有關(guān)高中數學(xué)說(shuō)課稿五篇
作為一名辛苦耕耘的教育工作者,往往需要進(jìn)行說(shuō)課稿編寫(xiě)工作,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么寫(xiě)說(shuō)課稿需要注意哪些問(wèn)題呢?下面是小編為大家收集的高中數學(xué)說(shuō)課稿5篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。
2. 教學(xué)目標確定:
(1)能力訓練要求
、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。
、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。
在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。
2、教學(xué)手段:
根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。
三、說(shuō)學(xué)法:
這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。
四、 學(xué)程序:
[復習引入新課]
1.棱柱的性質(zhì):
。1)側棱都相等,側面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的`多邊形
。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(cháng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時(shí)訓練:訓練一
高中數學(xué)說(shuō)課稿 篇2
一、說(shuō)教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學(xué)生對導數的概念已經(jīng)有了充分的認識,本節課教材從形的角度即割線(xiàn)入手,用形象直觀(guān)的“逼近”方法定義了切線(xiàn),獲得導數的幾何意義,更有利于學(xué)生理解導數概念的本質(zhì)內涵. 這節課可以利用幾何畫(huà)板進(jìn)行動(dòng)畫(huà)演示,讓學(xué)生通過(guò)觀(guān)察、思考、發(fā)現、思維、運用形成完整概念. 通過(guò)本節的學(xué)習,可以幫助學(xué)生更好的體會(huì )導數是研究函數的單調性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內容。
2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):導數的幾何意義、切線(xiàn)方程的求法以及“數形結合,逼近”的思想方法。
教學(xué)難點(diǎn):理解導數的幾何意義的本質(zhì)內涵
1) 從割線(xiàn)到切線(xiàn)的過(guò)程中采用的逼近方法;
2) 理解導數的概念,將多方面的意義聯(lián)系起來(lái),例如,導數反映了函數f(x)在點(diǎn)x附近的變化快慢,導數是曲線(xiàn)上某點(diǎn)切線(xiàn)的斜率,等等.
二、說(shuō)教學(xué)目標:
根據新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下:
1、知識與技能 :
通過(guò)實(shí)驗探求理解導數的幾何意義,理解曲線(xiàn)在一點(diǎn)的切線(xiàn)的概念,會(huì )求簡(jiǎn)單函數在某點(diǎn)的切線(xiàn)方程。
過(guò)程與方法:
經(jīng)歷切線(xiàn)定義的形成過(guò)程,培養學(xué)生分析、抽象、概括等思維能力;體會(huì )導數的思想及內涵,完善對切線(xiàn)的認識和理解
通過(guò)逼近、數形結合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價(jià)值觀(guān):
滲透逼近、數形結合、以直代曲等數學(xué)思想,激發(fā)學(xué)生學(xué)習興趣,引導學(xué)生領(lǐng)悟特殊與一般、有限與無(wú)限,量變與質(zhì)變的辯證關(guān)系,感受數學(xué)的統一美,意識到數學(xué)的應用價(jià)值
三、說(shuō)教法與學(xué)法
對于直線(xiàn)來(lái)說(shuō)它的導數就是它的斜率,學(xué)生會(huì )很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過(guò)了圓錐曲線(xiàn),學(xué)生對曲線(xiàn)的切線(xiàn)的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法:
教法:從圓的切線(xiàn)的定義引入本課,再引導學(xué)生討論一般曲線(xiàn)的切線(xiàn)的定義,通過(guò)幾何畫(huà)板的動(dòng)畫(huà)演示,得出曲線(xiàn)的切線(xiàn)的“逼近”法的定義.同樣通過(guò)幾何畫(huà)板的實(shí)驗觀(guān)察得到導數的幾何意義和直觀(guān)感知“逼近”的數學(xué)思想.因此,我采用實(shí)驗觀(guān)察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結合,以突出重點(diǎn)和突破難點(diǎn);
學(xué)法:為了發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,提高學(xué)生的綜合能力,本節課采取了
自主 、合作、探究的學(xué)習方法。
教具: 幾何畫(huà)板、幻燈片
四、說(shuō)教學(xué)程序
1.創(chuàng )設情境
學(xué)生活動(dòng)——問(wèn)題系列
問(wèn)題1 平面幾何中我們是怎樣判斷直線(xiàn)是否是圓的割線(xiàn)或切線(xiàn)的呢?
