(guān)鍵是長(cháng)度(弦長(cháng))公式

 、苋绻谝粭l直線(xiàn)上出現“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應用“斜率”為橋梁轉化。

  4、要重視常見(jiàn)的尋求曲線(xiàn)方程的方法(待定系數法、定義法、直譯法、代點(diǎn)法、參數法、交軌法、向量法等),以及如何利用曲線(xiàn)的方程討論曲線(xiàn)的幾何性質(zhì)(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類(lèi)討論思想和等價(jià)轉化思想等),這是解析幾何的兩類(lèi)基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)。

  注意:①如果問(wèn)題中涉及到平面向量知識,那么應從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉化,還是選擇向量的代數形式進(jìn)行“摘帽子或脫靴子”轉化。

 、谇(xiàn)與曲線(xiàn)方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應注意軌跡上特殊點(diǎn)對軌跡的“完備性與純粹性”的影響。

 、墼谂c圓錐曲線(xiàn)相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數形結合(如角平分線(xiàn)的雙重身份)、“方程與函數性質(zhì)”化解析幾何問(wèn)題為代數問(wèn)題、“分類(lèi)討論思想”化整為零分化處理、“求值構造等式、求變量范圍構造不等關(guān)系”等等。

  九、直線(xiàn)、平面、簡(jiǎn)單多面體

  1、計算異面直線(xiàn)所成角的關(guān)鍵是平移(補形)轉化為兩直線(xiàn)的夾角計算

  2、計算直線(xiàn)與平面所成的角關(guān)鍵是作面的垂線(xiàn)找射影,或向量法(直線(xiàn)上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點(diǎn)到直線(xiàn)的距離,后虛擬直角三角形求解。注:一斜線(xiàn)與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線(xiàn)在平面上射影為角的平分線(xiàn)。

  3、空間平行垂直關(guān)系的證明,主要依據相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線(xiàn)面平行關(guān)系、線(xiàn)面垂直關(guān)系(三垂線(xiàn)定理及其逆定理)的橋梁作用。注意:書(shū)寫(xiě)證明過(guò)程需規范。

  4、直棱柱、正棱柱、平行六面體、長(cháng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側棱、側面、對角面、平行于底的截面的幾何體性質(zhì)。

  如長(cháng)方體中:對角線(xiàn)長(cháng),棱長(cháng)總和為,全(表)面積為,(結合可得關(guān)于他們的等量關(guān)系,結合基本不等式還可建立關(guān)于他們的不等關(guān)系式),

  如三棱錐中:側棱長(cháng)相等(側棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(cháng)相等(側面與底面所成相等)且頂點(diǎn)在底上在底面內頂點(diǎn)在底上射影為底面內心。

  5、求幾何體體積的常規方法是:公式法、割補法、等積(轉換)法、比例(性質(zhì)轉換)法等。注意:補形:三棱錐三棱柱平行六面體

  6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個(gè)面都是相同邊數的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數。

  十、導數

  1、導數的意義:曲線(xiàn)在該點(diǎn)處的切線(xiàn)的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數的導數,C為常數)

  2、多項式函數的導數與函數的單調性

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為增函數。

  在一個(gè)區間上(個(gè)別點(diǎn)取等號)在此區間上為減函數。

  3、導數與極值、導數與最值:

 。1)函數處有且“左正右負”在處取極大值;

  函數在處有且左負右正”在處取極小值。

  注意:①在處有是函數在處取極值的必要非充分條件。

 、谇蠛瘮禈O值的方法:先找定義域,再求導,找出定義域的分界點(diǎn),列表求出極值。特別是給出函數極大(。┲档臈l件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記。

 、蹎握{性與最值(極值)的研究要注意列表!

 。2)函數在一閉區間上的最大值是此函數在此區間上的極大值與其端點(diǎn)值中的“最大值”

  函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點(diǎn)值中的“最小值”;

  注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導數為0的點(diǎn)對應函數值的大小,其中最大的就是最大值,最小就為最小。

