八年級數學(xué)教案最新
作為一名為他人授業(yè)解惑的教育工作者,時(shí)常要開(kāi)展教案準備工作,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫(xiě)教案才更能起到其作用呢?以下是小編幫大家整理的八年級數學(xué)教案最新,希望對大家有所幫助。
八年級數學(xué)教案最新1
教學(xué)目標:
1、知識目標:了解圖案最常見(jiàn)的構圖方式:軸對稱(chēng)、平移、旋轉……,理解簡(jiǎn)單圖案設計的意圖。認識和欣賞平移,旋轉在現實(shí)生活中的應用,能夠靈活運用軸對稱(chēng)、平移、旋轉的組合,設計出簡(jiǎn)單的圖案。
2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設計的過(guò)程,培養學(xué)生收集和整理信息的能力,分析和解決問(wèn)題的能力,合作和交流的能力以及創(chuàng )新能力。
3、情感體驗點(diǎn):經(jīng)歷對典型圖案設計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀(guān)念,增強審美意識,培養學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運用軸對稱(chēng)、平移、旋轉……等方法及它們的組合進(jìn)行的圖案設計。
難點(diǎn):分析典型圖案的設計意圖。
疑點(diǎn):在設計的圖案中清晰地表現自己的設計意圖
教具學(xué)具準備:
提前一周布置學(xué)生以小組為單位,通過(guò)各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見(jiàn)的圖案及其形成過(guò)程的動(dòng)畫(huà)演示。
教學(xué)過(guò)程設計:
1、情境導入:在優(yōu)美的音樂(lè )中,逐個(gè)展示生活中常見(jiàn)的典型圖案,并讓學(xué)生試著(zhù)說(shuō)一說(shuō)每種圖案標志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡(jiǎn)單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個(gè)圖案通過(guò)觀(guān)察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設計中常常運用圖形變換的思想方法,為學(xué)生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過(guò)旋轉適合角度形成(可以讓學(xué)生自己說(shuō)說(shuō)每個(gè)旋轉的`角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過(guò)軸對稱(chēng)變換形成(可以讓學(xué)生指出對軸對稱(chēng)及對稱(chēng)軸的條數),而圖(2)可以通過(guò)平移形成。
2、課本
1 欣賞課本75頁(yè)圖3—24的圖案,并分析這個(gè)圖案形成過(guò)程。
評注:圖案是密鋪圖案的代表,旨在通過(guò)對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設計,同時(shí)了解軸對稱(chēng)、平移、旋轉變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉關(guān)系加以說(shuō)明,注意旋轉中心可以為圖形上某一特征的點(diǎn)。
評注:可以取其中的任何一個(gè)為基本圖案,然后通過(guò)變換得到。而且變化方式也可以是:左下角的圖案通過(guò)軸對稱(chēng)變換得到左上圖和右下圖。
(二)課內練習
。1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
。2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱(chēng)、中心對稱(chēng)等方法進(jìn)行圖案設計,并簡(jiǎn)要說(shuō)明自己的設計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結
本課時(shí)的重點(diǎn)是了解平移、旋轉和軸對稱(chēng)變換是圖案設計的基本方法,并能運用這些變換設計出一些簡(jiǎn)單的圖案。
通過(guò)今天的學(xué)習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱(chēng)等多種方法來(lái)設計,而且設計的圖案要能表達自己的創(chuàng )作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過(guò)目不忘,達到標志的效果。)
八年級數學(xué)上冊教案(五)延伸拓展
進(jìn)一步搜集身邊的各種標志性圖案,嘗試著(zhù)重新設計它,并結合實(shí)際背景分析它的設計意圖。
八年級數學(xué)教案最新2
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內容學(xué)習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線(xiàn)平行,有什么樣的結論?
