初中數學(xué)的知識點(diǎn)總結大全
上學(xué)的時(shí)候,說(shuō)起知識點(diǎn),應該沒(méi)有人不熟悉吧?知識點(diǎn)是知識中的最小單位,最具體的內容,有時(shí)候也叫“考點(diǎn)”。哪些才是我們真正需要的知識點(diǎn)呢?以下是小編收集整理的初中數學(xué)的知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
關(guān)于角的知識點(diǎn)
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線(xiàn)繞其端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線(xiàn),那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補、互余是指兩個(gè)角的數量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規和直尺)。
五、角平分線(xiàn):
從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn)。把這個(gè)角分成相等的兩部分,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;
(2)角的計算與度量。
誤區提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉角的度數是( )
【答案】3時(shí)到6時(shí),時(shí)針旋轉的是一個(gè)周角的1/4,故是90度,本題選C.
角的知識點(diǎn)
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數記憶順口溜
1三角函數記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱(chēng)的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內任何一個(gè)角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱(chēng)?谠E中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對應的三角函數為正值。
3三角函數順口溜
三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數字一,連結頂點(diǎn)三角形。向下三角平方和,倒數關(guān)系是對角,
頂點(diǎn)任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,
變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來(lái)函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著(zhù)簡(jiǎn)易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實(shí)質(zhì)就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀(guān)好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。
知識點(diǎn)總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等;
。2)平行四邊形的鄰角互補,對角相等;
。3)平行四邊形的對角線(xiàn)互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
第一類(lèi):與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類(lèi):與四邊形的對角有關(guān)
。1)兩組對角分別相等的四邊形是平行四邊形;
第三類(lèi):與四邊形的對角線(xiàn)有關(guān)
。1)對角線(xiàn)互相平分的四邊形是平行四邊形
常見(jiàn)考法
。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);
。2)求平行四邊形某邊的取值范圍;
。3)考查一些綜合計算問(wèn)題;
。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一:設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二:設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三:任意角與-的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四:利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
知識要點(diǎn):梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半。
1.中位線(xiàn)概念
(1)三角形中位線(xiàn)定義:連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn)。
(2)梯形中位線(xiàn)定義:連結梯形兩腰中點(diǎn)的線(xiàn)段叫做梯形的中位線(xiàn)。
注意:
(1)要把三角形的中位線(xiàn)與三角形的中線(xiàn)區分開(kāi)。三角形中線(xiàn)是連結一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線(xiàn)是連結三角形兩邊中點(diǎn)的線(xiàn)段。
(2)梯形的中位線(xiàn)是連結兩腰中點(diǎn)的線(xiàn)段而不是連結兩底中點(diǎn)的線(xiàn)段。
(3)兩個(gè)中位線(xiàn)定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線(xiàn)就變成三角形的中位線(xiàn)。
2.中位線(xiàn)定理
(1)三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊并且等于它的一半.
三角形兩邊中點(diǎn)的連線(xiàn)(中位線(xiàn))平行于第BC邊,且等于第三邊的一半。
知識要領(lǐng)總結:三角形的中位線(xiàn)所構成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。
初中數學(xué)知識點(diǎn)總結:平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:
、僭谕黄矫
、趦蓷l數軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
一次函數:知識點(diǎn)
主要考察內容:
、贂(huì )畫(huà)一次函數的圖像,并掌握其性質(zhì)。
、跁(huì )根據已知條件,利用待定系數法確定一次函數的解析式。
、勰苡靡淮魏瘮到鉀Q實(shí)際問(wèn)題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
、僬_理解掌握一次函數的概念,圖像和性質(zhì)。
、谶\用數學(xué)結合的思想解與一次函數圖像有關(guān)的問(wèn)題。
、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。
、茏鲆恍┚C合題的訓練,提高分析問(wèn)題的能力。
函數性質(zhì):
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時(shí),b為函數在y軸上的點(diǎn),坐標為(0,b)。
3當b=0時(shí)(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個(gè)一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時(shí),兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時(shí),兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時(shí),兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時(shí),兩一次函數圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱(chēng)y是x的一次函數圖像性質(zhì)
1、作法與圖形:通過(guò)如下3個(gè)步驟:
。1)列表.