問(wèn)題2 如圖直線(xiàn)l是曲線(xiàn)C的切線(xiàn)嗎?
(1)與 (2)與 還有直線(xiàn)與雙曲線(xiàn)的位置關(guān)系
問(wèn)題3 那么對于一般的曲線(xiàn),切線(xiàn)該如何定義呢?
【設計意圖】:通過(guò)類(lèi)比構建認知沖突。
學(xué)生活動(dòng)——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。
2.探索求知
學(xué)生活動(dòng)——試驗探究
問(wèn)一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時(shí),平均變化率無(wú)限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問(wèn)二;你能借助圖像說(shuō)說(shuō)平均變化率表示什么嗎?請在函數圖像中畫(huà)出來(lái)。
【設計意圖】:通過(guò)學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線(xiàn)PQ的斜率。
問(wèn)三;在的過(guò)程中,你能描述一下割線(xiàn)PQ的變化情況嗎?請在圖像中畫(huà)出來(lái)。
【設計意圖】:分別從“數”和“形”的角度描述的過(guò)程情況。從數的角度看,,Q();從形的角度看, 的過(guò)程中,Q點(diǎn)向P點(diǎn)無(wú)限趨近,割線(xiàn)PQ趨近于確定的位置,這個(gè)位置的直線(xiàn)叫做曲線(xiàn)在 處的切線(xiàn)。
探究一:學(xué)生通過(guò)幾何畫(huà)板的`演示觀(guān)察割線(xiàn)的變化趨勢,教師引導給出一般曲線(xiàn)的切線(xiàn)定義。
【設計意圖】: 借助多媒體教學(xué)手段引導學(xué)生發(fā)現導數的幾何意義,使問(wèn)題變得直觀(guān),易于突破難點(diǎn);學(xué)生在過(guò)程中,可以體會(huì )逼近的思想方法。能夠同時(shí)從數與形兩個(gè)角度強化學(xué)生對導數概念的理解。
問(wèn)四;你能從上述過(guò)程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學(xué)生發(fā)現并說(shuō)出:,割線(xiàn)PQ切線(xiàn)PT,所以割線(xiàn)
PQ的斜率切線(xiàn)PT的斜率。因此,=切線(xiàn)PT的斜率。
五、教學(xué)評價(jià)
1、通過(guò)學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對學(xué)生的學(xué)習過(guò)程評價(jià);
2、通過(guò)學(xué)生對方法的選擇,對學(xué)生的學(xué)習能力評價(jià);
3、通過(guò)練習、課后作業(yè),對學(xué)生的學(xué)習效果評價(jià).
4、教學(xué)中,學(xué)生以研究者的身份學(xué)習,在問(wèn)題解決的過(guò)程中,通過(guò)自身的體驗對知識的認識從模糊到清晰,從直觀(guān)感悟到精確掌握;
5、本節課設計目標力求使學(xué)生體會(huì )微積分的基本思想,感受近似與精確的統一,運動(dòng)和靜止的統一,感受量變到質(zhì)變的轉化。希望利用這節課滲透辨證法的思想精髓.
