2023高中數學(xué)教學(xué)設計范文通用
作為一名辛苦耕耘的教育工作者,就有可能用到教學(xué)設計,編寫(xiě)教學(xué)設計有利于我們科學(xué)、合理地支配課堂時(shí)間。那么什么樣的教學(xué)設計才是好的呢?以下是小編收集整理的2023高中數學(xué)教學(xué)設計范文通用,歡迎大家分享。
2023高中數學(xué)教學(xué)設計范文通用1
教學(xué)目標
。1)理解四種命題的概念;
。2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式;
。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;
。4)初步掌握反證法的概念及反證法證題的基本步驟;
。5)通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力;
。6)通過(guò)對四種命題的存在性和相對性的認識,進(jìn)行辯證唯物主義觀(guān)點(diǎn)教育;
。7)培養學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運用.
教學(xué)過(guò)程設計
第一課時(shí):四種命題
一、導入新課
【練習】1.把下列命題改寫(xiě)成“若p則q”的形式:
。╨)同位角相等,兩直線(xiàn)平行;
。2)正方形的四條邊相等.
2.什么叫互逆命題?上述命題的逆命題是什么?
將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結論.
如果第一個(gè)命題的條件是第二個(gè)命題的結論,且第一個(gè)命題的結論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題.
上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”.
值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動(dòng):
口答:
。1)若同位角相等,則兩直線(xiàn)平行;
。2)若一個(gè)四邊形是正方形,則它的四條邊相等.
設計意圖:
通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.
二、新課
【設問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?
【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題.
【提問(wèn)】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?
學(xué)生活動(dòng):
口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等.
教師活動(dòng):
【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的條件的否定和結論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題.
若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.
【板書(shū)】原命題:若p則q;
否命題:若┐p則q┐.
【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?
學(xué)生活動(dòng):
講論后回答:
原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真.
原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真.
由此可以得原命題真,它的否命題不一定真.
設計意圖:
通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)習的積極性.
教師活動(dòng):
【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?
學(xué)生活動(dòng):
討論后回答
【總結】可以將這個(gè)命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題.
教師活動(dòng):
【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?
學(xué)生活動(dòng):
口答:若一個(gè)四邊形的四條邊不相等,則不是正方形.
教師活動(dòng):
【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的結論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題.
原命題是“若p則q”,則逆否命題為“若┐q則┐p.
【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真.
原命題真,逆否命題也真.
教師活動(dòng):
【提問(wèn)】原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說(shuō)明?
【總結】1.原命題為真,它的逆命題不一定為真.
2.原命題為真,它的`否命題不一定為真.
3.原命題為真,它的逆否命題一定為真.
設計意圖:
通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)的積極性.
教師活動(dòng):
三、課堂練習
1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫(xiě)在方框內?
學(xué)生活動(dòng):筆答
教師活動(dòng):
2.根據上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?
學(xué)生活動(dòng):討論后回答
設計意圖:
通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.
教師活動(dòng):
略。
2023高中數學(xué)教學(xué)設計范文通用2
一、教學(xué)目標
1、在初中學(xué)過(guò)原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。
3、通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力
4、初步培養學(xué)生反證法的數學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系
1、本小節首先從初中數學(xué)的命題知識,給出四種命題的概念,接著(zhù),講述四種命題的關(guān)系,最后,在初中的基礎上,結合四種命題的知識,進(jìn)一步講解反證法。
2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節的內容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
。、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過(guò)程
。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話(huà):某人要請甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話(huà)說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì )說(shuō)話(huà),但是你想過(guò)這里面所蘊涵的數學(xué)思想嗎?通過(guò)這節課的學(xué)習我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設計意圖:創(chuàng )設情景,激發(fā)學(xué)生學(xué)習興趣
。ǘ⿵土曁釂(wèn):
1.命題“同位角相等,兩直線(xiàn)平行”的條件與結論各是什么?
2.把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動(dòng):
口答:
。1)若同位角相等,則兩直線(xiàn)平行;
。2)若一個(gè)四邊形是正方形,則它的四條邊相等.
設計意圖:通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.
。ㄈ┬抡n講解:
1.命題“同位角相等,兩直線(xiàn)平行”的條件是“同位角相等”,結論是“兩直線(xiàn)平行”;如果把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題就是“兩直線(xiàn)平行,同位角相等”。也就是說(shuō),把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論同時(shí)否定,就得到新命題“同位角不相等,兩直線(xiàn)不平行”,這個(gè)新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線(xiàn)平行”的條件與結論互相交換并同時(shí)否定,就得到新命題“兩直線(xiàn)不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。
。ㄋ模┙M織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
。ㄎ澹┱n堂探究:“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真.
原命題真,逆否命題也真
引導學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。
。┱n堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)
否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結論)
逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時(shí)否定)
2、四種命題的關(guān)系
。1).原命題為真,它的逆命題不一定為真.
。2).原命題為真,它的否命題不一定為真.
。3).原命題為真,它的逆否命題一定為真
。ㄆ撸┗乜垡
分析引入中的笑話(huà),先討論,后總結:現在我們來(lái)分析一下主人說(shuō)的四句話(huà):
第一句:“該來(lái)的沒(méi)來(lái)”
其逆否命題是“不該來(lái)的來(lái)了”,甲認為自己是不該來(lái)的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認為自己該走,所以乙也走了。
第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認為說(shuō)的是自己,所以丙也走了。
同學(xué)們,生活中處處是數學(xué),期待我們善于發(fā)現的眼睛
五、作業(yè)
1.設原命題是“若
斷它們的真假.,則”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判
2.設原命題是“當時(shí),若,則”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.
【高中數學(xué)教學(xué)設計】相關(guān)文章:
高中數學(xué)教學(xué)設計06-09
高中數學(xué)教學(xué)設計01-17
高中數學(xué)概念教學(xué)設計07-14
高中數學(xué)教學(xué)設計(精選10篇)07-21