反之,滿(mǎn)足什么條件的兩直線(xiàn)是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導。
二、學(xué)習任務(wù)分析
本節課是北師大版數學(xué)八年級(上)第一章《勾股定理》第2節。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據邊長(cháng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數,增加對勾股數的直觀(guān)體驗。為此確定教學(xué)目標:
● 知識與技能目標
1、理解勾股定理逆定理的具體內容及勾股數的概念;
2、能根據所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過(guò)程與方法目標
1、經(jīng)歷一般規律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;
2、經(jīng)歷從實(shí)驗到驗證的過(guò)程,發(fā)展學(xué)生的數學(xué)歸納能力。
● 情感與態(tài)度目標
1、體驗生活中的數學(xué)的應用價(jià)值,感受數學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數學(xué)、用數學(xué)的興趣;
2、在探索過(guò)程中體驗成功的喜悅,樹(shù)立學(xué)習的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內容。
三、教法學(xué)法
1、教學(xué)方法:實(shí)驗猜想歸納論證
本節課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過(guò)實(shí)驗獲得數學(xué)結論已有一定的體驗
但數學(xué)思維嚴謹的同學(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現本節課的教學(xué)目標,我力求從以下三個(gè)方面對學(xué)生進(jìn)行引導:
。1)從創(chuàng )設問(wèn)題情景入手,通過(guò)知識再現,孕育教學(xué)過(guò)程;
。2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢教學(xué)過(guò)程;
。3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
2、課前準備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習本、文具。
四、教學(xué)過(guò)程設計
本節課設計了七個(gè)環(huán)節。第一環(huán)節:情境引入;第二環(huán)節:合作探究;第三環(huán)節:小試牛刀;第四環(huán)節:
登高望遠;第五環(huán)節:鞏固提高;第六環(huán)節:交流小結;第七環(huán)節:布置作業(yè)。
第一環(huán)節:情境引入
內容:
情境:1.直角三角形中,三邊長(cháng)度之間滿(mǎn)足什么樣的關(guān)系?
2、如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過(guò)情境的創(chuàng )設引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節奠定了良好的基礎。
第二環(huán)節:合作探究
內容1:探究
下面有三組數,分別是一個(gè)三角形的三邊長(cháng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:
1、這三組數都滿(mǎn)足 嗎?
2、分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數。
意圖:
通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(cháng) ,滿(mǎn)足 ,則這個(gè)三角形是直角三角形這一結論;在活動(dòng)中體驗出數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規律。
效果:
經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗結果發(fā)現:①5,12,13滿(mǎn)足 ,可以構成直角三角形;②7,24,25滿(mǎn)足 ,可以構成直角三角形;③8,15,17滿(mǎn)足 ,可以構成直角三角形。
從上面的分組實(shí)驗很容易得出如下結論:
如果一個(gè)三角形的`三邊長(cháng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形
內容2:說(shuō)理
提問(wèn):有同學(xué)認為測量結果可能有誤差,不同意這個(gè)發(fā)現。你認為這個(gè)發(fā)現正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結果得到的結論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結論的可靠性,同時(shí)明晰結論:
如果一個(gè)三角形的三邊長(cháng) ,滿(mǎn)足 ,那么這個(gè)三角形是直角三角形
滿(mǎn)足 的三個(gè)正整數,稱(chēng)為勾股數。
注意事項:為了讓學(xué)生確認該結論,需要進(jìn)行說(shuō)理,有條件的班級,還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀(guān)的認識。
活動(dòng)3:反思總結
提問(wèn):
1、同學(xué)們還能找出哪些勾股數呢?
2、今天的結論與前面學(xué)習勾股定理有哪些異同呢?
3、到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4、通過(guò)今天同學(xué)們合作探究,你能體驗出一個(gè)數學(xué)結論的發(fā)現要經(jīng)歷哪些過(guò)程呢?