。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線(xiàn)即可。
正比例函數y=kx(k≠0)的圖象是過(guò)坐標原點(diǎn)的一條直線(xiàn),一般。0,0)和(1,k)兩點(diǎn)。(3)連線(xiàn),可以作出一次函數的圖象一條直線(xiàn)。因此,作一次函數的圖象只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
2、性質(zhì):
。1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。
。2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過(guò)原點(diǎn)。
3、函數不是數,它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
4、k,b與函數圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當k>0時(shí),直線(xiàn)必通過(guò)第一、三象限,y隨x的增大而增大;當k0,b>0,這時(shí)此函數的圖象經(jīng)過(guò)第一、二、三象限;當k>0,b
圓的知識點(diǎn)
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12、①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含dr)
初中圓的知識點(diǎn)
1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
21、①直線(xiàn)L和⊙O相交dr
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離dr
22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
35、①兩圓外離dR+r
、趦蓤A外切d=R+r
、蹆蓤A相交R—rdR+r(Rr)
、軆蓤A內切d=R—r(Rr)
、輧蓤A內含dR—r(Rr)
36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
39、正n邊形的每個(gè)內角都等于(n—2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
42、正三角形面積√3a/4a表示邊長(cháng)
43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(cháng)計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)
初中一元一次方程的知識點(diǎn)
1.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類(lèi)項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
。1)讀題分析法:多用于“和,差,倍,分問(wèn)題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關(guān)系填入代數式,得到方程。
。2)畫(huà)圖分析法:多用于“行程問(wèn)題”
利用圖形分析數學(xué)問(wèn)題是數形結合思想在數學(xué)中的體現,仔細讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據,最后利用量與量之間的關(guān)系(可把未知數看做已知量),填入有關(guān)的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
。1)行程問(wèn)題:距離=速度·時(shí)間;
。2)工程問(wèn)題:工作量=工效·工時(shí);
。3)比率問(wèn)題:部分=全體·比率;
。4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
。5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;
。6)周長(cháng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(cháng)方形=2(a+b),S長(cháng)方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2—r2),V長(cháng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學(xué)的核心,也是所有代數方程的基礎。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè )很容易激起學(xué)生對數學(xué)的樂(lè )趣,所以要注意引導學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習、探究學(xué)習的過(guò)程中獲得知識,提升能力,體會(huì )數學(xué)思想方法。
初中圖形的知識點(diǎn)
第一章 豐富的圖形世界
1、幾何圖形
從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。
2、點(diǎn)、線(xiàn)、面、體
(1)幾何圖形的組成
點(diǎn):線(xiàn)和線(xiàn)相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。
線(xiàn):面和面相交的地方是線(xiàn),分為直線(xiàn)和曲線(xiàn)。
面:包圍著(zhù)體的是面,分為平面和曲面。
體:幾何體也簡(jiǎn)稱(chēng)體。
(2)點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長(cháng)方體、正方體)、五棱柱、……
正有理數 整數
有理數 零 有理數
負有理數 分數
2、相反數:只有符號不同的兩個(gè)數叫做互為相反數,零的相反數是零
3、數軸:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸(畫(huà)數軸時(shí),三要素缺一不可)。任何一個(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒(méi)有倒數。
5、絕對值:在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0;橄喾磾档膬蓚(gè)數的絕對值相等。
6、有理數比較大。赫龜荡笥0,負數小于0,正數大于負數;數軸上的兩個(gè)點(diǎn)所表示的數,右邊的總比左邊的大;兩個(gè)負數,絕對值大的反而小。
7、有理數的運算:
(1)五種運算:加、減、乘、除、乘方
多個(gè)數相乘,積的符號由負因數的個(gè)數決定,當負因數有奇數個(gè)時(shí),積的符號為負;當負因數有偶數個(gè)時(shí),積的符號為正。只要有一個(gè)數為零,積就為零。
有理數加法法則:
同號兩數相加,取相同的符號,并把絕對值相加。
異號兩數相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
一個(gè)數同0相加,仍得這個(gè)數。
互為相反數的兩個(gè)數相加和為0。
有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數!
