97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高一數學(xué)教案

時(shí)間:2023-01-20 15:32:11 數學(xué)教案 我要投稿

【熱門(mén)】高一數學(xué)教案

  作為一名為他人授業(yè)解惑的教育工作者,時(shí)常需要編寫(xiě)教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編收集整理的高一數學(xué)教案,僅供參考,希望能夠幫助到大家。

【熱門(mén)】高一數學(xué)教案

高一數學(xué)教案1

  教學(xué)目標

  會(huì )運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡(jiǎn)單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。

  重 點(diǎn)

  函數單調性的證明及判斷。

  難 點(diǎn)

  函數單調性證明及其應用。

  一、復習引入

  1、函數的定義域、值域、圖象、表示方法

  2、函數單調性

  (1)單調增函數

  (2)單調減函數

  (3)單調區間

  二、例題分析

  例1、畫(huà)出下列函數圖象,并寫(xiě)出單調區間:

  (1) (2) (2)

  例2、求證:函數 在區間 上是單調增函數。

  例3、討論函數 的單調性,并證明你的結論。

  變(1)討論函數 的單調性,并證明你的結論

  變(2)討論函數 的`單調性,并證明你的結論。

  例4、試判斷函數 在 上的單調性。

  三、隨堂練習

  1、判斷下列說(shuō)法正確的是 。

  (1)若定義在 上的函數 滿(mǎn)足 ,則函數 是 上的單調增函數;

  (2)若定義在 上的函數 滿(mǎn)足 ,則函數 在 上不是單調減函數;

  (3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;

  (4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。

  2、若一次函數 在 上是單調減函數,則點(diǎn) 在直角坐標平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數 在 上是___ ___;函數 在 上是__ _____。

  3.下圖分別為函數 和 的圖象,求函數 和 的單調增區間。

  4、求證:函數 是定義域上的單調減函數。

  四、回顧小結

  1、函數單調性的判斷及證明。

  課后作業(yè)

  一、基礎題

  1、求下列函數的單調區間

  (1) (2)

  2、畫(huà)函數 的圖象,并寫(xiě)出單調區間。

  二、提高題

  3、求證:函數 在 上是單調增函數。

  4、若函數 ,求函數 的單調區間。

  5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。

  三、能力題

  6、已知函數 ,試討論函數f(x)在區間 上的單調性。

  變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。

高一數學(xué)教案2

  教學(xué)目標

  1.使學(xué)生理解函數單調性的概念,并能判斷一些簡(jiǎn)單函數在給定區間上的單調性.

  2.通過(guò)函數單調性概念的教學(xué),培養學(xué)生分析問(wèn)題、認識問(wèn)題的能力.通過(guò)例題培養學(xué)生利用定義進(jìn)行推理的邏輯思維能力.

  3.通過(guò)本節課的教學(xué),滲透數形結合的數學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.

  教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):函數單調性的概念.

  教學(xué)難點(diǎn):函數單調性的判定.

  教學(xué)過(guò)程設計

  一、引入新課

  師:請同學(xué)們觀(guān)察下面兩組在相應區間上的函數,然后指出這兩組函數之間在性質(zhì)上的主要區別是什么?

 。ㄓ猛队盎脽艚o出兩組函數的圖象.)

  第一組:

  第二組:

  生:第一組函數,函數值y隨x的增大而增大;第二組函數,函數值y隨x的增大而減。

  師:(手執投影棒使之沿曲線(xiàn)移動(dòng))對.他(她)答得很好,這正是兩組函數的主要區別.當x變大時(shí),第一組函數的函數值都變大,而第二組函數的函數值都變。m然在每一組函數中,函數值變大或變小的方式并不相同,但每一組函數卻具有一種共同的性質(zhì).我們在學(xué)習一次函數、二次函數、反比例函數以及冪函數時(shí),就曾經(jīng)根據函數的圖象研究過(guò)函數的函數值隨自變量的變大而變大或變小的性質(zhì).而這些研究結論是直觀(guān)地由圖象得到的.在函數的集合中,有很多函數具有這種性質(zhì),因此我們有必要對函數這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節課的內容.

 。c(diǎn)明本節課的內容,既是曾經(jīng)有所認識的,又是新的知識,引起學(xué)生的注意.)

  二、對概念的分析

 。ò鍟(shū)課題:)

  師:請同學(xué)們打開(kāi)課本第51頁(yè),請××同學(xué)把增函數、減函數、單調區間的定義朗讀一遍.

 。▽W(xué)生朗讀.)

  師:好,請坐.通過(guò)剛才閱讀增函數和減函數的定義,請同學(xué)們思考一個(gè)問(wèn)題:這種定義方法和我們剛才所討論的函數值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

  生:我認為是一致的.定義中的“當x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.

  師:說(shuō)得非常正確.定義中用了兩個(gè)簡(jiǎn)單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數的單調遞增或單調遞減的性質(zhì).這就是數學(xué)的魅力!

 。ㄍㄟ^(guò)教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習數學(xué)的興趣.)

  師:現在請同學(xué)們和我一起來(lái)看剛才的兩組圖中的第一個(gè)函數y=f1(x)和y=f2(x)的圖象,體會(huì )這種魅力.

 。ㄖ笀D說(shuō)明.)

  師:圖中y=f1(x)對于區間[a,b]上的任意x1,x2,當x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區間[a,b]上是單調遞增的,區間[a,b]是函數y=f1(x)的單調增區間;而圖中y=f2(x)對于區間[a,b]上的任意x1,x2,當x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區間[a,b]上是單調遞減的,區間[a,b]是函數y=f2(x)的單調減區間.

 。ń處熤笀D說(shuō)明分析定義,使學(xué)生把函數單調性的定義與直觀(guān)圖象結合起來(lái),使新舊知識融為一體,加深對概念的理解.滲透數形結合分析問(wèn)題的數學(xué)思想方法.)

  師:因此我們可以說(shuō),增函數就其本質(zhì)而言是在相應區間上較大的自變量對應……

 。ú话言(huà)說(shuō)完,指一名學(xué)生接著(zhù)說(shuō)完,讓學(xué)生的思維始終跟著(zhù)老師.)

  生:較大的函數值的函數.

  師:那么減函數呢?

  生:減函數就其本質(zhì)而言是在相應區間上較大的自變量對應較小的函數值的函數.

 。▽W(xué)生可能回答得不完整,教師應指導他說(shuō)完整.)

  師:好.我們剛剛以增函數和減函數的定義作了初步的分析,通過(guò)閱讀和分析你認為在定義中我們應該抓住哪些關(guān)鍵詞語(yǔ),才能更透徹地認識定義?

 。▽W(xué)生思索.)

  學(xué)生在高中階段以至在以后的學(xué)習中經(jīng)常會(huì )遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語(yǔ),是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數學(xué)及其他各學(xué)科的重要一環(huán).因此教師應該教會(huì )學(xué)生如何深入理解一個(gè)概念,以培養學(xué)生分析問(wèn)題,認識問(wèn)題的能力.

 。ń處熢趯W(xué)生思索過(guò)程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語(yǔ)處適當加重語(yǔ)氣.在學(xué)生感到無(wú)從下手時(shí),給以適當的提示.)