高中數學(xué)說(shuō)課稿 篇3
我將從教學(xué)理念;教材分析;教學(xué)目標;教學(xué)過(guò)程;教法、學(xué)法;教學(xué)評價(jià)六個(gè)方面來(lái)陳述我對本節課的設計方案。
一、教學(xué)理念
新的課程標準明確指出“數學(xué)是人類(lèi)文化的重要組成部分,構成了公民所必須具備的一種基本素質(zhì)!逼浜x就是:我們不僅要重視數學(xué)的應用價(jià)值,更要注重其思維價(jià)值和人文價(jià)值。
因此,創(chuàng )造性地使用教材,積極開(kāi)發(fā)、利用各種教學(xué)資源,創(chuàng )設教學(xué)情境,讓學(xué)生通過(guò)主動(dòng)參與、積極思考、與人合作交流和創(chuàng )新等過(guò)程,獲得情感、能力、知識的全面發(fā)展。本節課力圖打破常規,充分體現以學(xué)生為本,全方位培養、提高學(xué)生素質(zhì),實(shí)現課程觀(guān)念、教學(xué)方式、學(xué)習方式的轉變。
二、教材分析
三角函數是中學(xué)數學(xué)的重要內容之一,它既是解決生產(chǎn)實(shí)際問(wèn)題的工具,又是學(xué)習高等數學(xué)及其它學(xué)科的基礎。本節課是在學(xué)習了任意角的三角函數,兩角和與差的三角函數以及正、余弦函數的圖象和性質(zhì)后,進(jìn)一步研究函數y=Asin(ωx+φ)的簡(jiǎn)圖的畫(huà)法,由此揭示這類(lèi)函數的圖象與正弦曲線(xiàn)的關(guān)系,以及A、ω、φ的物理意義,并通過(guò)圖象的變化過(guò)程,進(jìn)一步理解正、余弦函數的性質(zhì),它是研究函數圖象變換的一個(gè)延伸,也是研究函數性質(zhì)的一個(gè)直觀(guān)反映。共3課時(shí),本節課是繼學(xué)習完振幅、周期、初相變換后的第二課時(shí)。
本節課倡導學(xué)生自主探究,在教師的引導下,通過(guò)五點(diǎn)作圖法正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律是本節課的重點(diǎn)。
難點(diǎn)是對周期變換、相位變換先后順序調整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個(gè)字母x而言的'變換成為突破本節課教學(xué)難點(diǎn)的關(guān)鍵。
依據《課標》,根據本節課內容和學(xué)生的實(shí)際,我確定如下教學(xué)目標。
三、教學(xué)目標
。壑R與技能]
通過(guò)“五點(diǎn)作圖法”正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律,能用五點(diǎn)作圖法和圖象變換法畫(huà)出函數y=Asin(ωx+φ)的簡(jiǎn)圖,能舉一反三地畫(huà)出函數y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡(jiǎn)圖。
。圻^(guò)程與方法]
通過(guò)引導學(xué)生對函數y=sinx到y=sin(ωx+φ)的圖象變換規律的探索,讓學(xué)生體會(huì )到由簡(jiǎn)單到復雜,特殊到一般的化歸思想;并通過(guò)對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì )抓住問(wèn)題的主要矛盾來(lái)解決問(wèn)題的基本思想方法。
。矍楦袘B(tài)度與價(jià)值觀(guān)]
課堂中,通過(guò)對問(wèn)題的自主探究,培養學(xué)生的獨立意識和獨立思考能力;小組交流中,學(xué)會(huì )合作意識;在解決問(wèn)題的難點(diǎn)時(shí),培養學(xué)生解決問(wèn)題抓主要矛盾的思想。在問(wèn)題逐步深入的研究中喚起學(xué)生追求真理,樂(lè )于創(chuàng )新的情感需求,引發(fā)學(xué)生渴求知識的強烈愿望,樹(shù)立科學(xué)的人生觀(guān)、價(jià)值觀(guān)。
四、教學(xué)過(guò)程(六問(wèn)三練)
1、設置情境
《函數y=Asin(ωx+φ)的圖象(第二課時(shí))》說(shuō)課稿。
高中數學(xué)說(shuō)課稿 篇4
尊敬的各位專(zhuān)家、評委:
上午好!