有理數乘法法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數與0相乘,積仍為0。
有理數除法法則:
兩個(gè)有理數相除,同號得正,異號得負,并把絕對值相除。
0除以任何非0的數都得0。
注意:0不能作除數。
有理數的乘方:求n個(gè)相同因數a的積的運算叫做乘方。
正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)有理數的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
(3)運算律
加法交換律 加法結合律
乘法交換律 乘法結合律
乘法對加法的分配律
8、科學(xué)記數法
一般地,一個(gè)大于10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學(xué)記數法。(n=整數位數-1)
第三章 整式及其加減
1、代數式
用運算符號(加、減、乘、除、乘方、開(kāi)方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個(gè)數或一個(gè)字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括號;
、诖鷶凳街胁缓小=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
、鄞鷶凳街械淖帜杆硎镜臄当仨氁惯@個(gè)代數式有意義,是實(shí)際問(wèn)題的要符合實(shí)際問(wèn)題的意義。
※代數式的書(shū)寫(xiě)格式:
、俅鷶凳街谐霈F乘號,通常省略不寫(xiě),如vt;
、跀底峙c字母相乘時(shí),數字應寫(xiě)在字母前面,如4a;
、蹘Х謹蹬c字母相乘時(shí),應先把帶分數化成假分數,如應寫(xiě)作;
、軘底峙c數字相乘,一般仍用“×”號,即“×”號不省略;
、菰诖鷶凳街谐霈F除法運算時(shí),一般寫(xiě)成分數的形式,如4÷(a-4)應寫(xiě)作;注意:分數線(xiàn)具有“÷”號和括號的雙重作用。
、拊诒硎竞(或)差的代數式后有單位名稱(chēng)的,則必須把代數式括起來(lái),再將單位名稱(chēng)寫(xiě)在式子的后面,如平方米。
2、整式:?jiǎn)雾検胶投囗検浇y稱(chēng)為整式。
、賳雾検剑憾际菙底趾妥帜赋朔e的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個(gè)單項式的次數;數字因數叫做這個(gè)單項式的系數。
、诙囗検剑簬讉(gè)單項式的和叫做多項式。多項式中,每個(gè)單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。
3、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項叫做同類(lèi)項。
注意:
、偻(lèi)項有兩個(gè)條件:a.所含字母相同;b.相同字母的指數也相同。
、谕(lèi)項與系數無(wú)關(guān),與字母的排列順序無(wú)關(guān);
、蹘讉(gè)常數項也是同類(lèi)項。
4、合并同類(lèi)項法則:把同類(lèi)項的系數相加,字母和字母的指數不變。
5、去括號法則
、俑鶕ダㄌ柗▌t去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。
、诟鶕峙渎扇ダㄌ枺
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類(lèi)項。
第四章 基本平面圖形
2、直線(xiàn)的性質(zhì)
(1)直線(xiàn)公理:經(jīng)過(guò)兩個(gè)點(diǎn)有且只有一條直線(xiàn)。(兩點(diǎn)確定一條直線(xiàn)。)
(2)過(guò)一點(diǎn)的直線(xiàn)有無(wú)數條。
(3)直線(xiàn)是是向兩方面無(wú)限延伸的,無(wú)端點(diǎn),不可度量,不能比較大小。
3、線(xiàn)段的性質(zhì)
(1)線(xiàn)段公理:兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。(兩點(diǎn)之間線(xiàn)段最短。)
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
(3)線(xiàn)段的大小關(guān)系和它們的長(cháng)度的大小關(guān)系是一致的。
4、線(xiàn)段的中點(diǎn):
點(diǎn)M把線(xiàn)段AB分成相等的兩條相等的線(xiàn)段AM與BM,點(diǎn)M叫做線(xiàn)段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角,兩條射線(xiàn)的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線(xiàn)叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉而成的。
6、角的表示
角的表示方法有以下四種:
、儆脭底直硎締为毜慕,如∠1,∠2,∠3等。
、谟眯(xiě)的希臘字母表示單獨的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋(gè)大寫(xiě)英文字母表示一個(gè)獨立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。
、苡萌齻(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。
注意:用三個(gè)大寫(xiě)字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側。
7、角的度量
角的度量有如下規定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線(xiàn)
從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
9、角的性質(zhì)
(1)角的大小與邊的長(cháng)短無(wú)關(guān),只與構成角的兩條射線(xiàn)的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時(shí),所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線(xiàn)上的線(xiàn)段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線(xiàn)段叫做多邊形的對角線(xiàn)。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(huà)(n-3)條對角線(xiàn),把這個(gè)n邊形分割成(n-2)個(gè)三角形。