  生:我認為在定義中,有一個(gè)詞“給定區間”是定義中的關(guān)鍵詞語(yǔ).

  師:很好,我們在學(xué)習任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語(yǔ),在學(xué)習幾個(gè)相近的概念時(shí)還要注意區別它們之間的不同.增函數和減函數都是對相應的區間而言的,離開(kāi)了相應的區間就根本談不上函數的增減性.請大家思考一個(gè)問(wèn)題,我們能否說(shuō)一個(gè)函數在x=5時(shí)是遞增或遞減的?為什么?

  生:不能.因為此時(shí)函數值是一個(gè)數.

  師:對.函數在某一點(diǎn),由于它的函數值是唯一確定的常數(注意這四個(gè)字“唯一確定”),因而沒(méi)有增減的變化.那么,我們能不能脫離區間泛泛談?wù)撃骋粋(gè)函數是增函數或是減函數呢?你能否舉一個(gè)我們學(xué)過(guò)的例子?

  生:不能.比如二次函數y=x2,在y軸左側它是減函數,在y軸右側它是增函數.因而我們不能說(shuō)y=x2是增函數或是減函數.

 。ㄔ趯W(xué)生回答問(wèn)題時(shí),教師板演函數y=x2的圖像,從“形”上感知.)

  師:好.他(她)舉了一個(gè)例子來(lái)幫助我們理解定義中的詞語(yǔ)“給定區間”.這說(shuō)明是函數在某一個(gè)區間上的性質(zhì),但這不排斥有些函數在其定義域內都是增函數或減函數.因此,今后我們在談?wù)摵瘮档脑鰷p性時(shí)必須指明相應的區間.

  師:還有沒(méi)有其他的關(guān)鍵詞語(yǔ)?

  生:還有定義中的“屬于這個(gè)區間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語(yǔ).

  師:你答的很對.能解釋一下為什么嗎?

 。▽W(xué)生不一定能答全,教師應給予必要的提示.)

  師:“屬于”是什么意思?

  生:就是說(shuō)兩個(gè)自變量x1,x2必須取自給定的區間,不能從其他區間上。

  師:如果是閉區間的話(huà),能否取自區間端點(diǎn)?

  生:可以.

  師:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值來(lái)判斷函數的增減性,而“都有”則是說(shuō)只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

  師:能不能構造一個(gè)反例來(lái)說(shuō)明“任意”呢?

 。ㄗ寣W(xué)生思考片刻.)

  生:可以構造一個(gè)反例.考察函數y=x2,在區間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數,那就錯了.

  師:那么如何來(lái)說(shuō)明“都有”呢?

  生:y=x2在[-2,2]上,當x1=-2,x2=-1時(shí),有f(x1)>f(x2);當x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說(shuō)y=x2,在[-2,2]上是增函數或減函數.

  師:好極了!通過(guò)分析定義和舉反例,我們知道要判斷函數y=f(x)在某個(gè)區間內是增函數或減函數,不能由特定的兩個(gè)點(diǎn)的情況來(lái)判斷,而必須嚴格依照定義在給定區間內任取兩個(gè)自變量x1,x2,根據它們的函數值f(x1)和f(x2)的大小來(lái)判定函數的增減性.

 。ń處熗ㄟ^(guò)一系列的設問(wèn),使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過(guò)反例的反襯,使學(xué)生加深對定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)

  師:反過(guò)來(lái),如果我們已知f(x)在某個(gè)區間上是增函數或是減函數,那么,我們就可以通過(guò)自變量的大小去判定函數值的大小,也可以由函數值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.

 。ㄓ棉q證法的原理來(lái)解釋數學(xué)知識,同時(shí)用數學(xué)知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內涵和外延,培養學(xué)生學(xué)習的能力.)

  三、概念的應用

  例1 圖4所示的是定義在閉區間[-5,5]上的函數f(x)的圖象,根據圖象說(shuō)出f(x)的單調區間,并回答:在每一個(gè)單調區間上,f(x)是增函數還是減函數?

 。ㄓ猛队盎脽艚o出圖象.)

  生甲:函數y=f(x)在區間[-5,-2],[1,3]上是減函數,因此[-5,-2],[1,3]是函數y=f(x)的單調減區間;在區間[-2,1],[3,5]上是增函數,因此[-2,1],[3,5]是函數y=f(x)的單調增區間.

  生乙:我有一個(gè)問(wèn)題,[-5,-2]是函數f(x)的單調減區間,那么,是否可認為(-5,-2)也是f(x)的單調減區間呢?

  師:?jiǎn)?wèn)得好.這說(shuō)明你想的很仔細,思考問(wèn)題很?chē)乐敚菀鬃C明:若f(x)在[a,b]上單調(增或減),則f(x)在(a,b)上單調(增或減).反之不然,你能舉出反例嗎?一般來(lái)說(shuō).若f(x)在[a,(增或減).反之不然.

  例2 證明函數f(x)=3x+2在(-∞,+∞)上是增函數.

  師:從函數圖象上觀(guān)察固然形象,但在理論上不夠嚴格,尤其是有些函數不易畫(huà)出圖象,因此必須學(xué)會(huì )根據解析式和定義從數量上分析辨認,這才是我們研究函數單調性的基本途徑.

 。ㄖ赋鲇枚x證明的必要性.)

  師:怎樣用定義證明呢?請同學(xué)們思考后在筆記本上寫(xiě)出證明過(guò)程.

 。ń處熝惨,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會(huì )對如何比較f(x1)和f(x2)的大小關(guān)系感到無(wú)從入手,教師應給以啟發(fā).)

  師:對于f(x1)和f(x2)我們如何比較它們的大小呢?我們知道對兩個(gè)實(shí)數a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來(lái)決定兩個(gè)數的大小關(guān)系.

  生:(板演)設x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當x1<x2時(shí),

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函數.

  師:他的證明思路是清楚的.一開(kāi)始設x1,x2是(-∞,+∞)內任意兩個(gè)自變量,并設x1<x2(邊說(shuō)邊用彩色粉筆在相應的語(yǔ)句下劃線(xiàn),并標注“①→設”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線(xiàn)并標注”②→作差,變形”).但美中不足的是他沒(méi)能說(shuō)明為什么f(x1)-f(x2)<0,沒(méi)有用到開(kāi)始的假設“x1<x2”,不要以為其顯而易見(jiàn),在這里一定要對變形后的式子說(shuō)明其符號.應寫(xiě)明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結論,我們把它稱(chēng)之為第四步“下結論”(在相應位置標注“④→下結論”).

  這就是我們用定義證明函數增減性的四個(gè)步驟,請同學(xué)們記。枰赋龅氖堑诙,如果函數y=f(x)在給定區間上恒大于零,也可以。

 。▽W(xué)生的做法進(jìn)行分析,把證明過(guò)程步驟化,可以形成思維的定勢.在學(xué)生剛剛接觸一個(gè)新的知識時(shí),思維定勢對理解知識本身是有益的,同時(shí)對學(xué)生養成一定的思維習慣,形成一定的解題思路也是有幫助的.)

  調函數嗎?并用定義證明你的結論.

  師:你的結論是什么呢?