今天我說(shuō)課的課題是人教A版必修1第二章第二節《對數函數》。
我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。
一、教材分析
地位和作用
本章學(xué)習是在學(xué)生完成函數的第一階段學(xué)習(初中)的基礎上,進(jìn)行第二階段的函數學(xué)習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學(xué)生已經(jīng)學(xué)習了指數函數及對數的內容,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用!皩岛瘮怠边@節教材,是在沒(méi)有學(xué)習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關(guān)系。同時(shí)對數函數作為常用數學(xué)模型在解決社會(huì )生活中的實(shí)例有著(zhù)廣泛的應用,本節課的學(xué)習為學(xué)生進(jìn)一步學(xué)習,參加生產(chǎn)和實(shí)際生活提供必要的基礎知識。
二、目標分析
。ㄒ唬、教學(xué)目標
根據《對數函數》在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下的教學(xué)目標:
1、知識與技能
。1)、進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型;
。2)、理解對數函數的概念、掌握對數函數的圖像和性質(zhì);
。3)、由實(shí)際問(wèn)題出發(fā),培養學(xué)生探索知識和抽象概括知識等方面的能力。
2、過(guò)程與方法
引導學(xué)生觀(guān)察,探尋變量和變量的對應關(guān)系,通過(guò)歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問(wèn)題的快樂(lè )。
3、情感態(tài)度與價(jià)值觀(guān)
通過(guò)對對數函數函數圖像和性質(zhì)的探究過(guò)程,培養學(xué)生發(fā)現問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng )新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
。ǘ┙虒W(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
1、重點(diǎn):對數函數的概念、圖像和性質(zhì);在教學(xué)中只有突出這個(gè)重點(diǎn),才能使教材脈絡(luò )分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習新知識。
2、 難點(diǎn):底數a對對數函數的圖像和性質(zhì)的影響。
[關(guān)鍵]對數函數與指數函數的類(lèi)比教學(xué)。
由指數函數的圖像過(guò)渡到對數函數的圖像,通過(guò)類(lèi)比分析達到深刻地了解對數函數的圖像及其性質(zhì)是掌握重點(diǎn)和突破難點(diǎn)的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數形結合,加強直觀(guān)教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò ),同時(shí)在立體的講解中,重視加強題組的設計和變形,使教學(xué)真正體現出由淺入深,由易到難,由具體到抽象的特點(diǎn),從而突破重點(diǎn)、突破難點(diǎn)。
三、教法、學(xué)法分析
。ㄒ唬、教法
教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:
1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法;
4、投影儀演示法。
在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,與指數函數性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
。ǘ、學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:
1、對照比較學(xué)習法:學(xué)習對數函數,處處與指數函數相對照;
2、探究式學(xué)習法:學(xué)生通過(guò)分析、探索,得出對數函數的定義;
3、自主性學(xué)習法:通過(guò)實(shí)驗畫(huà)出函數圖像、觀(guān)察圖像自得其性質(zhì);
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學(xué)過(guò)程分析
。ㄒ唬、教學(xué)過(guò)程設計
1、創(chuàng )設情境,提出問(wèn)題。
在某細胞分裂過(guò)程中,細胞個(gè)數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個(gè)數),這樣就建立了一個(gè)細胞個(gè)數和分裂次數x之間的函數關(guān)系式。
問(wèn)題一:這是一個(gè)怎樣的函數模型類(lèi)型呢?
設計意圖
復習指數函數
問(wèn)題二:現在我們來(lái)研究相反的問(wèn)題,如果知道了細胞的個(gè)數y,如何求分裂的次數x呢?這將會(huì )是我們研究的哪類(lèi)問(wèn)題?
設計意圖
為了引出對數函數
問(wèn)題三:在關(guān)系式x=log2y每輸入一個(gè)細胞的個(gè)數y的值,是否一定都能得到唯一一個(gè)分裂次數x的值呢?