意圖:進(jìn)一步讓學(xué)生認識該定理與勾股定理之間的關(guān)系
第三環(huán)節:小試牛刀
內容:
1、下列哪幾組數據能作為直角三角形的三邊長(cháng)?請說(shuō)明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2、一個(gè)三角形的三邊長(cháng)分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3、如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4、將直角三角形的三邊擴大相同的倍數后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過(guò)練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節:登高望遠
內容:
1、一個(gè)零件的形狀如圖2所示,按規定這個(gè)零件中 都應是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2、一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗,船長(cháng)指揮船左傳90,繼續航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫(huà)出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語(yǔ)言表達清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當遇見(jiàn)數據較大時(shí),要懂得將 作適當變形( ),以便于計算。
第五環(huán)節:鞏固提高
內容:
1、如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2、如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問(wèn)題。
效果:
學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應用。
第六環(huán)節:交流小結
內容:
師生相互交流總結出:
1、今天所學(xué)內容①會(huì )利用三角形三邊數量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿(mǎn)足 的三個(gè)正整數,稱(chēng)為勾股數;
2、從今天所學(xué)內容及所作練習中總結出的經(jīng)驗與方法:①數學(xué)是源于生活又服務(wù)于生活的;②數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規律;③利用三角形三邊數量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當遇見(jiàn)數據較大時(shí),要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學(xué)生結合本節課的學(xué)習談自己的收獲和感想,體會(huì )到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學(xué)學(xué)習中的困難,并有獨立克服困難和運用知識解決問(wèn)題的成功經(jīng)驗,進(jìn)一步體會(huì )數學(xué)的應用價(jià)值,發(fā)展運用數學(xué)的信心和能力,初步形成積極參與數學(xué)活動(dòng)的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結出利用三角形三邊數量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應用。
第七環(huán)節:布置作業(yè)
課本習題1.4第1,2,4題。
五、教學(xué)反思:
1、充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(cháng) ,滿(mǎn)足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現的例題和練習。
2、注重引導學(xué)生積極參與實(shí)驗活動(dòng),從中體驗任何一個(gè)數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規律。
3、在利用今天所學(xué)知識解決實(shí)際問(wèn)題時(shí),引導學(xué)生善于對公式變形,便于簡(jiǎn)便計算。
4、注重對學(xué)習新知理解應用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5、對于勾股定理的逆定理的論證可根據學(xué)生的實(shí)際情況做適當調整,不做要求。
由于本班學(xué)生整體水平較高,因而本設計教學(xué)容量相對較大,教學(xué)中,應注意根據自己班級學(xué)生的狀況進(jìn)行適當的刪減或調整。
附:板書(shū)設計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
八年級數學(xué)教案最新3
分式方程
教學(xué)目標
1、經(jīng)歷分式方程的概念,能將實(shí)際問(wèn)題中的等量關(guān)系用分式方程 表示,體會(huì )分式方程的模型作用。
2、經(jīng)歷實(shí)際問(wèn)題-分式方程方程模型的過(guò)程,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力,滲透數學(xué)的轉化思想人體,培養學(xué)生的應用意識。
3、在活動(dòng)中培養學(xué)生樂(lè )于探究、合作學(xué)習的習慣,培養學(xué) 生努力尋找 解決問(wèn)題的進(jìn)取心,體會(huì )數學(xué)的應用價(jià)值。
教學(xué)重點(diǎn):
將實(shí)際問(wèn)題中的'等量 關(guān)系用分式方程表示
教學(xué)難點(diǎn):
找實(shí)際問(wèn)題中的等量關(guān)系
教學(xué)過(guò)程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問(wèn)題中的所有等量關(guān)系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長(cháng)600 km的普通 公路,另一條是全長(cháng)480 km的高速公路。某客 車(chē)在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車(chē)由高速公路從 甲地到乙地所需的時(shí)間。
這 一問(wèn)題中有哪些等量關(guān)系?
如果設客車(chē)由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_(kāi)________h。
根據題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程。
三。做一做:
為了幫助遭受自然災害的地區重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿(mǎn)足怎樣的方程?
四。議一議:
上面所得到的方程有什么共同特點(diǎn)?
分母中含有未知數的方程叫做分式方程
分式方程與整式方程有什么區別?
五、 隨堂練習
。1)據聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫(xiě)出 滿(mǎn)足的方程。你能寫(xiě)出幾個(gè)方程?其中哪一個(gè)是分式方程?
。2)輪船在順水中航行20千米與逆水航行10千米所用時(shí)間相同,水流速度為2. 5千米/小時(shí),求輪船的靜水速度
。3)根據分式方程 編一道應用題,然后同組交流,看誰(shuí)編得好
六、學(xué) 習小結
本節課你學(xué)到了哪些知識?有什么感想?