  上都是減函數,因此我覺(jué)得它在定義域(-∞,0)∪(0,+∞)上是減函數.

  生乙:我有不同的意見(jiàn),我認為這個(gè)函數不是整個(gè)定義域內的減函數,因為它不符合減函數的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內的減函數.

  生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數.

  域內的增函數,也不是定義域內的'減函數,它在(-∞,0)和(0,+∞)每一個(gè)單調區間內都是減函數.因此在函數的幾個(gè)單調增(減)區間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫(xiě)成閉區間.

  上是減函數.

 。ń處熝惨暎畬W(xué)生證明中出現的問(wèn)題給予點(diǎn)拔.可依據學(xué)生的問(wèn)題,給出下面的提示:

 。1)分式問(wèn)題化簡(jiǎn)方法一般是通分.

 。2)要說(shuō)明三個(gè)代數式的符號:k,x1·x2,x2-x1.

  要注意在不等式兩邊同乘以一個(gè)負數的時(shí)候,不等號方向要改變.

  對學(xué)生的解答進(jìn)行簡(jiǎn)單的分析小結,點(diǎn)出學(xué)生在證明過(guò)程中所出現的問(wèn)題,引起全體學(xué)生的重視.)

  四、課堂小結

  師:請同學(xué)小結一下這節課的主要內容,有哪些是應該特別注意的?

 。ㄕ堃粋(gè)思路清晰,善于表達的學(xué)生口述,教師可從中給予提示.)

  生:這節課我們學(xué)習了函數單調性的定義,要特別注意定義中“給定區間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語(yǔ);在寫(xiě)單調區間時(shí)不要輕易用并集的符號連接;最后在用定義證明時(shí),應該注意證明的四個(gè)步驟.

  五、作業(yè)

  1.課本P53練習第1,2,3,4題.

  數.

  =a(x1-x2)(x1+x2)+b(x1-x2)

  =(x1-x2)[a(x1+x2)+b].(*)

  +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

  課堂教學(xué)設計說(shuō)明

  是函數的一個(gè)重要性質(zhì),是研究函數時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數的大小、對函數作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學(xué)生來(lái)說(shuō),早已有所知,然而沒(méi)有給出過(guò)定義,只是從直觀(guān)上接觸過(guò)這一性質(zhì).學(xué)生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學(xué)生也會(huì )覺(jué)得是已經(jīng)學(xué)過(guò)的知識,感覺(jué)乏味.因此,在設計教案時(shí),加強了對概念的分析,希望能夠使學(xué)生認識到看似簡(jiǎn)單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著(zhù)辯證法的原理.

  另外,對概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對概念的深入的正確的理解往往是學(xué)生認知過(guò)程中的難點(diǎn).因此在本教案的設計過(guò)程中突出對概念的分析不僅僅是為了分析函數單調性的定義,而且想讓學(xué)生對如何學(xué)會(huì )、弄懂一個(gè)概念有初步的認識,并且在以后的學(xué)習中學(xué)有所用.

  還有,使用函數單調性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習的不等式證明方法中的比較化的基本思路,現在提出要求,對今后的教學(xué)作一定的鋪墊.

高一數學(xué)教案3

  教學(xué)目標:

  1、掌握對數的運算性質(zhì),并能理解推導這些法則的依據和過(guò)程;

  2、能較熟練地運用法則解決問(wèn)題;

  教學(xué)重點(diǎn):

  對數的運算性質(zhì)

  教學(xué)過(guò)程:

  一、問(wèn)題情境:

  1、指數冪的運算性質(zhì);

  2、問(wèn)題:對數運算也有相應的運算性質(zhì)嗎?

  二、學(xué)生活動(dòng):

  1、觀(guān)察教材P59的表2—3—1,驗證對數運算性質(zhì)、

  2、理解對數的運算性質(zhì)、

  3、證明對數性質(zhì)、

  三、建構數學(xué):

  1)引導學(xué)生驗證對數的運算性質(zhì)、

  2)推導和證明對數運算性質(zhì)、

  3)運用對數運算性質(zhì)解題、

  探究:

 、俸(jiǎn)易語(yǔ)言表達:“積的對數=對數的和”……

 、谟袝r(shí)逆向運用公式運算:如

 、壅鏀档娜≈捣秶仨毷牵翰怀闪;不成立、

 、茏⒁猓,

  四、數學(xué)運用:

  1、例題:

  例1、(教材P60例4)求下列各式的值:

 。1);(2)125;(3)(補充)lg、

  例2、(教材P60例4)已知,,求下列各式的.值(結果保留4位小數)

 。1);(2)、

  例3、用,,表示下列各式:

  例4、計算:

 。1);(2);(3)

  2、練習:

  P60(練習)1,2,4,5、

  五、回顧小結:

  本節課學(xué)習了以下內容:對數的運算法則,公式的逆向使用、

  六、課外作業(yè):

  P63習題5

  補充:

  1、求下列各式的值:

 。1)6—3;(2)lg5+lg2;(3)3+、

  2、用lgx,lgy,lgz表示下列各式:

 。1)lg(xyz);(2)lg;(3);(4)、

  3、已知lg2=0、3010,lg3=0、4771,求下列各對數的值(精確到小數點(diǎn)后第四位)

 。1)lg6;(2)lg;(3)lg;(4)lg32、

高一數學(xué)教案4

  學(xué)習是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了高一數學(xué)教案:數列,希望對您有所幫助!

  教學(xué)目標

  1.使學(xué)生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫(xiě)出數列的前幾項.

  (1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.

  (2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關(guān)系式,能根據通項公式寫(xiě)出數列的前幾項,并能根據給出的一個(gè)數列的前幾項寫(xiě)出該數列的一個(gè)通項公式.

  (3)已知一個(gè)數列的遞推公式及前若干項,便確定了數列,能用代入法寫(xiě)出數列的前幾項.

  2.通過(guò)對一列數的觀(guān)察、歸納,寫(xiě)出符合條件的一個(gè)通項公式,培養學(xué)生的觀(guān)察能力和抽象概括能力.

  3.通過(guò)由求的過(guò)程,培養學(xué)生嚴謹的科學(xué)態(tài)度及良好的思維習慣.

  教學(xué)建議

  (1)為激發(fā)學(xué)生學(xué)習數列的興趣,體會(huì )數列知識在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數列要研究的問(wèn)題,使學(xué)生對所要研究的內容心中有數,如書(shū)中所給的例子,還有物品堆放個(gè)數的計算等.

  (2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學(xué)生發(fā)現數列與函數的關(guān)系.在教學(xué)中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類(lèi)似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數列就有其特殊的表示法——遞推公式法.

  (3)由數列的通項公式寫(xiě)出數列的前幾項是簡(jiǎn)單的代入法,教師應精心設計例題,使這一例題為寫(xiě)通項公式作一些準備,尤其是對程度差的學(xué)生,應多舉幾個(gè)例子,讓學(xué)生觀(guān)察歸納通項公式與各項的結構關(guān)系,盡量為寫(xiě)通項公式提供幫助.

