- 相關(guān)推薦
高考平面向量知識點(diǎn)總結
平面向量是在二維平面內既有方向又有大小的量,物理學(xué)中也稱(chēng)作矢量。下面是小編為大家整理的高考平面向量知識點(diǎn)總結,歡迎閱讀。
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線(xiàn)向量、相等向量。
2. 加法與減法的代數運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
3.實(shí)數與向量的積:實(shí)數 與向量 的積是一個(gè)向量。
(1)| |=| || |;
(2) 當 a>0時(shí), 與a的方向相同;當a<0時(shí), 與a的方向相反;當 a=0時(shí),a=0.
兩個(gè)向量共線(xiàn)的充要條件:
(1) 向量b與非零向量 共線(xiàn)的充要條件是有且僅有一個(gè)實(shí)數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對于這一平面內的任一向量 ,有且只有一對實(shí)數 , ,使得 = e1+ e2.
4.P分有向線(xiàn)段 所成的比:
設P1、P2是直線(xiàn) 上兩個(gè)點(diǎn),點(diǎn)P是 上不同于P1、P2的任意一點(diǎn),則存在一個(gè)實(shí)數 使 = , 叫做點(diǎn)P分有向線(xiàn)段 所成的比。
當點(diǎn)P在線(xiàn)段 上時(shí), >0;當點(diǎn)P在線(xiàn)段 或 的延長(cháng)線(xiàn)上時(shí), <0;
分點(diǎn)坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( -1), 中點(diǎn)坐標公式: .
5. 向量的數量積:
。1).向量的夾角:
已知兩個(gè)非零向量 與b,作 = , =b,則AOB= ( )叫做向量 與b的夾角。
。2).兩個(gè)向量的數量積:
已知兩個(gè)非零向量 與b,它們的夾角為 ,則 b=| ||b|c(diǎn)os .
其中|b|c(diǎn)os 稱(chēng)為向量b在 方向上的投影.
。3).向量的數量積的性質(zhì):
若 =( ),b=( )則e = e=| |c(diǎn)os (e為單位向量);
b b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
b=b( )b= ( b)= ( b);( +b)c= c+bc.
6.主要思想與方法:
本章主要樹(shù)立數形轉化和結合的觀(guān)點(diǎn),以數代形,以形觀(guān)數,用代數的運算處理幾何問(wèn)題,特別是處理向量的相關(guān)位置關(guān)系,正確運用共線(xiàn)向量和平面向量的基本定理,計算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會(huì )與三角函數、數列、不等式、解幾等結合起來(lái)進(jìn)行綜合考查,是知識的交匯點(diǎn)。
【高考平面向量知識點(diǎn)總結】相關(guān)文章:
《平面向量》說(shuō)課稿07-19
平面向量的概念說(shuō)課稿01-11
平面向量教學(xué)反思02-09
《平面向量》教案設計05-14
平面向量在代數中的應用說(shuō)課稿11-02
平面向量基本定理教案設計05-14
《平面向量的坐標運算》教案設計05-14