七、作業(yè)布置
八年級數學(xué)教案最新4
教學(xué)目標:
【知識與技能】
1、理解并掌握等腰三角形的性質(zhì)。
2、會(huì )用符號語(yǔ)言表示等腰三角形的性質(zhì)。
3、能運用等腰三角形性質(zhì)進(jìn)行證明和計算。
【過(guò)程與方法】
1、通過(guò)觀(guān)察等腰三角形的對稱(chēng)性,發(fā)展學(xué)生的形象思維。
2、通過(guò)實(shí)踐、觀(guān)察、證明等腰三角形的性質(zhì),積累數學(xué)活動(dòng)經(jīng)驗,感受數學(xué)思考過(guò)程的條理性,發(fā)展學(xué)生的合情推理能力。
3、通過(guò)運用等腰三角形的性質(zhì)解決有關(guān)問(wèn)題,提高學(xué)生運用幾何語(yǔ)言表達問(wèn)題的,運用知識和技能解決問(wèn)題的能力。
【情感態(tài)度】
引導學(xué)生對圖形的觀(guān)察、發(fā)現,激發(fā)學(xué)生的好奇心和求知欲,并在運用數學(xué)知識解答問(wèn)題的活動(dòng)中取得成功的體驗。
【教學(xué)重點(diǎn)】
等腰三角形的性質(zhì)及應用。
【教學(xué)難點(diǎn)】
等腰三角形的證明。
教學(xué)過(guò)程:
一、情境導入,初步認識
問(wèn)題1什么叫等腰三角形?它是一個(gè)軸對稱(chēng)圖形嗎?請根據自己的理解,利用軸對稱(chēng)的知識,自己做一個(gè)等腰三角形。要求學(xué)生獨立思考,動(dòng)手作圖后再互相交流評價(jià)。
可按下列方法做出:
作一條直線(xiàn)l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線(xiàn)l的對稱(chēng)點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。
問(wèn)題2每位同學(xué)請拿出事先準備好的長(cháng)方形紙片,按下圖方式折疊剪裁,再把它展開(kāi),觀(guān)察并討論:得到的△ABC有什么特點(diǎn)?
教師指導:上述過(guò)程中,剪刀剪過(guò)的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線(xiàn)段和角。由這些重合的線(xiàn)段和角,你能發(fā)現等腰三角形的性質(zhì)嗎?說(shuō)說(shuō)你的猜想。
在一張白紙上任意畫(huà)一個(gè)等腰三角形,把它剪下來(lái),請你試著(zhù)折一折。你的猜想仍然成立嗎?
教學(xué)說(shuō)明:通過(guò)學(xué)生的動(dòng)手操作與觀(guān)察發(fā)現,加深學(xué)生對等腰三角形性質(zhì)的理解。
二、思考探究,獲取新知
教師依據學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):
、佟螧=∠C→兩個(gè)底角相等。
、贐D=CD→AD為底邊BC上的中線(xiàn)。
、邸螧AD=∠CAD→AD為頂角∠BAC的平分線(xiàn)。
∠ADB=∠ADC=90°→AD為底邊BC上的高。
指導學(xué)生用語(yǔ)言敘述上述性質(zhì)。
性質(zhì)1等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成:“等邊對等角”)。
性質(zhì)2等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn),底邊上的高重合(簡(jiǎn)記為:“三線(xiàn)合一”)。
教師指導對等腰三角形性質(zhì)的證明。
1、證明等腰三角形底角的性質(zhì)。
教師要求學(xué)生根據猜想的結論畫(huà)出相應的圖形,寫(xiě)出已知和求證。在引導學(xué)生分析思路時(shí)強調:
。1)利用三角形全等來(lái)證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加輔助線(xiàn)構造符合證明要求的兩個(gè)三角形。
。2)添加輔助線(xiàn)的方法可以有多種方式:如作頂角平分線(xiàn),或作底邊上的中線(xiàn),或作底邊上的高等。
2、證明等腰三角形“三線(xiàn)合一”的性質(zhì)。
【教學(xué)說(shuō)明】在證明中,設計輔助線(xiàn)是關(guān)鍵,引導學(xué)生用全等的方法去處理,在不同的.輔助線(xiàn)作法中,由輔助線(xiàn)帶來(lái)的條件是不同的,重視這一點(diǎn),要求學(xué)生板書(shū)證明過(guò)程,以體會(huì )一題多解帶來(lái)的體驗。
三、典例精析,掌握新知
例如圖,在△ABC中,AB=AC,點(diǎn)D在A(yíng)C上,且BD=BC=AD,求△ABC各角的度數。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。
設∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教學(xué)說(shuō)明】等腰三角形“等邊對等角”及“三線(xiàn)合一”性質(zhì),可以實(shí)現由邊到角的轉化,從而可求出相應角的度數。要在解題過(guò)程中,學(xué)會(huì )從復雜圖形中分解出等腰三角形,用方程思想和數形結合思想解決幾何問(wèn)題。
四、運用新知,深化理解
第1組練習:
1、如圖,在下列等腰三角形中,分別求出它們的底角的度數。
如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標出∠B,∠C,∠BAD,∠DAC的度數,指出圖中有哪些相等線(xiàn)段。