  (4)由數列的前幾項寫(xiě)出數列的一個(gè)通項公式使學(xué)生學(xué)習中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項中的結構特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規律性的結論,如正負相間用來(lái)調整等.如果學(xué)生一時(shí)不能寫(xiě)出通項公式,可讓學(xué)生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的.關(guān)系.

  (5)對每個(gè)數列都有求和問(wèn)題,所以在本節課應補充數列前項和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結果可合并及不可合并的情況.

  (6)給出一些簡(jiǎn)單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學(xué)生應提出這一問(wèn)題,學(xué)生運用函數知識是可以解決的.

  上述提供的高一數學(xué)教案:數列希望能夠符合大家的實(shí)際需要!

高一數學(xué)教案5

  第一節 集合的含義與表示

  學(xué)時(shí):1學(xué)時(shí)

  [學(xué)習引導]

  一、自主學(xué)習

  1.閱讀課本 .

  2.回答問(wèn)題:

 、疟竟潈热萦心男└拍詈椭R點(diǎn)?

 、茋L試說(shuō)出相關(guān)概念的含義?

  3完成 練習

  4小結

  二、方法指導

  1、要結合例子理解集合的概念,能說(shuō)出常用的數集的名稱(chēng)和符號。

  2、理解集合元素的.特性,并會(huì )判斷元素與集合的關(guān)系

  3、掌握集合的表示方法,并會(huì )正確運用它們表示一些簡(jiǎn)單集合。

  4、在學(xué)習中要特別注意理解空集的意義和記法

  [思考引導]

  一、提問(wèn)題

  1.集合中的元素有什么特點(diǎn)?

  2、集合的常用表示法有哪些?

  3、集合如何分類(lèi)?

  4.元素與集合具有什么關(guān)系?如何用數學(xué)語(yǔ)言表述?

  5集合 和 是否相同?

  二、變題目

  1.下列各組對象不能構成集合的是( )

  A.北京大學(xué)2008級新生

  B.26個(gè)英文字母

  C.著(zhù)名的藝術(shù)家

  D.2008年北京奧運會(huì )中所設定的比賽項目

  2.下列語(yǔ)句:①0與 表示同一個(gè)集合;

 、谟1,2,3組成的集合可表示為 或 ;

 、鄯匠 的解集可表示為 ;

 、芗 可以用列舉法表示。

  其中正確的是( )

  A.①和④ B.②和③

  C.② D.以上語(yǔ)句都不對

  [總結引導]

  1.集合中元素的三特性:

  2.集合、元素、及其相互關(guān)系的數學(xué)符號語(yǔ)言的表示和理解:

  3.空集的含義:

  [拓展引導]

  1.課外作業(yè): 習題11第 題;

  2.若集合 ,求實(shí)數 的值;

  3.若集合 只有一個(gè)元素,則實(shí)數 的值為 ;若 為空集,則 的取值范圍是 .

  撰稿:程曉杰 審稿:宋慶

高一數學(xué)教案6

  本文題目:高一數學(xué)教案:函數的奇偶性

  課題:1.3.2函數的奇偶性

  一、三維目標:

  知識與技能:使學(xué)生理解奇函數、偶函數的概念,學(xué)會(huì )運用定義判斷函數的奇偶性。

  過(guò)程與方法:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推斷的能力。

  情感態(tài)度與價(jià)值觀(guān):通過(guò)繪制和展示優(yōu)美的函數圖象來(lái)陶冶學(xué)生的情操. 通過(guò)組織學(xué)生分組討論,培養學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì )認識事物的特殊性和一般性之間的關(guān)系,培養學(xué)生善于探索的思維品質(zhì)。

  二、學(xué)習重、難點(diǎn):

  重點(diǎn):函數的奇偶性的概念。

  難點(diǎn):函數奇偶性的判斷。

  三、學(xué)法指導:

  學(xué)生在獨立思考的基礎上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

  四、知識鏈接:

  1.復習在初中學(xué)習的'軸對稱(chēng)圖形和中心對稱(chēng)圖形的定義:

  2.分別畫(huà)出函數f (x) =x3與g (x) = x2的圖象,并說(shuō)出圖象的對稱(chēng)性。

  五、學(xué)習過(guò)程:

  函數的奇偶性:

  (1)對于函數 ,其定義域關(guān)于原點(diǎn)對稱(chēng):

  如果______________________________________,那么函數 為奇函數;

  如果______________________________________,那么函數 為偶函數。

  (2)奇函數的圖象關(guān)于__________對稱(chēng),偶函數的圖象關(guān)于_________對稱(chēng)。

  (3)奇函數在對稱(chēng)區間的增減性 ;偶函數在對稱(chēng)區間的增減性 。

  六、達標訓練:

  A1、判斷下列函數的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數 ( )是偶函數,則b=___________ .

  B3、已知 ,其中 為常數,若 ,則

  _______ .

  B4、若函數 是定義在R上的奇函數,則函數 的圖象關(guān)于 ( )

  (A) 軸對稱(chēng) (B) 軸對稱(chēng) (C)原點(diǎn)對稱(chēng) (D)以上均不對

  B5、如果定義在區間 上的函數 為奇函數,則 =_____ .

  C6、若函數 是定義在R上的奇函數,且當 時(shí), ,那么當

  時(shí), =_______ .

  D7、設 是 上的奇函數, ,當 時(shí), ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數 ,則常數 ____ , _____ .

  七、學(xué)習小結:

  本節主要學(xué)習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時(shí),必須注意首先判斷函數的定義域是否關(guān)于原點(diǎn)對稱(chēng)。單調性與奇偶性的綜合應用是本節的一個(gè)難點(diǎn),需要學(xué)生結合函數的圖象充分理解好單調性和奇偶性這兩個(gè)性質(zhì)。

  八、課后反思:

高一數學(xué)教案7

  教學(xué)目標

  1、使學(xué)生掌握的概念,圖象和性質(zhì)、

 。1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域、

 。2)能在基本性質(zhì)的指導下,用列表描點(diǎn)法畫(huà)出的圖象,能從數形兩方面認識的性質(zhì)、

 。3)能利用的性質(zhì)比較某些冪形數的大小,會(huì )利用的圖象畫(huà)出形如的圖象、

  2、通過(guò)對的概念圖象性質(zhì)的學(xué)習,培養學(xué)生觀(guān)察,分析歸納的能力,進(jìn)一步體會(huì )數形結合的思想方法、

  3、通過(guò)對的研究,讓學(xué)生認識到數學(xué)的應用價(jià)值,激發(fā)學(xué)生學(xué)習數學(xué)的興趣、使學(xué)生善于從現實(shí)生活中數學(xué)的發(fā)現問(wèn)題,解決問(wèn)題、教學(xué)建議

  教材分析

 。1)是在學(xué)生系統學(xué)習了函數概念,基本掌握了函數的性質(zhì)的基礎上進(jìn)行研究的,它是重要的基本初等函數之一,作為常見(jiàn)函數,它既是函數概念及性質(zhì)的第一次應用,也是今后學(xué)習對數函數的基礎,同時(shí)在生活及生產(chǎn)實(shí)際中有著(zhù)廣泛的.應用,所以應重點(diǎn)研究、