設計意圖
。1)、為了讓學(xué)生更好地理解函數;
。2)、為了讓學(xué)生更好地理解對數函數的概念。
2、引導探究,建構概念。
。1)、對數函數的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過(guò)的時(shí)間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數,可見(jiàn)這樣的問(wèn)題在現實(shí)生活中還是不少的。
設計意圖
前面的問(wèn)題情景的底數為2,而這個(gè)問(wèn)題情景的底數是0.84,我認為這個(gè)情景并不是多余的,其實(shí)它暗示了對數函數的底數與指數函數的底數一樣有兩類(lèi)。
但是在習慣上,我們用x表示自變量,用y表示函數值。
問(wèn)題一:你能把以上兩個(gè)函數表示出來(lái)嗎?
問(wèn)題二:你能得到此類(lèi)函數的一般式嗎?
設計意圖
體現出了由特殊到一般的數學(xué)思想
問(wèn)題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。
問(wèn)題四:你能根據指數函數的定義給出對數函數的定義嗎?
問(wèn)題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個(gè)問(wèn)題是為了引導出對數函數的概念,然而,光有前四個(gè)問(wèn)題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數的'定義域,所以設計這個(gè)問(wèn)題是為了讓學(xué)生更好地理解對數函數的定義域。
。2)、對數函數的圖像與性質(zhì)
問(wèn)題:有了研究指數函數的經(jīng)歷,你覺(jué)得下面該學(xué)習什么內容了?
設計意圖
提示學(xué)生進(jìn)行類(lèi)比學(xué)習
合作探究1:借助計算器在同一直角坐標系中畫(huà)出下列兩組函數的圖像,并觀(guān)察各族函數圖像,探求他們之間的關(guān)系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關(guān)系?
設計意圖
在這兒體現“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫(huà)的兩組函數的圖像,對照指數函數的性質(zhì),總結歸納對數函數的性質(zhì)。
設計意圖
學(xué)生討論并交流各自的而發(fā)現成果,教師結合學(xué)生的交流,適時(shí)歸納總結,并板書(shū)對數函數的性質(zhì))。問(wèn)題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問(wèn)題2:對數函數y=logax( a>0,a≠1,),當a>1時(shí),x取何值,y>0,x取何值,y<0,當0 問(wèn)題3:對數式logab的值的符號與a,b的取值之間有何關(guān)系? 知識拓展:函數y=ax稱(chēng)為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數的定義域 y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。) 例2:利用對數函數的性質(zhì),比較下列各組數中兩個(gè)數的大。 。1)、㏒2 3.4,log2 3.8; 。2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學(xué)生通過(guò)回顧指數函數的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過(guò)教師的適當點(diǎn)撥完成解答,最后進(jìn)行歸納總結比較數的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數函數的圖像和性質(zhì),還培養了學(xué)生數形結合、分類(lèi)討論等數學(xué)思想。 4、當堂訓練,鞏固深化。 通過(guò)學(xué)生的主體性參與,使學(xué)生深刻體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識的再次深化。 采用課后習題1,2,3. 5、小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。 。1)、小結: 、賹岛瘮档母拍 、趯岛瘮档膱D像和性質(zhì) 、劾脤岛瘮档男再|(zhì)比較大小的一般方法和步驟, 。2)、反思 我設計了三個(gè)問(wèn)題 、、通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識? 、、通過(guò)本節課的學(xué)習,你最大的體驗是什么? 、、通過(guò)本節課的學(xué)習,你掌握了哪些技能? 。ǘ、作業(yè)設計 作業(yè)分為必做題和選做題,必做題是對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。 