高中數學(xué)知識點(diǎn)總結8

  函數與導數。主要考查集合運算、函數的有關(guān)概念定義域、值域、解析式、函數的極限、連續、導數。

  平面向量與三角函數、三角變換及其應用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎題或中檔題。

  數列及其應用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。

  概率和統計。這部分和我們的生活聯(lián)系比較大,屬應用題。

  空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

  解析幾何。高考的難點(diǎn),運算量大,一般含參數。

  高考對數學(xué)基礎知識的考查,既全面又突出重點(diǎn),扎實(shí)的數學(xué)基礎是成功解題的關(guān)鍵。

  掌握分類(lèi)計數原理與分步計數原理,并能用它們分析和解決一些簡(jiǎn)單的應用問(wèn)題。

  理解排列的意義,掌握排列數計算公式,并能用它解決一些簡(jiǎn)單的.應用問(wèn)題。

  理解組合的意義,掌握組合數計算公式和組合數的性質(zhì),并能用它們解決一些簡(jiǎn)單的應用問(wèn)題。

  掌握二項式定理和二項展開(kāi)式的性質(zhì),并能用它們計算和證明一些簡(jiǎn)單的問(wèn)題。

  了解隨機事件的發(fā)生存在著(zhù)規律性和隨機事件概率的意義。

  了解等可能性事件的概率的意義,會(huì )用排列組合的基本公式計算一些等可能性事件的概率。

  了解互斥事件、相互獨立事件的意義,會(huì )用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

  會(huì )計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率。

高中數學(xué)知識點(diǎn)總結9

  1.求函數的單調性

  利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.

  利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.

  反過(guò)來(lái),也可以利用導數由函數的單調性解決相關(guān)問(wèn)題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

 。1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

 。2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

 。3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.

  2.求函數的極值:

  設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱(chēng)f(x0)是函數f(x)的極小值(或極大值).

  可導函數的極值,可通過(guò)研究函數的單調性求得,基本步驟是:

 。1)確定函數f(x)的`定義域;(2)求導數f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

 。4)檢查f(x)的符號并由表格判斷極值.

  3.求函數的值與最小值:

  如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱(chēng)f(x0)為函數在定義域上的值.函數在定義域內的極值不一定,但在定義域內的最值是的

  求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

 。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值.

  4.解決不等式的有關(guān)問(wèn)題:

 。1)不等式恒成立問(wèn)題(絕對不等式問(wèn)題)可考慮值域.

  f(x)(xA)的值域是[a,b]時(shí),

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時(shí),

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

 。2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0.

  5.導數在實(shí)際生活中的應用:

  實(shí)際生活求解(。┲祮(wèn)題,通常都可轉化為函數的最值.在利用導數來(lái)求函數最值時(shí),一定要注意,極值點(diǎn)的單峰函數,極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明.

高中數學(xué)知識點(diǎn)總結10

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(cháng)稱(chēng)為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫

  做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內切圓,其圓心稱(chēng)為內心。

  5.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線(xiàn)。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長(cháng)/圓錐母線(xiàn)—l 周長(cháng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO

  2.圓是軸對稱(chēng)圖形,其對稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn)。圓也是中心對稱(chēng)圖形,其對稱(chēng)中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線(xiàn)上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內切圓的圓心是三角形各內角平分線(xiàn)的交點(diǎn),到三角形3邊距離相等。

  9.直線(xiàn)AB與圓O的位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線(xiàn)垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。

  11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長(cháng)C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長(cháng)l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開(kāi),移項,合并同類(lèi)項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

  五、圓與直線(xiàn)的位置關(guān)系判斷

  平面內,直線(xiàn)Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線(xiàn)的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交

  如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切

  如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離

 。2)如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時(shí)的'兩個(gè)x值x1,x2,并且我們規定x1

  當x=-C/Ax2時(shí),直線(xiàn)與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時(shí),直線(xiàn)與圓相切

  圓的定理:

  1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11.定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角

  12.①直線(xiàn)L和⊙O相交 d

 、谥本(xiàn)L和⊙O相切 d=r

 、壑本(xiàn)L和⊙O相離 d>r

  13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內切 d=R-r(R>r) ⑤兩圓內含dr)

  21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 。2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)

  27.正三角形面積√3a/4 a表示邊長(cháng)

  28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長(cháng)計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

高中數學(xué)知識點(diǎn)總結11

  1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等?4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內錯角相等,兩直線(xiàn)平行11同旁?xún)冉腔パa,兩直線(xiàn)平行12兩直線(xiàn)平行,同位角相等13兩直線(xiàn)平行,內錯角相等14兩直線(xiàn)平行,同旁?xún)冉腔パa

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°

  50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形

  78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的`直線(xiàn),必平分另一腰

  80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??