 。2)本節的教學(xué)重點(diǎn)是在理解定義的基礎上掌握的圖象和性質(zhì)、難點(diǎn)是對底數在和時(shí),函數值變化情況的區分、

 。3)是學(xué)生完全陌生的一類(lèi)函數,對于這樣的函數應怎樣進(jìn)行較為系統的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類(lèi)函數的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì )研究的方法,以便能將其遷移到其他函數的研究、

  教法建議

 。1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是、

 。2)對底數的限制條件的理解與認識也是認識的重要內容、如果有可能盡量讓學(xué)生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說(shuō)明,因為對這個(gè)條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習對數函數中底數的認識,所以一定要真正了解它的由來(lái)、

  關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應避免描點(diǎn)前的盲目列表計算,也應避免盲目的連點(diǎn)成線(xiàn),要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當之處,所以應在列表描點(diǎn)前先把函數的性質(zhì)作一些簡(jiǎn)單的討論,取得對要畫(huà)圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點(diǎn)得圖象、

高一數學(xué)教案8

  一、教學(xué)目標

 。1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;

 。2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;

 。3)能用邏輯聯(lián)結詞和簡(jiǎn)單命題構成不同形式的復合命題;

 。4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡(jiǎn)單命題;

 。5)會(huì )用真值表判斷相應的復合命題的真假;

 。6)在知識學(xué)習的基礎上,培養學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復合命題真假的方法;難點(diǎn)是對“或”的含義的理解.

  三、教學(xué)過(guò)程

  1.新課導入

  在當今社會(huì )中,人們從事任何工作、學(xué)習,都離不開(kāi)邏輯.具有一定邏輯知識是構成一個(gè)公民的文化素質(zhì)的重要方面.數學(xué)的特點(diǎn)是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調邏輯性.如果不學(xué)習一定的邏輯知識,將會(huì )在我們學(xué)習的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識.

  初一平面幾何中曾學(xué)過(guò)命題,請同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

 。◤某踔薪佑|過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習邏輯的有關(guān)知識.)

  學(xué)生舉例:平行四邊形的對角線(xiàn)互相平. ……(1)

  兩直線(xiàn)平行,同位角相等.…………(2)

  教師提問(wèn):“……相等的角是對頂角”是不是命題?……(3)

 。ㄍ瑢W(xué)議論結果,答案是肯定的.)

  教師提問(wèn):什么是命題?

 。▽W(xué)生進(jìn)行回憶、思考.)

  概念總結:對一件事情作出了判斷的語(yǔ)句叫做命題.

 。ń處熆隙送瑢W(xué)的回答,并作板書(shū).)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛队捌,和學(xué)生討論以下問(wèn)題.)

  例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒(méi)有對一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識,我們今天開(kāi)始要在初中學(xué)習的基礎上,介紹簡(jiǎn)易邏輯的知識.

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內容主要講了哪些問(wèn)題?

 。ㄆ毯笳埻瑢W(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語(yǔ)句叫做命題.

  判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

 。2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

  命題可分為簡(jiǎn)單命題和復合命題.

  不含邏輯聯(lián)結詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的'命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡(jiǎn)單命題“6是自然數”和“6是偶數”由邏輯聯(lián)結詞“且”構成的復合命題.

 。4)命題的表示:用p ,q ,r ,s ,……來(lái)表示.

 。ń處煾鶕䦟W(xué)生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開(kāi).)

  我們接觸的復合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復合命題,應能說(shuō)出構成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結詞;應能根據所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.

  對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結論q .

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合”,此命題字面上無(wú)“且”;命題“5的倍數的末位數字不是0就是5”的字面上無(wú)“或”,但它們都是復合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡(jiǎn)單命題.

 。1)5 ;

 。2)0.5非整數;

 。3)內錯角相等,兩直線(xiàn)平行;

 。4)菱形的對角線(xiàn)互相垂直且平分;

 。5)平行線(xiàn)不相交;

 。6)若ab=0 ,則a=0 .

 。ㄗ寣W(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據學(xué)生的情況作些補充.)

高一數學(xué)教案9

  【摘要】鑒于大家對數學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀(guān)圖高一數學(xué)教案,供大家參考!

  本文題目:空間幾何體的三視圖和直觀(guān)圖高一數學(xué)教案

  第一課時(shí) 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

  教學(xué)要求:能畫(huà)出簡(jiǎn)單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

  教學(xué)重點(diǎn):畫(huà)出三視圖、識別三視圖.

  教學(xué)難點(diǎn):識別三視圖所表示的空間幾何體.

  教學(xué)過(guò)程:

  一、新課導入:

  1. 討論:能否熟練畫(huà)出上節所學(xué)習的幾何體?工程師如何制作工程設計圖紙?

  2. 引入:從不同角度看廬山,有古詩(shī):橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學(xué)幾何體,常用三視圖和直觀(guān)圖來(lái)畫(huà)在紙上.

  三視圖:觀(guān)察者從不同位置觀(guān)察同一個(gè)幾何體,畫(huà)出的空間幾何體的圖形;

  直觀(guān)圖:觀(guān)察者站在某一點(diǎn)觀(guān)察幾何體,畫(huà)出的空間幾何體的圖形.

  用途:工程建設、機械制造、日常生活.

  二、講授新課:

  1. 教學(xué)中心投影與平行投影:

 、 投影法的提出:物體在光線(xiàn)的照射下,就會(huì )在地面或墻壁上產(chǎn)生影子。人們將這種自然現象加以科學(xué)的抽象,總結其中的規律,提出了投影的方法。

 、 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的`變化而變化,所以其投影不能反映物體的實(shí)形.

 、 平行投影:在一束平行光線(xiàn)照射下形成的投影. 分正投影、斜投影.

  討論:點(diǎn)、線(xiàn)、三角形在平行投影后的結果.

  2. 教學(xué)柱、錐、臺、球的三視圖:

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

  討論:三視圖與平面圖形的關(guān)系? 畫(huà)出長(cháng)方體的三視圖,并討論所反應的長(cháng)、寬、高

  結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個(gè)角度,分別觀(guān)察,畫(huà)出觀(guān)察得出的各種結果. 正視圖、側視圖、俯視圖.

 、 試畫(huà)出:棱柱、棱錐、棱臺、圓臺的三視圖. (

 、 討論:三視圖,分別反應物體的哪些關(guān)系(上下、左右、前后)?哪些數量(長(cháng)、寬、高)

  正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;

  側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

 、 討論:根據以上的三視圖,如何逆向得到幾何體的形狀.

  (試變化以上的三視圖,說(shuō)出相應幾何體的擺放)

  3. 教學(xué)簡(jiǎn)單組合體的三視圖:

 、 畫(huà)出教材P16 圖(2)、(3)、(4)的三視圖.

 、 從教材P16思考中三視圖,說(shuō)出幾何體.

  4. 練習:

 、 畫(huà)出正四棱錐的三視圖.

  畫(huà)出右圖所示幾何體的三視圖.

 、 右圖是一個(gè)物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

  5. 小結:投影法;三視圖;順與逆

  三、鞏固練習: 練習:教材P17 1、2、3、4

  第二課時(shí) 1.2.3 空間幾何體的直觀(guān)圖

  教學(xué)要求:掌握斜二測畫(huà)法;能用斜二測畫(huà)法畫(huà)空間幾何體的直觀(guān)圖.