我設計了以下作業(yè): 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書(shū)設計 板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評價(jià)分析 學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝! 尊敬的各位專(zhuān)家、評委: 上午好! 今天我說(shuō)課的課題是人教A版必修2第二章第二節《直線(xiàn)與圓的位置關(guān)系》。 我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。 一、教材分析 地位和作用 學(xué)生在初中的學(xué)習中已經(jīng)了解直線(xiàn)與圓的位置關(guān)系,并知道可以利用直線(xiàn)與圓的焦點(diǎn)的個(gè)數以及圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系。但是,在初中學(xué)習時(shí),利用圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系的方法卻以結論性的形式呈現。在高一學(xué)習了解析幾何后,要考慮的問(wèn)題是如何掌握由直線(xiàn)和圓的方程判斷直線(xiàn)與圓的位置關(guān)系的方法。解決問(wèn)題的方法主要是幾何法和代數法。其中幾何法應該是在初中學(xué)習的基礎上,結合高中所學(xué)的點(diǎn)到直線(xiàn)的距離公式求出圓心與直線(xiàn)的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進(jìn)用聯(lián)立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數的問(wèn)題、簡(jiǎn)單的弦的問(wèn)題、切線(xiàn)問(wèn)題等綜合問(wèn)題作為進(jìn)一步的拓展提高或綜合應用,也適度第引入課堂教學(xué)中,但以深化“判定直線(xiàn)與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習解析幾何了,但是把幾何問(wèn)題代數化無(wú)論是思維習慣還是具體轉化方法,學(xué)生仍是似懂非懂,因此應不斷強化,逐漸內化為學(xué)生的習慣和基本素質(zhì)。 二、目標分析 (一)、教學(xué)目標 1、知識與技能 理解直線(xiàn)與圓的位置的種類(lèi); 利用平面直角坐標系中點(diǎn)到直線(xiàn)的距離公式求圓心到直線(xiàn)的距離; 會(huì )用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系。 2、過(guò)程與方法 設直線(xiàn)L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線(xiàn)的距離為d,則判別直線(xiàn)與圓的位置關(guān)系的根據有以下幾點(diǎn): 當d >r時(shí),直線(xiàn)l與圓c相離; 當d =r時(shí),直線(xiàn)l與圓c相切; 當d 3、情態(tài)與價(jià)值觀(guān) 讓學(xué)生通過(guò)觀(guān)察圖形,理解并掌握直線(xiàn)與圓的位置關(guān)系,培養學(xué)生數形結合的思想。 (二)、教學(xué)重點(diǎn)與難點(diǎn) 1、重點(diǎn):直線(xiàn)與圓的位置關(guān)系的幾何圖形及其判斷方法。 2、難點(diǎn):用坐標判斷直線(xiàn)與圓的位置關(guān)系。 三、教法學(xué)法分析 (一)、教法 教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法: 1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。 2、采用“從特殊到一般”、“從具體到抽象”的方法。 3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法。 4、投影儀演示法。 在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。 (二)、學(xué)法 建構主義學(xué)習理論認為,學(xué)習是學(xué)生積極主動(dòng)地建構知識的過(guò)程,學(xué)習應該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問(wèn)題情境中,經(jīng)歷知識的形成和發(fā)展,通過(guò)觀(guān)察、操作、歸納、探索、交流、反思參與學(xué)習,認識和理解數學(xué)知識,學(xué)會(huì )學(xué)習,發(fā)展能力。 四、教學(xué)過(guò)程分析 (一)、教學(xué)過(guò)程設計 問(wèn)題 設計意圖 師生活動(dòng) 1、初中學(xué)過(guò)的平面幾何中,直線(xiàn)與圓的位置關(guān)系有幾類(lèi)? 