  84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r

  122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公*弦137定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142正三角形面積√3a/4a表示邊長(cháng)

  143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(cháng)撲愎劍=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)(還有一些,大家幫補充吧)實(shí)用工具:常用數學(xué)公式公式分類(lèi)公式表達式

  乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac拋物線(xiàn)標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側面積S=c*h斜棱柱側面積S=c"*h

  正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

  弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=s*h圓柱體V=pi*r2h

高中數學(xué)知識點(diǎn)總結12

  空間中的垂直問(wèn)題

 。1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

 、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

 、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的'圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

 、倬(xiàn)面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

 。1)側棱交于一點(diǎn)。側面都是三角形

 。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

 。1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

 。2)多個(gè)特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

高中數學(xué)知識點(diǎn)總結13

  導數的應用

  1.用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。

  2.生活中常見(jiàn)的函數優(yōu)化問(wèn)題

  1)費用、成本最省問(wèn)題

  2)利潤、收益問(wèn)題

  3)面積、體積最(大)問(wèn)題

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。

  3.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

  (2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。

  (3)以那些有明顯分層區分的變量作為分層變量。

  函數的奇偶性

  1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數).

  正確理解奇函數和偶函數的.定義,要注意兩點(diǎn):(1)定義域在數軸上關(guān)于原點(diǎn)對稱(chēng)是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數定義域上的整體性質(zhì)).

  2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時(shí)需要將函數化簡(jiǎn)或應用定義的等價(jià)形式:

  注意如下結論的運用:

  (1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類(lèi)似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數的復合函數的奇偶性通常是偶函數;

  (4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

  3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結論

  (1)一個(gè)函數為奇函數的充要條件是它的圖象關(guān)于原點(diǎn)對稱(chēng);一個(gè)函數為偶函數的充要條件是它的圖象關(guān)于y軸對稱(chēng).

  (2)如要函數的定義域關(guān)于原點(diǎn)對稱(chēng)且函數值恒為零,那么它既是奇函數又是偶函數.

  (3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱(chēng)區間上的單調性是相同(反)的。

  (5)若f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.

  (6)奇偶性的推廣

  函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線(xiàn)x=a對稱(chēng),即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對稱(chēng)圖形,即y=f(a+x)為奇函數.

  二項式定理

 、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

 、谥饕再|(zhì)和主要結論:對稱(chēng)性Cnm=Cnn-m

  二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

  所有二項式系數的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數項二項式系數的和=偶數項而是系數的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

 、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關(guān)問(wèn)題。

高中數學(xué)知識點(diǎn)總結14

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數量:只有大小,沒(méi)有方向的量.

  (3)有向線(xiàn)段的三要素:起點(diǎn)、方向、長(cháng)度.

  (4)零向量:長(cháng)度為0的向量.

  (5)單位向量:長(cháng)度等于1個(gè)單位的向量.

  (6)平行向量(共線(xiàn)向量):方向相同或相反的'非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長(cháng)度相等且方向相同的向量.

  2.向量加法運算:

 、湃切畏▌t的特點(diǎn):首尾相連.

 、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)

高中數學(xué)知識點(diǎn)總結15

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

  2、集合的中元素的三個(gè)特性:

  1)元素的確定性;

  2)元素的互異性;

  3)元素的無(wú)序性。

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

 。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

 。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

  2)集合的表示方法:列舉法與描述法。

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集N_或N+整數集Z有理數集Q實(shí)數集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。

  描述法:將集合中的'元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類(lèi):

  1)有限集含有有限個(gè)元素的集合。

  2)無(wú)限集含有無(wú)限個(gè)元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合間的基本關(guān)系

  1、“包含”關(guān)系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

  2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2—1=0}B={—11}“元素相同”

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B。

 、偃魏我粋(gè)集合是它本身的子集。AA

 、谡孀蛹喝绻鸄?B且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄BBC那么AC

 、苋绻鸄B同時(shí)BA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ。

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1、交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合叫做AB的交集。

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集與補集

 。1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}。

 。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

【高中數學(xué)知識點(diǎn)總結】相關(guān)文章:

高中數學(xué)知識點(diǎn)總結05-15

高中數學(xué)導數知識點(diǎn)總結02-11

高中數學(xué)幾何知識點(diǎn)總結05-25

高中數學(xué)知識點(diǎn)的總結12-19

高中數學(xué)知識點(diǎn)總結09-22

高中數學(xué)知識點(diǎn)的總結03-13

高中數學(xué)全部知識點(diǎn)總結02-20

高中數學(xué)基本的知識點(diǎn)總結09-28

高中數學(xué)知識點(diǎn)總結(實(shí)用)05-15

高中數學(xué)知識點(diǎn)總結[集合]05-18