  教學(xué)重點(diǎn):畫(huà)出直觀(guān)圖.

高一數學(xué)教案10

  教學(xué)目標:

  1.進(jìn)一步理解對數函數的性質(zhì),能運用對數函數的相關(guān)性質(zhì)解決對數型函數的常見(jiàn)問(wèn)題.

  2.培養學(xué)生數形結合的思想,以及分析推理的能力.

  教學(xué)重點(diǎn):

  對數函數性質(zhì)的應用.

  教學(xué)難點(diǎn):

  對數函數的性質(zhì)向對數型函數的演變延伸.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.復習對數函數的性質(zhì).

  2.回答下列問(wèn)題.

  (1)函數y=log2x的值域是 ;

  (2)函數y=log2x(x≥1)的值域是 ;

  (3)函數y=log2x(0

  3.情境問(wèn)題.

  函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

  二、學(xué)生活動(dòng)

  探究完成情境問(wèn)題.

  三、數學(xué)運用

  例1 求函數y=log2(x2+2x+2)的定義域和值域.

  練習:

  (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

  (2)函數 ,x(0,8]的值域是 .

  (3)函數y=log (x2-6x+17)的值域 .

  (4)函數 的值域是_______________.

  例2 判斷下列函數的奇偶性:

  (1)f (x)=lg (2)f (x)=ln( -x)

  例3 已知loga 0.75>1,試求實(shí)數a 取值范圍.

  例4 已知函數y=loga(1-ax)(a>0,a≠1).

  (1)求函數的定義域與值域;

  (2)求函數的單調區間.

  練習:

  1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的`有 (請寫(xiě)出所有正確結論的序號).

  2.函數y=lg( -1)的圖象關(guān)于 對稱(chēng).

  3.已知函數 (a>0,a≠1)的圖象關(guān)于原點(diǎn)對稱(chēng),那么實(shí)數m= .

  4.求函數 ,其中x [ ,9]的值域.

  四、要點(diǎn)歸納與方法小結

  (1)借助于對數函數的性質(zhì)研究對數型函數的定義域與值域;

  (2)換元法;

  (3)能畫(huà)出較復雜函數的圖象,根據圖象研究函數的性質(zhì)(數形結合).

  五、作業(yè)

  課本P70~71-4,5,10,11.

高一數學(xué)教案11

  一、教學(xué)目標

  1、知識與技能:

 。1)通過(guò)實(shí)物操作,增強學(xué)生的直觀(guān)感知。

 。2)能根據幾何結構特征對空間物體進(jìn)行分類(lèi)。

 。3)會(huì )用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會(huì )表示有關(guān)于幾何體以及柱、錐、臺的分類(lèi)。

  2、過(guò)程與方法:

 。1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識。

  3、情感態(tài)度與價(jià)值觀(guān):

 。1)使學(xué)生感受空間幾何體存在于現實(shí)生活周?chē),增強學(xué)生學(xué)習的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。

 。2)培養學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn):

  讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結構特征。

  難點(diǎn):柱、錐、臺、球的結構特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀(guān)察、思考、交流、討論、概括。

 。2)實(shí)物模型、投影儀。

  四、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情景,揭示課題

  1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))

  2在我們周?chē)杏胁簧儆刑厣?建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?

  3、展示具有柱、錐、臺、球結構特征的空間物體。

  問(wèn)題:請根據某種標準對以上空間物體進(jìn)行分類(lèi)。

 。ǘ、研探新知

  空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺;

  旋轉體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結構特征:

 。1)觀(guān)察棱柱的幾何物體以及投影出棱柱的圖片,

  思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?

 。▽W(xué)生討論)

 。2)棱柱的主要結構特征(棱柱的概念):

 、儆袃蓚(gè)面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。

 。3)棱柱的表示法及分類(lèi):

 。4)相關(guān)概念:底面(底)、側面、側棱、頂點(diǎn)。

  2、棱錐、棱臺的結構特征:

 。1)實(shí)物模型演示,投影圖片;

 。2)以類(lèi)似的方法,根據出棱錐、棱臺的結構特征,并得出相關(guān)的概念、分類(lèi)以及表示。

  棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。

  棱臺:且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結構特征:

 。1)實(shí)物模型演示,投影圖片——如何得到圓柱?

 。2)根據圓柱的概念、相關(guān)概念及圓柱的表示。

  4、圓錐、圓臺、球的結構特征:

 。1)實(shí)物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

 。2)以類(lèi)似的方法,根據圓錐、圓臺、球的結構特征,以及相關(guān)概念和表示。

  5、柱體、錐體、臺體的概念及關(guān)系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當底面發(fā)生變化時(shí),它們能否互相轉化?

  圓柱、圓錐、圓臺呢?

  6、簡(jiǎn)單組合體的結構特征:

 。1)簡(jiǎn)單組合體的構成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。

 。2)實(shí)物模型演示,投影圖片——說(shuō)出組成這些物體的幾何結構特征。

 。3)列舉身邊物體,說(shuō)出它們是由哪些基本幾何體組成的。

 。ㄈ┡烹y解惑,發(fā)展思維

  1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說(shuō)明)

  2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

 。ㄋ模╈柟躺罨

  練習:課本P7練習1、2;課本P8習題1、1第1、2、3、4、5題

 。ㄎ澹w納整理:由學(xué)生整理學(xué)習了哪些內容

高一數學(xué)教案12

  1.1 集合含義及其表示

  教學(xué)目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語(yǔ)。

  教學(xué)過(guò)程:

  一、閱讀下列語(yǔ)句:

  1) 全體自然數0,1,2,3,4,5,

  2) 代數式 .

  3) 拋物線(xiàn) 上所有的點(diǎn)

  4) 今年本校高一(1)(或(2))班的全體學(xué)生

  5) 本校實(shí)驗室的所有天平

  6) 本班級全體高個(gè)子同學(xué)

  7) 著(zhù)名的科學(xué)家

  上述每組語(yǔ)句所描述的對象是否是確定的?

  二、1)集合:

  2)集合的.元素:

  3)集合按元素的個(gè)數分,可分為1)__________2)_________

  三、集合中元素的三個(gè)性質(zhì):

  1)___________2)___________3)_____________

  四、元素與集合的關(guān)系:1)____________2)____________

  五、特殊數集專(zhuān)用記號:

  1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______

  4)有理數集______5)實(shí)數集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例題講解:

  例1、 中三個(gè)元素可構成某一個(gè)三角形的三邊長(cháng),那么此三角形一定不是 ( )

  A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

  例2、用適當的方法表示下列集合,然后說(shuō)出它們是有限集還是無(wú)限集?

  1)地球上的四大洋構成的集合;

  2)函數 的全體 值的集合;

  3)函數 的全體自變量 的集合;

  4)方程組 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇數組成的集合;

  8)所有正偶數組成的集合;

  例3、用符號 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)設 , , 則

  例4、用列舉法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的數

  2.圖中陰影部分點(diǎn)(含邊界)的坐標的集合

  課堂練習:

  例6、設含有三個(gè)實(shí)數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

  例7、已知: ,若 中元素至多只有一個(gè),求 的取值范圍。

  思考題:數集A滿(mǎn)足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個(gè)元素;2)若 則集合A不可能是單元素集合。

  小結:

  作業(yè) 班級 姓名 學(xué)號

  1. 下列集合中,表示同一個(gè)集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .則 ( )

  A . B. C. D.

