人教版高一數學(xué)教案
作為一無(wú)名無(wú)私奉獻的教育工作者,往往需要進(jìn)行教案編寫(xiě)工作,教案是實(shí)施教學(xué)的主要依據,有著(zhù)至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家整理的人教版高一數學(xué)教案,希望能夠幫助到大家。
人教版高一數學(xué)教案1
教學(xué)目標:
(1)了解集合的表示方法;
(2)能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):掌握集合的表示方法;
教學(xué)難點(diǎn):選擇恰當的表示方法;
教學(xué)過(guò)程:
一、復習回顧:
1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
我們可以用自然語(yǔ)言和圖形語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
(1) 列舉法:把集合中的元素一一列舉出來(lái),并用花括號“ ”括起來(lái)表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說(shuō)明:1.集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考
慮元素的順序。
2.各個(gè)元素之間要用逗號隔開(kāi);
3.元素不能重復;
4.集合中的元素可以數,點(diǎn),代數式等;
5.對于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數組成的集合;
(2)方程x2=x的所有實(shí)數根組成的集合;
(3)由1到20以?xún)鹊乃匈|(zhì)數組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在花括號{ }內。
具體方法:在花括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說(shuō)明:
1.課本P5最后一段話(huà);
2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個(gè)集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實(shí)數根組成的集合;
(2)由大于10小于20的所有整數組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(二).課堂練習:
1.課本P6練習2;
2.用適當的方法表示集合:大于0的所有奇數
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結:
本節課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1. 習題1.1,第3.4題;
2. 課后預習集合間的基本關(guān)系.
人教版高一數學(xué)教案2
經(jīng)典例題
已知關(guān)于 的方程 的實(shí)數解在區間 ,求 的取值范圍。
反思提煉:1.常見(jiàn)的四種指數方程的一般解法
。1)方程 的解法:
。2)方程 的解法:
。3)方程 的解法:
。4)方程 的解法:
2.常見(jiàn)的三種對數方程的一般解法
。1)方程 的解法:
。2)方程 的解法:
。3)方程 的解法:
3.方程與函數之間的轉化。
4.通過(guò)數形結合解決方程有無(wú)根的問(wèn)題。
課后作業(yè):
1.對正整數n,設曲線(xiàn) 在x=2處的切線(xiàn)與軸交點(diǎn)的縱坐標為 ,則數列 的前n項和的公式是
[答案] 2n+1-2
[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f ′(2)=-n2n-1-2n=(-n-2)2n-1.
在點(diǎn)x=2處點(diǎn)的縱坐標為=-2n.
∴切線(xiàn)方程為+2n=(-n-2)2n-1(x-2).
令x=0得,=(n+1)2n,
∴an=(n+1)2n,
∴數列ann+1的前n項和為2(2n-1)2-1=2n+1-2.
2.在平面直角坐標系 中,已知點(diǎn)P是函數 的圖象上的動(dòng)點(diǎn),該圖象在P處的切線(xiàn) 交軸于點(diǎn)M,過(guò)點(diǎn)P作 的垂線(xiàn)交軸于點(diǎn)N,設線(xiàn)段MN的中點(diǎn)的縱坐標為t,則t的最大值是_____________
解析:設 則 ,過(guò)點(diǎn)P作 的垂線(xiàn)
,所以,t在 上單調增,在 單調減, 。
人教版高一數學(xué)教案3
1、教材(教學(xué)內容)
本課時(shí)主要研究任意角三角函數的定義。三角函數是一類(lèi)重要的基本初等函數,是描述周期性現象的重要數學(xué)模型,本課時(shí)的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來(lái)抽象和規范三角函數的定義,同時(shí)也可以類(lèi)比研究函數的模式和方法來(lái)研究三角函數;啟后是指定義了三角函數之后,就可以進(jìn)一步研究三角函數的性質(zhì)及圖象特征,并體會(huì )三角函數在解決具有周期性變化規律問(wèn)題中的作用,從而更深入地領(lǐng)會(huì )數學(xué)在其它領(lǐng)域中的重要應用、
2、設計理念
本堂課采用“問(wèn)題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現了教師的引導作用。整堂課先通過(guò)問(wèn)題引導學(xué)生梳理已有的知識結構,展開(kāi)合理的聯(lián)想,提出整堂課要解決的中心問(wèn)題:圓周運動(dòng)等具周期性規律運動(dòng)可以建立函數模型來(lái)刻畫(huà)嗎?從而引導學(xué)生帶著(zhù)問(wèn)題閱讀和鉆研教材,引發(fā)認知沖突,再通過(guò)問(wèn)題引導學(xué)生改造或重構已有的認知結構,并運用類(lèi)比方法,形成“任意角三角函數的定義”這一新的概念,最后通過(guò)例題與練習,將任意角三角函數的定義,內化為學(xué)生新的認識結構,從而達成教學(xué)目標、