12、圓:平面上,一條線(xiàn)段繞著(zhù)一個(gè)端點(diǎn)旋轉一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱(chēng)為圓心,線(xiàn)段OA的長(cháng)稱(chēng)為半徑的長(cháng)(通常簡(jiǎn)稱(chēng)為半徑)。
圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質(zhì)
(1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數式,所得結果仍是等式。
(2)等式的兩邊同時(shí)乘以同一個(gè)數((或除以同一個(gè)不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個(gè)未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母
(2)去括號
(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)
(4)合并同類(lèi)項
(5)將未知數的系數化為1
第六章 數據的收集與整理
1、普查與抽樣調查
為了特定目的對全部考察對象進(jìn)行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個(gè)被考察對象稱(chēng)為個(gè)體。
從總體中抽取部分個(gè)體進(jìn)行調查,這種調查稱(chēng)為抽樣調查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。
2、扇形統計圖
扇形統計圖:利用圓與扇形來(lái)表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個(gè)扇形所占的百分比之和為1)
圓心角度數=360°×該項所占的百分比。(各個(gè)部分的圓心角度數之和為360°)
3、頻數直方圖
頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進(jìn)行了分組畫(huà)在橫軸上,縱軸表示各組數據的頻數。
4、各種統計圖的特點(diǎn)
條形統計圖:能清楚地表示出每個(gè)項目的具體數目。
折線(xiàn)統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。
四邊形的知識點(diǎn)
一、特殊的平行四邊形:
1.矩形:
。1)定義:有一個(gè)角是直角的平行四邊形。
。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線(xiàn)平分且相等。
。3)判定定理:
、儆幸粋(gè)角是直角的平行四邊形叫做矩形。
、趯蔷(xiàn)相等的平行四邊形是矩形。
、塾腥齻(gè)角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
。1)定義:鄰邊相等的平行四邊形。
。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。
。3)判定定理:
、僖唤M鄰邊相等的平行四邊形是菱形。
、趯蔷(xiàn)互相垂直的平行四邊形是菱形。
、鬯臈l邊相等的四邊形是菱形。
。4)面積:
3.正方形:
。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線(xiàn)互相垂直平分。正方形既是矩形,又是菱形。
。3)正方形判定定理:
、賹蔷(xiàn)互相垂直平分且相等的四邊形是正方形;
、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;
、蹖蔷(xiàn)互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋(gè)角是直角的菱形是正方形;
、迣蔷(xiàn)相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎上擴充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線(xiàn)方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線(xiàn)方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線(xiàn)方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據出發(fā)點(diǎn)不同而分成兩類(lèi):一類(lèi)是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類(lèi)是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。
三、判定一個(gè)四邊形是特殊四邊形的步驟:
常見(jiàn)考法
。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;
。2)靈活運用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;
。3)一些折疊問(wèn)題;
。4)矩形與直角三角形和等腰三角形有著(zhù)密切聯(lián)系、正方形與等腰直角三角形也有著(zhù)密切聯(lián)系。所以,以此為背景可以設置許多考題。
誤區提醒
。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現混淆;
。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現混淆;
。3)不能正確的理解和運用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
。4)再利用對角線(xiàn)長(cháng)度求菱形的面積時(shí),忘記乘;
。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。
有兩條邊相等的三角形叫等腰三角形
相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。
等腰三角形性質(zhì)
(1)具有一般三角形的邊角關(guān)系
(2)等邊對等角;
(3)底邊上的高、底邊上的中線(xiàn)、頂角平分線(xiàn)互相重合;
(4)是軸對稱(chēng)圖形,對稱(chēng)軸是頂角平分線(xiàn);
(5)底邊小于腰長(cháng)的兩倍并且大于零,腰長(cháng)大于底邊的一半;
(6)頂角等于180減去底角的兩倍;
(7)頂角可以是銳角、直角、鈍角而底角只能是銳角
等腰三角形分類(lèi):可分為腰和底邊不等的等腰三角形及等邊三角形
等邊三角形性質(zhì)
、倬邆涞妊切蔚囊磺行再|(zhì)。
、诘冗吶切稳龡l邊都相等,三個(gè)內角都相等并且每個(gè)都是60。
等腰三角形的判定
、倮枚x;②等角對等邊;
等邊三角形的判定
、倮枚x:三邊相等的三角形是等邊三角形
、谟幸粋(gè)角是60的等腰三角形是等邊三角形.