  3. 方程組 的解集是____________________.

  4. 在(1)難解的題目,(2)方程 在實(shí)數集內的解,(3)直角坐標平面內第四象限的一些點(diǎn),(4)很多多項式。能夠組成集合的序號是________________.

  5. 設集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的個(gè)數是____________.

  6. 設 ,則集合 中所有元素的和為

  7. 設x,y,z都是非零實(shí)數,則用列舉法將 所有可能的值組成的集合表示為

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,試用列舉法表示集合B=

  9. 把下列集合用另一種方法表示出來(lái):

  (1) (2)

  (3) (4)

  10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說(shuō)明理由。

  11. 已知集合A=

  (1) 若A中只有一個(gè)元素,求a的值,并求出這個(gè)元素;

  (2) 若A中至多只有一個(gè)元素,求a的取值集合。

  12.若-3 ,求實(shí)數a的值。

  【總結】20xx年已經(jīng)到來(lái),新的一年數學(xué)網(wǎng)會(huì )為您整理更多更好的文章,希望本文高一數學(xué)教案:集合含義及其表示能給您帶來(lái)幫助!

高一數學(xué)教案13

  教學(xué)目標

  1.了解函數的單調性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

  (1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

  (2)能從數和形兩個(gè)角度認識單調性和奇偶性.

  (3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數圖象的繪制過(guò)程.

  2.通過(guò)函數單調性的證明,提高學(xué)生在代數方面的推理論證能力;通過(guò)函數奇偶性概念的形成過(guò)程,培養學(xué)生的觀(guān)察,歸納,抽象的能力,同時(shí)滲透數形結合,從特殊到一般的數學(xué)思想.

  3.通過(guò)對函數單調性和奇偶性的理論研究,增學(xué)生對數學(xué)美的體驗,培養樂(lè )于求索的精神,形成科學(xué),嚴謹的研究態(tài)度.

  教學(xué)建議

  一、知識結構

  (1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關(guān)系.

  (2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

  二、重點(diǎn)難點(diǎn)分析

  (1)本節教學(xué)的重點(diǎn)是函數的單調性,奇偶性概念的形成與認識.教學(xué)的難點(diǎn)是領(lǐng)悟函數單調性, 奇偶性的本質(zhì),掌握單調性的證明.

  (2)函數的單調性這一性質(zhì)學(xué)生在初中所學(xué)函數中曾經(jīng)了解過(guò),但只是從圖象上直觀(guān)觀(guān)察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數的翻譯,從直觀(guān)到抽象的轉變對高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調性的證明是學(xué)生在函數內容中首次接觸到的代數論證內容,學(xué)生在代數論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數證明,也沒(méi)有意識到它的重要性,所以單調性的證明自然就是教學(xué)中的難點(diǎn).

  三、教法建議

  (1)函數單調性概念引入時(shí),可以先從學(xué)生熟悉的一次函數,,二次函數.反比例函數圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認識出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設計這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標的角度,也可以從自變量與函數值的關(guān)系的角度來(lái)解釋,引導學(xué)生發(fā)現自變量與函數值的的變化規律,再把這種規律用數學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對一些關(guān)鍵的詞語(yǔ)(某個(gè)區間,任意,都有)的`理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來(lái).

  (2)函數單調性證明的步驟是嚴格規定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學(xué)生總結規律.

  函數的奇偶性概念引入時(shí),可設計一個(gè)課件,以的圖象為例,讓自變量互為相反數,觀(guān)察對應的函數值的變化規律,先從具體數值開(kāi)始,逐漸讓在數軸上動(dòng)起來(lái),觀(guān)察任意性,再讓學(xué)生把看到的用數學(xué)表達式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì )它代表的是無(wú)數多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱(chēng)的問(wèn)題,也可借助課件將函數圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現定義域的對稱(chēng)性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對稱(chēng)只是函數具備奇偶性的必要條件而不是充分條件.

高一數學(xué)教案14

  經(jīng)典例題

  已知關(guān)于 的方程 的實(shí)數解在區間 ,求 的取值范圍。

  反思提煉:1.常見(jiàn)的四種指數方程的一般解法

 。1)方程 的解法:

 。2)方程 的解法:

 。3)方程 的解法:

 。4)方程 的.解法:

  2.常見(jiàn)的三種對數方程的一般解法

 。1)方程 的解法:

 。2)方程 的解法:

 。3)方程 的解法:

  3.方程與函數之間的轉化。

  4.通過(guò)數形結合解決方程有無(wú)根的問(wèn)題。

  課后作業(yè):

  1.對正整數n,設曲線(xiàn) 在x=2處的切線(xiàn)與軸交點(diǎn)的縱坐標為 ,則數列 的前n項和的公式是

  [答案] 2n+1-2

  [解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

  f ′(2)=-n2n-1-2n=(-n-2)2n-1.

  在點(diǎn)x=2處點(diǎn)的縱坐標為=-2n.

  ∴切線(xiàn)方程為+2n=(-n-2)2n-1(x-2).

  令x=0得,=(n+1)2n,

  ∴an=(n+1)2n,

  ∴數列ann+1的前n項和為2(2n-1)2-1=2n+1-2.

  2.在平面直角坐標系 中,已知點(diǎn)P是函數 的圖象上的動(dòng)點(diǎn),該圖象在P處的切線(xiàn) 交軸于點(diǎn)M,過(guò)點(diǎn)P作 的垂線(xiàn)交軸于點(diǎn)N,設線(xiàn)段MN的中點(diǎn)的縱坐標為t,則t的最大值是_____________

  解析:設 則 ,過(guò)點(diǎn)P作 的垂線(xiàn)

  ,所以,t在 上單調增,在 單調減, 。

高一數學(xué)教案15

  一、本課數學(xué)內容的本質(zhì)、地位、作用分析

  普通高中課標教材必修1共安排了三章內容,第一章是《集合與函數的概念》,第二章是《基本初等函數(Ⅰ)》,第三章是《函數的應用》。第三章編排了兩塊內容,第一部分是函數與方程,第二部分是函數模型及其應用。本節課方程的根與函數的零點(diǎn),正是在這種建立和運用函數模型的大背景下展開(kāi)的。本節課的主要教學(xué)內容是函數零點(diǎn)的定義和函數零點(diǎn)存在的判定依據,這兩者顯然是為下節“用二分法求方程近似解”這一“函數的應用”服務(wù)的,同時(shí)也為后續學(xué)習的算法埋下伏筆。由此可見(jiàn),它起著(zhù)承上啟下的作用,與整章、整冊綜合成一個(gè)整體,學(xué)好本節意義重大。