3、教學(xué)目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學(xué)會(huì )運用這一定義,解決相關(guān)問(wèn)題、
過(guò)程與方法目標:體會(huì )數學(xué)建模思想、類(lèi)比思想和化歸思想在數學(xué)新概念形成中的重要作用、
情感態(tài)度與價(jià)值觀(guān)目標:引導學(xué)生學(xué)會(huì )閱讀數學(xué)教材,學(xué)會(huì )發(fā)現和欣賞數學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)
重點(diǎn):任意角三角函數的定義、
難點(diǎn):任意角三角函數這一概念的理解(函數模型的建立)、類(lèi)比與化歸思想的滲透、
5、學(xué)情分析
學(xué)生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數的概念、在教學(xué)過(guò)程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點(diǎn)的坐標來(lái)表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學(xué)生形成新的認知結構、
6、教法分析
“問(wèn)題解決”教學(xué)法,是以問(wèn)題為主線(xiàn),引導和驅動(dòng)學(xué)生的思維和學(xué)習活動(dòng),并通過(guò)問(wèn)題,引導學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過(guò)程,最后在解決問(wèn)題的過(guò)程中形成新的認知結構、這種教學(xué)模式能較好地體現課堂上老師的主導作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、
7、學(xué)法分析
本課時(shí)先通過(guò)“閱讀”學(xué)習法,引導學(xué)生改造已有的認知結構,再通過(guò)類(lèi)比學(xué)習法引導學(xué)生形成“任意角的三角函數的定義”,最后引導學(xué)生運用類(lèi)比學(xué)習法,來(lái)研究三角函數一些基本性質(zhì)和符號問(wèn)題,從而使學(xué)生形成新的認識結構,達成教學(xué)目標、
8、教學(xué)設計(過(guò)程)
一、引入
問(wèn)題1:我們已經(jīng)學(xué)過(guò)了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問(wèn)題2:研究“任意角”這一概念時(shí),我們引進(jìn)了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問(wèn)題3:當角clipXimage002的終邊在繞頂點(diǎn)O轉動(dòng)時(shí),終邊上的一個(gè)點(diǎn)P(x,y)必定隨著(zhù)終邊繞頂點(diǎn)O作圓周運動(dòng),在這圓周運動(dòng)中,有哪些數量?圓周運動(dòng)的這些量之間的關(guān)系能用一個(gè)函數模型來(lái)刻畫(huà)嗎?
二、原有認知結構的改造和重構
問(wèn)題4:當角clipXimage002[1]是銳角時(shí),clipXimage004,線(xiàn)段OP的長(cháng)度clipXimage006這幾個(gè)量之間有何關(guān)系?
學(xué)生回答,分析結論,指出這種關(guān)系就是我們在初中學(xué)習過(guò)的銳角三角函數
學(xué)生閱讀教材,并思考:
問(wèn)題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來(lái)理解它?
學(xué)生討論并回答
三、新概念的形成
問(wèn)題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學(xué)生回答,并閱讀教材,得到任意角三角函數的定義、并思考:
問(wèn)題7:任意角三角函數的定義符合我們高中所學(xué)的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動(dòng)的
并類(lèi)比函數的研究方法,得出任意角三角函數的定義域和值域。
四、概念的運用
1、基礎練習
、倏谒鉩lipXimage008的值、
、诜謩e求clipXimage010的`值
小結:ⅰ)畫(huà)終邊,求終邊與單位圓交點(diǎn)的坐標,算比值
、)誘導公式(一)
、廴鬰lipXimage012,試寫(xiě)出角clipXimage002[2]的值。
、苋鬰lipXimage015,不求值,試判斷clipXimage017的符號
、萑鬰lipXimage019,則clipXimage021為第象限的角、
例1、已知角clipXimage002[3]的終邊過(guò)點(diǎn)clipXimage024,求clipXimage026之值
若P點(diǎn)的坐標變?yōu)閏lipXimage028,求clipXimage030的值
小結:任意角三角函數的等價(jià)定義(終邊定義法)
例2、一物體A從點(diǎn)clipXimage032出發(fā),在單位圓上沿逆時(shí)針?lè )较蜃鲃蛩賵A周運動(dòng),若經(jīng)過(guò)的弧長(cháng)為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標。若該物體作圓周運動(dòng)的圓的半徑變?yōu)閏lipXimage006[1],如何用clipXimage034[2]來(lái)表示物體A所在位置的坐標?
