97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高一數學(xué)公式和知識點(diǎn)筆記

時(shí)間:2024-05-03 08:12:54 筆記 我要投稿
  • 相關(guān)推薦

高一數學(xué)公式和知識點(diǎn)筆記

  在我們的學(xué)習時(shí)代,是不是經(jīng)常追著(zhù)老師要知識點(diǎn)?知識點(diǎn)是知識中的最小單位,最具體的內容,有時(shí)候也叫“考點(diǎn)”。掌握知識點(diǎn)有助于大家更好的學(xué)習。下面是小編為大家整理的高一數學(xué)公式和知識點(diǎn)筆記,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數學(xué)公式和知識點(diǎn)筆記

高一數學(xué)公式和知識點(diǎn)筆記1

  形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的.一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  上面給出了k分別為正和負(2和-2)時(shí)的函數圖像。

  當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  知識點(diǎn):

  1.過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為|k|。

  2.對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(x±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)

高一數學(xué)公式和知識點(diǎn)筆記2

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的`圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV.拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

高一數學(xué)公式和知識點(diǎn)筆記3

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質(zhì):

  1.y的'變化值與對應的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)

  2.當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  1.作法與圖形:通過(guò)如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  3.k,b與函數圖像所在象限:

  當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

高一數學(xué)公式和知識點(diǎn)筆記4

  對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

  對于不同大小a所表示的函數圖形:

  可以看到對數函數的圖形只不過(guò)的'指數函數的圖形的關(guān)于直線(xiàn)y=x的對稱(chēng)圖形,因為它們互為反函數。

  (1)對數函數的定義域為大于0的實(shí)數集合。

  (2)對數函數的值域為全部實(shí)數集合。

  (3)函數總是通過(guò)(1,0)這點(diǎn)。

  (4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。

  (5)顯然對數函數無(wú)界。

高一數學(xué)公式和知識點(diǎn)筆記5

  第一章:集合與函數概念

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集:N*或N+

  整數集:Z

  有理數集:Q

  實(shí)數集:R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合{xR|x-3>2},{x|x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類(lèi):

  (1)有限集含有有限個(gè)元素的集合

  (2)無(wú)限集含有無(wú)限個(gè)元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能

  (1)A是B的一部分,;

  (2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)  實(shí)

  例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個(gè)數:

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

  三、集合的運算

  運算類(lèi)型交集并集補集

  定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  第二章:基本初等函數

  一、指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的.運算性質(zhì)也同樣可以推廣到有理數指數冪.

  3.實(shí)數指數冪的運算性質(zhì)

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  第三章:第三章函數的應用

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:

  方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

  (1)(代數法)求方程的實(shí)數根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數.

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零

【高一數學(xué)公式和知識點(diǎn)筆記】相關(guān)文章:

高考數學(xué)公式及知識點(diǎn)整理10-10

高一英語(yǔ)必修一知識點(diǎn)匯總筆記05-09

化學(xué)高一必修一知識點(diǎn)歸納筆記02-27

高一化學(xué)必修一知識點(diǎn)筆記01-24

高一數學(xué)公式記憶方法12-18

高一數學(xué)必修二知識點(diǎn)筆記梳理04-19

高一必修一物理知識點(diǎn)歸納筆記04-25

高一數學(xué)必修一知識點(diǎn)歸納筆記04-26

高一政治信用工具和外匯知識點(diǎn)12-19