含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對的直角邊等于斜邊的一半。
三角形邊角的不等關(guān)系;長(cháng)邊對大角,短邊對小角;大角對長(cháng)邊,小角對短邊。
初中數學(xué)關(guān)于重心的知識點(diǎn)
1、重心的定義:
平面圖形中,幾何圖形的重心是當支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
、啪(xiàn)段的重心就是線(xiàn)段的中點(diǎn);
、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線(xiàn)的交點(diǎn);
、侨切蔚娜龡l中線(xiàn)交于一點(diǎn),這一點(diǎn)就是三角形的重心;
、热我舛噙呅味加兄匦,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線(xiàn)的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);
、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見(jiàn)圖形重心的性質(zhì):
、啪(xiàn)段的重心把線(xiàn)段分為兩等份;
、破叫兴倪呅蔚闹匦陌褜蔷(xiàn)分為兩等份;
、侨切蔚闹匦陌阎芯(xiàn)分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。
上面對重心知識點(diǎn)的鞏固學(xué)習,同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復習學(xué)習數學(xué)知識。
、僦本(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。
、谥本(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與⊙O相交,d
、壑本(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線(xiàn)的距離)
平面內,直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。
2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規定x1
當x=-C/Ax2時(shí),直線(xiàn)與圓相離;
初中數學(xué)的知識點(diǎn)
一、數與代數
1.有理數
有理數:包括正整數、0和負整數。
數軸:包括原點(diǎn)、正方向和單位長(cháng)度。
相反數:只有符號不同的兩個(gè)數叫做互為相反數。
絕對值:正數的絕對值是其本身,負數的絕對值是它的相反數,0的絕對值是0。
2.整式與分式
整式:包括單項式和多項式。
分式:包括一般形式和特殊形式。
代數式:包括單字母、單項式和多項式。
二、空間與圖形
1.點(diǎn)、線(xiàn)、面
點(diǎn):沒(méi)有大小,沒(méi)有長(cháng)度。
線(xiàn):沒(méi)有寬度,只有長(cháng)度。
面:有長(cháng)度和寬度,沒(méi)有高度。
2.基本圖形
直線(xiàn):包括直線(xiàn)、射線(xiàn)、線(xiàn)段。
角:包括平角、周角和一般的角。
三角形:包括等邊三角形、等腰三角形和一般三角形。
四邊形:包括矩形、正方形、梯形和平行四邊形。
圓:包括圓的性質(zhì)和圓的定理。
三、統計與概率
1.統計
統計圖:包括扇形統計圖、折線(xiàn)統計圖和條形統計圖。
統計表:包括簡(jiǎn)單統計表和復合統計表。
數據的收集與整理:包括抽樣調查、全面調查和自主調查。
2.概率
隨機事件:包括必然事件、不可能事件和隨機事件。
概率:包括計算事件發(fā)生的概率和隨機事件的概率。
【初中數學(xué)的知識點(diǎn)總結】相關(guān)文章:
數學(xué)初中知識點(diǎn)總結01-15
初中數學(xué)知識點(diǎn)總結06-24
初中數學(xué)知識點(diǎn)總結05-30