小結:可以采用三角函數模型來(lái)刻畫(huà)圓周運動(dòng)
五、拓展探究
問(wèn)題8:當角clipXimage002[4]的終邊繞頂點(diǎn)O作圓周運動(dòng)時(shí),角clipXimage002[5]的終邊與單位圓的交點(diǎn)clipXimage039的坐標clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動(dòng)用數來(lái)刻畫(huà),這是將“形”轉化成為“數”;角clipXimage002[7]正弦值是一個(gè)數,你能借助平面直角坐標系和單位圓,用“形”來(lái)表示這個(gè)“數”嗎?角clipXimage002[8]余弦值、正切值呢?
六、課堂小結
問(wèn)題9:請你談?wù)劚竟澱n的收獲有哪些?
七、課后作業(yè)
教材P21第6、7、8題
人教版高一數學(xué)教案4
教學(xué)目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個(gè)特性,識記數學(xué)中一些常用的的數集及其記法,能選擇自然語(yǔ)言、列舉法和描述法表示集合。
(2)過(guò)程與方法:從圓、線(xiàn)段的垂直平分線(xiàn)的定義引出“集合”一詞,通過(guò)探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個(gè)特性,探討元素與集合的關(guān)系,比較用自然語(yǔ)言、列舉法和描述法表示集合。
(3)情感態(tài)度與價(jià)值觀(guān):感受集合語(yǔ)言的意義和作用,培養合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語(yǔ)言描述問(wèn)題的習慣。
教學(xué)重難點(diǎn):
(1)重點(diǎn):了解集合的含義與表示、集合中元素的特性。
(2)難點(diǎn):區別集合與元素的概念及其相應的符號,理解集合與元素的關(guān)系,表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
教學(xué)過(guò)程:
【問(wèn)題1】在初中我們已經(jīng)學(xué)習了圓、線(xiàn)段的垂直平分線(xiàn),大家回憶一下教材中是如何對它們進(jìn)行定義的?
[設計意圖]引出“集合”一詞。
【問(wèn)題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁(yè)的思考題。
[設計意圖]探討并形成集合的含義。
【問(wèn)題3】請同學(xué)們舉出認為是集合的例子。
[設計意圖]點(diǎn)評學(xué)生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無(wú)序性。
【問(wèn)題4】同學(xué)們知道用什么來(lái)表示一個(gè)集合,一個(gè)元素嗎?集合與元素之間有怎樣的關(guān)系?
[設計意圖]區別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關(guān)系。
【問(wèn)題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實(shí)數根”組成的集
[設計意圖]引出并介紹列舉法。
【問(wèn)題6】例1的講解。同學(xué)們能用列舉法表示不等式x-7<3的解集嗎?
【問(wèn)題7】例2的講解。請同學(xué)們思考課本第6頁(yè)的思考題。
[設計意圖]幫助學(xué)生在表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
【問(wèn)題8】請同學(xué)們總結這節課我們主要學(xué)習了那些內容?有什么學(xué)習體會(huì )?
[設計意圖]學(xué)習小結。對本節課所學(xué)知識進(jìn)行回顧。
布置作業(yè)。
【高一數學(xué)教案】相關(guān)文章:
高一數學(xué)教案06-20
高一數學(xué)教案12-21
高一數學(xué)教案07-20
高一必修五數學(xué)教案04-10
高一必修四數學(xué)教案04-13
關(guān)于高一數學(xué)教案09-30
人教版高一數學(xué)教案07-30
上海高一數學(xué)教案07-30
高一數學(xué)教案設計04-10
高一數學(xué)教案(15篇)12-09