探索類(lèi)附加題練習的總結
探索類(lèi)附加題練習的總結
一、【考點(diǎn)】倒數的定義、有理數計算、分類(lèi)討論思想 【難度】
【人大附中期中】
已知x,y是兩個(gè)有理數,其倒數的和、差、積、商的四個(gè)結果中,有三個(gè)是相等的,
(1)填空:x與y的和的倒數是 ;
(2)說(shuō)明理由.
【解析】
設x,y的倒數分別為a,b(a0,b0,a+ba-b),
則a+b,a-b,ab,a/b中若有三個(gè)相等,ab=a/b,即b??=1,b=1
分類(lèi)如下:
、佼攁+b=ab=a/b時(shí):如果b=1,無(wú)解;如果b=-1,解得a=0.5
、诋攁-b=ab=a/b時(shí):如果b=1,無(wú)解;如果b=-1,解得a=-0.5
所以x、y的倒數和為a+b=-0.5,或-1.5
二、【考點(diǎn)】有理數計算、分數拆分、方程思想 【難度】
【清華附中期中】
解答題:有8個(gè)連續的正整數,其和可以表示成7個(gè)連續的正整數的和,但不能表示為3個(gè)連續的正整數的和,求這8個(gè)連續的正整數中最大數的最小值。(4分)
【解析】
設這八個(gè)連續正整數為:n,n+1和為8n+28
可以表示為七個(gè)連續正整數為:k,k+1和為7k+21
所以8n+28=7k+21,k=(8n+7)/7=n+1+n/7,k是整數
所以n=7,14,21,28
當n=7時(shí),八數和為84=27+28+29,不符合題意,舍
當n=14時(shí),八數和為140,符合題意
【答案】最大數最小值:21
三、【考點(diǎn)】有理數計算 【難度】☆
【清華附中期中】
在數1,2,3,41998,前添符號+或-,并依次運算,所得可能的最小非負數是多少?(6分)
【解析】
最小的非負數為0,但是1998個(gè)正數中有999個(gè)奇數,999個(gè)偶數,他們的和或者差結果必為奇數,因此不可能實(shí)現0
可以實(shí)現的最小非負數為1,如果能實(shí)現結果1,則符合題意
相鄰兩數差為1,所以相鄰四個(gè)數可以和為零,即n-(n+1)-(n+2)+n+3=0
從3,4,5,61998共有1996個(gè)數,可以四個(gè)連續數字一組,和為零
【答案】
-1+2+3-4-5+6+7+1995-1996-1997+1998=1
【改編】
在數1,2,3,4n,前添符號+或-,并依次運算,所得可能的最小非負數是多少?
【解析】
由上面解析可知,四個(gè)數連續數一組可以實(shí)現為零
如果n=4k,結果為0;(四數一組,無(wú)剩余)
如果n=4k+1,結果為1;(四數一組,剩余首項1)
如果n=4k+2,結果為1;(四數一組,剩余首兩項-1+2=1)
如果n=4k+3,結果為0;(四數一組,剩余首三項1+2-3=0)
四、【考點(diǎn)】絕對值化簡(jiǎn) 【難度】☆
【101中學(xué)期中】
將1,2,3,,100這100個(gè)自然數,任意分成50組,每組兩個(gè)數,現將每組中的兩個(gè)數記為a,b,代入中進(jìn)行計算,求出結果,可得到50個(gè)值,則這50個(gè)值的和的最小值為_(kāi)___
【解析】
絕對值化簡(jiǎn)得:當ab時(shí),原式=b;當a
所以50組可得50個(gè)最小的已知自然數,即1,2,3,450
【答案】1275
【改編】
這50個(gè)值的和的最大值為_(kāi)___
【解析】
因為本質(zhì)為取小運算,所以100必須和99一組,98必須和97一組,最后留下的50組結果為:1,3,5,799=2500。
【探索類(lèi)附加題練習的總結】相關(guān)文章:
辛金天干類(lèi)象的總結07-15
廣告學(xué)練習冊建設總結論文03-19
程序設計課堂教學(xué)模式探索論文03-20
《練習一》精品教案(精選12篇)11-11
列方程解應用題的常用公式總結12-07
報告類(lèi)公文格式模板11-17
小學(xué)一年級語(yǔ)文九月份月考檢測題綜合練習題復習題試卷11-22
教學(xué)設計題備考策略03-19