啟發(fā)學(xué)生由圖形獲取判斷直線(xiàn)與圓的位置關(guān)系的直觀(guān)認知,引入新課 師:讓學(xué)生之間進(jìn)行討論,交流,引導學(xué)生觀(guān)察圖形,導入新課 生:看圖,并說(shuō)出自己的看法 2、直線(xiàn)與圓的位置關(guān)系有幾種? 得出直線(xiàn)與圓的位置關(guān)系的.幾何特征與種類(lèi) 師:引導學(xué)生利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)系的種類(lèi),進(jìn)一步神話(huà)數形結合的數學(xué)思想 生:學(xué)生觀(guān)察圖形,利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān) 3、在初中,我們怎么樣判斷直線(xiàn)與圓的位置關(guān)系呢?如何用直線(xiàn)與圓的方程判斷他們之間的位置關(guān)系呢? 你能說(shuō)出判斷直線(xiàn)與圓的位置關(guān)系的兩 種方法嗎? 使學(xué)生回憶初中的數學(xué)知識,培養抽象的概括能力。 抽象判斷呢直線(xiàn)與圓的位置關(guān)系的思路和方法 師:引導學(xué)生回憶初中判斷直線(xiàn)與圓的位置關(guān)系的思想過(guò)程 生:回憶直線(xiàn)與圓的位置關(guān)系的判斷過(guò)程 師:引導學(xué)生從集合的角度判斷直線(xiàn)與圓的方法 生:利用圖形,尋求兩種方法的數學(xué)思路 5、你能用兩種判斷直線(xiàn)與圓的位置關(guān)系的數學(xué)思路解決例1的問(wèn)題嗎? 體會(huì )判斷直線(xiàn)與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導學(xué)生閱讀教材書(shū)上的例1 生:閱讀教材書(shū)上的例1,并完成教材書(shū)上的136頁(yè)的練習題2 6、通過(guò)學(xué)習教材書(shū)上的例1,你能總結下判斷直線(xiàn)與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線(xiàn)與圓的位置關(guān)系的基本步驟 生:于都例1 師:分析例1 ,并展示解答過(guò)程,啟發(fā)學(xué)生概括判斷直線(xiàn)與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時(shí)間 生:交流自己總結的步驟 7、通過(guò)學(xué)習教材書(shū)上的例2,你能說(shuō)明例2中體現的數學(xué)思想方法嗎? 進(jìn)一步深化數形結合的數學(xué)思想 師:指導學(xué)生閱讀并完成教材書(shū)上的例2 ,啟發(fā)學(xué)生利用數形結合的數學(xué)思想解決問(wèn)題 生:閱讀教材書(shū)上的例2 ,并完成137的練習題 8、通過(guò)例2的學(xué)習,你發(fā)現了什么? 明確弦長(cháng)的運算方法 師:引導并啟發(fā)學(xué)生探索直線(xiàn)與圓的相交弦的求法 生:通過(guò)分析,抽象,歸納,得出相交弦的運算方法 9、完成教材書(shū)上的136頁(yè)的習題1234 鞏固所學(xué)過(guò)的知識,進(jìn)一步理解和掌握直線(xiàn)與圓的位置關(guān)系 師:指導學(xué)生完成練習題 生:互相討論交流,完成練習題 10、課堂小結 教師提出下列問(wèn)題讓學(xué)生思考 通過(guò)直線(xiàn)與圓的位置關(guān)系的判斷,你學(xué)到什么了? 判斷直線(xiàn)與圓的位置關(guān)系有幾種方法?他們的特點(diǎn)是什么? 如何求直線(xiàn)與圓的相交弦長(cháng)? (二)、作業(yè)設計 作業(yè)分為必做題和選擇題,必做題是對本節課學(xué)生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。 我設計了以下作業(yè): 必做題:課后習題A 1,2,3; 選擇題:課后習題B1,2,3; (三)、板書(shū)設計 板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評價(jià)分析 學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝! 【高中數學(xué)說(shuō)課稿】相關(guān)文章: 高中數學(xué)的說(shuō)課稿06-13 高中數學(xué)說(shuō)課稿06-12 高中數學(xué)經(jīng)典說(shuō)課稿范文07-25 高中數學(xué)說(shuō)課稿10-03 高中數學(xué)免費說(shuō)課稿09-19 高中數學(xué)說(shuō)課稿06-25 高中數學(xué)說(shuō)課稿07-23 高中數學(xué)向量說(shuō)課稿07-08高中數學(xué)說(shuō)課稿 篇5