2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數。
第2組練習:
1、如果△ABC是軸對稱(chēng)圖形,則它一定是( )
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一個(gè)外角是100°,它的頂角的度數是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰長(cháng)比底邊多2cm,并且它的周長(cháng)為16cm。求這個(gè)等腰三角形的邊長(cháng)。
4、如圖,在△ABC中,過(guò)C作∠BAC的平分線(xiàn)AD的垂線(xiàn),垂足為D,DE∥AB交AC于E。求證:AE=CE。
【教學(xué)說(shuō)明】
等腰三角形解邊方面的計算類(lèi)型較多,引導學(xué)生見(jiàn)識不同類(lèi)型,并適時(shí)概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類(lèi)討論思想的應用。
【答案】
第1組練習答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2組練習答案:
1、C
2、C
3、設三角形的底邊長(cháng)為xcm,則其腰長(cháng)為(x+2)cm,根據題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L(cháng)為4cm,6cm和6cm。
4、延長(cháng)CD交AB的延長(cháng)線(xiàn)于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。
四、師生互動(dòng),課堂小結
這節課主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡(jiǎn)單的應用。請學(xué)生表述性質(zhì),提醒每個(gè)學(xué)生要靈活應用它們。
學(xué)生間可交流體會(huì )與收獲。
八年級數學(xué)教案最新5
教學(xué)目標:
1、知識目標:
。1)掌握已知三邊畫(huà)三角形的方法;
。2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;
。3)會(huì )添加較明顯的輔助線(xiàn)。
2、能力目標:
。1)通過(guò)尺規作圖使學(xué)生得到技能的訓練;
。2)通過(guò)公理的初步應用,初步培養學(xué)生的邏輯推理能力。
3、情感目標:
。1)在公理的形成過(guò)程中滲透:實(shí)驗、觀(guān)察、歸納;
。2)通過(guò)變式訓練,培養學(xué)生“舉一反三”的學(xué)習習慣。
教學(xué)重點(diǎn):SSS公理、靈活地應用學(xué)過(guò)的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個(gè)三角形全等。
教學(xué)用具:直尺,微機
教學(xué)方法:自學(xué)輔導
教學(xué)過(guò)程:
1、新課引入
投影顯示
問(wèn)題:有一塊三角形玻璃窗戶(hù)破碎了,要去配一塊新的,你最少要對窗框測量哪幾個(gè)數據?如果你手頭沒(méi)有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺(jué)。于是教師要引導學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。
2、公理的獲得
問(wèn):通過(guò)上面問(wèn)題的分析,滿(mǎn)足什么條件的兩個(gè)三角形全等?
讓學(xué)生粗略地概括出邊邊邊的'公理。然后和學(xué)生一起畫(huà)圖做實(shí)驗,根據三角形全等定義對公理進(jìn)行驗證。(這里用尺規畫(huà)圖法)
公理:有三邊對應相等的兩個(gè)三角形全等。
應用格式: (略)
強調說(shuō)明:
。1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號把它們括在一起;寫(xiě)出結論。
。2)、在應用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)
。3)、此公理與前面學(xué)過(guò)的公理區別與聯(lián)系
。4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進(jìn)行了溝通。
。5)說(shuō)明AAA與SSA不能判定三角形全等。
3、公理的應用
。1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評。
例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架
求證:AD⊥BC
分析:(設問(wèn)程序)
。1)要證AD⊥BC只要證什么?
。2)要證∠1=
只要證什么?(3)要證∠1=∠2只要證什么?
。4)△ABD和△ACD全等的條件具備嗎?依據是什么?
證明:(略)
【八年級數學(xué)教案最新】相關(guān)文章:
最新人教版八年級數學(xué)教案08-26
初中數學(xué)教案最新08-23
最新蘇教版數學(xué)教案01-27
最新數學(xué)教案優(yōu)秀范文08-31
幼兒數學(xué)教案最新精選范文08-30
八年級的數學(xué)教案10-11
最新小學(xué)數學(xué)教案設計08-10
最新高三數學(xué)教案09-27