  函數在數學(xué)中占據著(zhù)不可替代的核心地位,根本原因之一在于函數與其他知識具有廣泛的聯(lián)系,而函數的零點(diǎn)就是其中的一個(gè)鏈結點(diǎn),它從不同的角度,將數與形,函數與方程有機地聯(lián)系在一起。方程本身就是函數的一部分,用函數的觀(guān)點(diǎn)來(lái)研究方程,就是將局部放入整體中研究,進(jìn)而對整體和局部都有一個(gè)更深層次的理解,并學(xué)會(huì )用聯(lián)系的觀(guān)點(diǎn)解決問(wèn)題,為后面函數與不等式和數列等其他知識的聯(lián)系奠定基礎。

  二、教學(xué)目標分析

  本節內容包含三大知識點(diǎn):

  一、函數零點(diǎn)的定義;

  二、方程的根與函數零點(diǎn)的等價(jià)關(guān)系;

  三、零點(diǎn)存在性定理。

  結合本節課引入三大知識點(diǎn)的方法,設定本節課的知識與技能目標如下:

  1.結合方程根的幾何意義,理解函數零點(diǎn)的定義;

  2.結合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應函數零點(diǎn)之間的等價(jià)關(guān)系;

  3.結合幾類(lèi)基本初等函數的圖象特征,掌握判斷函數的零點(diǎn)個(gè)數和所在區間的方法.

  本節課是學(xué)生在學(xué)習了函數的性質(zhì),具備了初步的數形結合知識的基礎上,通過(guò)對特殊函數圖象的分析進(jìn)行展開(kāi)的,是培養學(xué)生“化歸與轉化思想”,“數形結合思想”,“函數與方程思想”的優(yōu)質(zhì)載體。

  結合本節課教學(xué)主線(xiàn)的設計,設定本節課的`過(guò)程與方法目標如下:

  1.通過(guò)化歸與轉化思想的引導,培養學(xué)生從已有認知結構出發(fā),尋求解決棘手問(wèn)題方法的習慣;

  2.通過(guò)數形結合思想的滲透,培養學(xué)生主動(dòng)應用數學(xué)思想的意識;

  3.通過(guò)習題與探究知識的相關(guān)性設置,引導學(xué)生深入探究得出判斷函數的零點(diǎn)個(gè)數和所在區間的方法;

  4.通過(guò)對函數與方程思想的不斷剖析,促進(jìn)學(xué)生對知識靈活應用的能力。

  由于本節課將以教師引導,學(xué)生探究為主體形式,故設定本節課的情感、態(tài)度與價(jià)值觀(guān)目標如下:

  1.讓學(xué)生體驗化歸與轉化、數形結合、函數與方程這三大數學(xué)思想在解決數學(xué)問(wèn)題時(shí)的意義與價(jià)值;

  2.培養學(xué)生鍥而不舍的探索精神和嚴密思考的良好學(xué)習習慣。

  3.使學(xué)生感受學(xué)習、探索發(fā)現的樂(lè )趣與成功感。

  三、教學(xué)問(wèn)題診斷

  學(xué)生具備的認知基礎:

  1.基本初等函數的圖象和性質(zhì);

  2.一元二次方程的根和相應函數圖象與x軸的聯(lián)系;

  3.將數與形相結合轉化的意識。

  學(xué)生欠缺的實(shí)際能力:

  1.主動(dòng)應用數形結合思想解決問(wèn)題的意識還不強;

  2.將未知問(wèn)題已知化,將復雜問(wèn)題簡(jiǎn)單化的化歸意識淡薄;

  3.從直觀(guān)到抽象的概括總結能力還不夠;

  4.概念的內涵與外延的探究意識有待提高。

  對本節課的教學(xué),教材是利用一組一元二次方程和二次函數的關(guān)系來(lái)引入函數零點(diǎn)的。這樣處理,主要是想讓學(xué)生在原有二次函數的認知基礎上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數這樣簡(jiǎn)單的函數零點(diǎn),再來(lái)理解其他復雜的函數零點(diǎn)就會(huì )容易一些。但學(xué)生對如何解一元二次方程以及二次函數的圖象早就熟練了,這樣的引入過(guò)程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對零點(diǎn)的理解也只會(huì )浮于表面,也無(wú)法使其體會(huì )引入函數零點(diǎn)的必要性,理解不了方程根存在的本質(zhì)原因是零點(diǎn)的存在。

  教材是通過(guò)由直觀(guān)到抽象的過(guò)程,才得到判斷函數y=f(x)在(a,b)內有零點(diǎn)的一種條件的,如果不能有效地對該過(guò)程進(jìn)行引導,容易出現學(xué)生被動(dòng)接受,盲目記憶的結果,而喪失了對學(xué)生應用數學(xué)思想方法的意識進(jìn)行培養的機會(huì )。

  教材中零點(diǎn)存在性定理只表述了存在零點(diǎn)的條件,但對存在零點(diǎn)的個(gè)數并未多做說(shuō)明,這就要求教師對該定理的內涵和外延要有清晰的把握,引導學(xué)生探究出只存在一個(gè)零點(diǎn)的條件,否則學(xué)生對定理的內容很容易心存疑慮。

  四、本節課的教法特點(diǎn)以及預期效果分析

  本節課教法的幾大特點(diǎn)總結如下:

  1.以問(wèn)題為主線(xiàn)貫穿始終;

  2.精心設置引導性的語(yǔ)言放手讓學(xué)生探究;

  3.注重在引導學(xué)生探究問(wèn)題解法的過(guò)程中滲透數學(xué)思想;

  4.在探究過(guò)程中引入新知識點(diǎn),在引入新知識點(diǎn)后適時(shí)歸納總結,進(jìn)行探究階段性成果的應用。

  由于所設置的主線(xiàn)問(wèn)題具有很高的探究?jì)r(jià)值,所以預期學(xué)生熱情會(huì )很高,積極性調動(dòng)起來(lái),那整節課才能活起來(lái);

  由于為了更好地組織學(xué)生探究所設置的引導性語(yǔ)言,重在去挖掘學(xué)生內心真實(shí)的想法和他們最真實(shí)體會(huì )到的困難,所以通過(guò)學(xué)生活動(dòng)會(huì )更多地暴露他們在基礎知識掌握方面的缺憾,免不了要隨時(shí)糾正對過(guò)往知識的錯誤理解;

  因為在探究過(guò)程中不斷滲透數學(xué)思想,學(xué)生對親身經(jīng)歷的解題方法就會(huì )有更深的體會(huì ),主動(dòng)應用數學(xué)思想的意識在上升,對于主線(xiàn)問(wèn)題也應該可以迎刃而解;

  因為在探究過(guò)程中引入新知識點(diǎn),學(xué)生對新知識產(chǎn)生的必要性會(huì )有更深刻的體會(huì )和認識,同時(shí)在新知識產(chǎn)生后,又適時(shí)地加以應用,學(xué)生對新知識的應用能力不斷提高。

【高一數學(xué)教案】相關(guān)文章:

高一數學(xué)教案12-21

高一數學(xué)教案06-20

高一數學(xué)教案07-20

高一必修五數學(xué)教案04-10

高一必修四數學(xué)教案04-13

人教版高一數學(xué)教案07-30

上海高一數學(xué)教案07-30

關(guān)于高一數學(xué)教案09-30

人教版高一數學(xué)教案12-23

高一數學(xué)教案【熱門(mén)】01-17