97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中立體幾何知識點(diǎn)總結

時(shí)間:2022-08-28 05:02:18 總結 我要投稿

高中立體幾何知識點(diǎn)總結(通用5篇)

  總結是事后對某一階段的學(xué)習、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它能夠給人努力工作的動(dòng)力,為此要我們寫(xiě)一份總結。你想知道總結怎么寫(xiě)嗎?下面是小編為大家整理的高中立體幾何知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。

高中立體幾何知識點(diǎn)總結(通用5篇)

  高中立體幾何知識點(diǎn)總結 篇1

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點(diǎn)字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的`頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺:

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;

  側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法

  斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;

 、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。

  高中立體幾何知識點(diǎn)總結 篇2

  點(diǎn)在線(xiàn)面用屬于,線(xiàn)在面內用包含。四個(gè)公理是基礎,推證演算巧周旋。

  空間之中兩條線(xiàn),平行相交和異面。線(xiàn)線(xiàn)平行同方向,等角定理進(jìn)空間。

  判定線(xiàn)和面平行,面中找條平行線(xiàn)。已知線(xiàn)與面平行,過(guò)線(xiàn)作面找交線(xiàn)。

  要證面和面平行,面中找出兩交線(xiàn),線(xiàn)面平行若成立,面面平行不用看。

  已知面與面平行,線(xiàn)面平行是必然;若與三面都相交,則得兩條平行線(xiàn)。

  判定線(xiàn)和面垂直,線(xiàn)垂面中兩交線(xiàn)。兩線(xiàn)垂直同一面,相互平行共伸展。

  兩面垂直同一線(xiàn),一面平行另一面。要讓面與面垂直,面過(guò)另面一垂線(xiàn)。

  面面垂直成直角,線(xiàn)面垂直記心間。

  一面四線(xiàn)定射影,找出斜射一垂線(xiàn),線(xiàn)線(xiàn)垂直得巧證,三垂定理風(fēng)采顯。

  空間距離和夾角,平行轉化在平面,一找二證三構造,三角形中求答案。

  引進(jìn)向量新工具,計算證明開(kāi)新篇?臻g建系求坐標,向量運算更簡(jiǎn)便。

  知識創(chuàng )新無(wú)止境,學(xué)問(wèn)思辨勇攀登。

  多面體和旋轉體,上述內容的延續。扮演載體新角色,位置關(guān)系全在里。

  算面積來(lái)求體積,基本公式是依據。規則形體用公式,非規形體靠化歸。

  展開(kāi)分割好辦法,化難為易新天地。

  高中立體幾何知識點(diǎn)總結 篇3

  平面

  通常用一個(gè)平行四邊形來(lái)表示。

  平面常用希臘字母α、β、γ…或拉丁字母M、N、P來(lái)表示,也可用表示平行四邊形的兩個(gè)相對頂點(diǎn)字母表示,如平面AC。

  在立體幾何中,大寫(xiě)字母A,B,C,…表示點(diǎn),小寫(xiě)字母,a,b,c,…l,m,n,…表示直線(xiàn),且把直線(xiàn)和平面看成點(diǎn)的集合,因而能借用集合論中的符號表示它們之間的關(guān)系,例如:

  a) A∈l—點(diǎn)A在直線(xiàn)l上;Aα—點(diǎn)A不在平面α內;

  b) lα—直線(xiàn)l在平面α內;

  c) aα—直線(xiàn)a不在平面α內;

  d) l∩m=A—直線(xiàn)l與直線(xiàn)m相交于A(yíng)點(diǎn);

  e) α∩l=A—平面α與直線(xiàn)l交于A(yíng)點(diǎn);

  f) α∩β=l—平面α與平面β相交于直線(xiàn)l。

  平面的基本性質(zhì)

  公理1如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)上所有的點(diǎn)都在這個(gè)平面內;

  公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線(xiàn);

  公理3經(jīng)過(guò)不在同一直線(xiàn)上的三個(gè)點(diǎn),有且只有一個(gè)平面。

  根據上面的公理,可得以下推論,

  推論1經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)平面;

  推論2經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面。

  推論3經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面。

  公理4平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  拓展閱讀:高中數學(xué)立體幾何解題技巧

  1.平行、垂直位置關(guān)系的論證的策略:

  (1)由已知想性質(zhì),由求證想判定,即分析法與綜合法相結合尋找證題思路。

  (2)利用題設條件的性質(zhì)適當添加輔助線(xiàn)(或面)是解題的常用方法之一。

  (3)三垂線(xiàn)定理及其逆定理在高考題中使用的頻率最高,在證明線(xiàn)線(xiàn)垂直時(shí)應優(yōu)先考慮。

  2.空間角的計算方法與技巧:

  主要步驟:一作、二證、三算;若用向量,那就是一證、二算。

  (1)兩條異面直線(xiàn)所成的角①平移法:②補形法:③向量法:

  (2)直線(xiàn)和平面所成的角

 、僮鞒鲋本(xiàn)和平面所成的角,關(guān)鍵是作垂線(xiàn),找射影轉化到同一三角形中計算,或用向量計算。

 、谟霉接嬎。

  (3)二面角

 、倨矫娼堑淖鞣ǎ(i)定義法;(ii)三垂線(xiàn)定理及其逆定理法;(iii)垂面法。

 、谄矫娼堑挠嬎惴ǎ

  (i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式。

  3.空間距離的計算方法與技巧:

  (1)求點(diǎn)到直線(xiàn)的距離:經(jīng)常應用三垂線(xiàn)定理作出點(diǎn)到直線(xiàn)的垂線(xiàn),然后在相關(guān)的.三角形中求解,也可以借助于面積相等求出點(diǎn)到直線(xiàn)的距離。

  (2)求兩條異面直線(xiàn)間距離:一般先找出其公垂線(xiàn),然后求其公垂線(xiàn)段的長(cháng)。在不能直接作出公垂線(xiàn)的情況下,可轉化為線(xiàn)面距離求解(這種情況高考不做要求)。

  (3)求點(diǎn)到平面的距離:一般找出(或作出)過(guò)此點(diǎn)與已知平面垂直的平面,利用面面垂直的性質(zhì)過(guò)該點(diǎn)作出平面的垂線(xiàn),進(jìn)而計算;也可以利用“三棱錐體積法”直接求距離;有時(shí)直接利用已知點(diǎn)求距離比較困難時(shí),我們可以把點(diǎn)到平面的距離轉化為直線(xiàn)到平面的距離,從而“轉移”到另一點(diǎn)上去求“點(diǎn)到平面的距離”。求直線(xiàn)與平面的距離及平面與平面的距離一般均轉化為點(diǎn)到平面的距離來(lái)求解。

  高中立體幾何知識點(diǎn)總結 篇4

  1.不等式的定義

  在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數的大小

  兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,則有>1?;=1?;<1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質(zhì)

  (1)對稱(chēng)性:a>b?;

  (2)傳遞性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可開(kāi)方:a>b>0?(n∈N,n≥2).

  復習指導

  1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  2.“一種方法”待定系數法:求代數式的'范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.

  3.“兩條常用性質(zhì)”

  (1)倒數性質(zhì):①a>b,ab>0?<;②a<0

 、踑>b>0,0;④0

  (2)若a>b>0,m>0,則

 、僬娣謹档男再|(zhì):<;>(b-m>0);

  高中立體幾何知識點(diǎn)總結 篇5

  必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上所有的知識點(diǎn)是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何。

  選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

  系列2:3個(gè)模塊

  選修2-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何

  選修2-2:導數及其應用、推理與證明、數系的擴充與復數

  選修2-3:計數原理、隨機變量及其分布列、統計案例

  選修4-1:幾何證明選講

  選修4-4:坐標系與參數方程

  選修4-5:不等式選講

  2.重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數,數列,三角函數,平面向量,圓錐曲線(xiàn),立體幾何,導數。

  難點(diǎn):函數,圓錐曲線(xiàn)。

  高考相關(guān)考點(diǎn):

  1.集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件。

  2.函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數函數、對數函數、函數的應用。

  3.數列:數列的有關(guān)概念、等差數列、等比數列、數列求通項、求和。

  4.三角函數:有關(guān)概念、同角關(guān)系與誘導公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數的圖像及其性質(zhì)、應用。

  5.平面向量:初等運算、坐標運算、數量積及其應用。

  6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的`解法、絕對值不等式(經(jīng)常出現在大題的選做題里)、不等式的應用。

  7.直線(xiàn)與圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的位置關(guān)系。

  8.圓錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用。

  9.直線(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量。

  10.排列、組合和概率:排列、組合應用題、二項式定理及其應用。

  11.概率與統計:概率、分布列、期望、方差、抽樣、正態(tài)分布。

  12.導數:導數的概念、求導、導數的應用。

  13.復數:復數的概念與運算。

【高中立體幾何知識點(diǎn)總結】相關(guān)文章:

高中立體幾何知識點(diǎn)總結01-15

高中數學(xué)立體幾何知識點(diǎn)總結最新05-26

高中立體幾何計算方法總結12-02

高中數學(xué)立體幾何做題方法總結06-08

高一直線(xiàn)與方程及立體幾何知識點(diǎn)歸納04-25

高中圓知識點(diǎn)的總結03-15

高中概率知識點(diǎn)總結01-12

高中力學(xué)知識點(diǎn)總結11-08

高中磁場(chǎng)知識點(diǎn)總結12-01