- 相關(guān)推薦
高中數學(xué)選修2-2知識點(diǎn)總結
總結是在一段時(shí)間內對學(xué)習和工作生活等表現加以總結和概括的一種書(shū)面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質(zhì)的理性認識上來(lái),因此,讓我們寫(xiě)一份總結吧。那么我們該怎么去寫(xiě)總結呢?以下是小編整理的高中數學(xué)選修2-2知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。
導數及其應用
一.導數概念的引入
數學(xué)選修2-2知識點(diǎn)總結
1.導數的物理意義:瞬時(shí)速率。一般的,函數yf(x)在xx0處的瞬時(shí)變化率是
limf(x0x)f(x0)x,
x0我們稱(chēng)它為函數yf(x)在xx0處的導數,記作f(x0)或y|xx,即
0f(x0)=limf(x0x)f(x0)xx0
例1.在高臺跳水運動(dòng)中,運動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:
s)存在函數關(guān)系
h(t)4.9t6.5t10
2運動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據定義
vh(2)limh(2x)h(2)xx013.1
即該運動(dòng)員在t=2s是13.1m/s,符號說(shuō)明方向向下
2.導數的幾何意義:曲線(xiàn)的切線(xiàn).通過(guò)圖像,我們可以看出當點(diǎn)Pn趨近于P時(shí),直線(xiàn)PT與
曲線(xiàn)相切。容易知道,割線(xiàn)PPn的斜率是knf(xn)f(x0)xnx0,當點(diǎn)Pn趨近于P時(shí),函
數yf(x)在xx0處的導數就是切線(xiàn)PT的斜率k,即
klimf(xn)f(x0)xnx0f(x0)
x03.導函數:當x變化時(shí),f(x)便是x的一個(gè)函數,我們稱(chēng)它為f(x)的導函數.yf(x)的導函數有時(shí)也記作y,即
f(x)limf(xx)f(x)xx0
二.導數的計算
1.函數yf(x)c的導數2.函數yf(x)x的導數3.函數yf(x)x的導數
4.函數yf(x)1x的導數
基本初等函數的導數公式:
1若f(x)c(c為常數),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex
x7若f(x)loga,則f(x)1xlna1x
8若f(x)lnx,則f(x)導數的運算法則
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)
f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]
復合函數求導
yf(u)和ug(x),稱(chēng)則y可以表示成為x的函數,即yf(g(x))為一個(gè)復合函數yf(g(x))g(x)
三.導數在研究函數中的應用1.函數的單調性與導數:
一般的,函數的單調性與其導數的正負有如下關(guān)系:
在某個(gè)區間(a,b)內,如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞增;如果f(x)0,那么函數yf(x)在這個(gè)區間單調遞減.2.函數的極值與導數
極值反映的是函數在某一點(diǎn)附近的大小情況.求函數yf(x)的極值的方法是:
(1)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側f(wàn)(x)0,右側f(wàn)(x)0,那么f(x0)是極小值;4.函數的最大(小)值與導數
函數極大值與最大值之間的關(guān)系.
求函數yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數yf(x)在(a,b)內的極值;
。2)將函數yf(x)的各極值與端點(diǎn)處的函數值f(a),f(b)比較,其中最大的是一個(gè)
最大值,最小的是最小值.
四.生活中的優(yōu)化問(wèn)題
利用導數的知識,,求函數的最大(小)值,從而解決實(shí)際問(wèn)題
第二章推理與證明
考點(diǎn)一合情推理與類(lèi)比推理
根據一類(lèi)事物的部分對象具有某種性質(zhì),退出這類(lèi)事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過(guò)程,它屬于合情推理
根據兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的推理,叫做類(lèi)比推理.
類(lèi)比推理的一般步驟:
(1)找出兩類(lèi)事物的相似性或一致性;
(2)用一類(lèi)事物的性質(zhì)去推測另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想);
(3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某
些性質(zhì)上相同或相似,那么他們在另一寫(xiě)性質(zhì)上也可能相同或類(lèi)似,類(lèi)比的結論可能是真的
(4)一般情況下,如果類(lèi)比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類(lèi)比
得出的命題越可靠.
考點(diǎn)二演繹推理(俗稱(chēng)三段論)
由一般性的命題推出特殊命題的過(guò)程,這種推理稱(chēng)為演繹推理.
考點(diǎn)三數學(xué)歸納法
1.它是一個(gè)遞推的數學(xué)論證方法.
2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎;B.假設在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,
完成這兩步,就可以斷定對任何自然數(或n>=n0,且nN)結論都成立?键c(diǎn)三證明1.反證法:2.分析法:3.綜合法:
第一章數系的擴充和復數的概念考點(diǎn)一:復數的概念
(1)復數:形如abi(aR,bR)的數叫做復數,a和b分別叫它的實(shí)部和虛部.
(2)分類(lèi):復數abi(aR,bR)中,當b0,就是實(shí)數;b0,叫做虛數;當a0,b0時(shí),
叫做純虛數.
(3)復數相等:如果兩個(gè)復數實(shí)部相等且虛部相等就說(shuō)這兩個(gè)復數相等.
(4)共軛復數:當兩個(gè)復數實(shí)部相等,虛部互為相反數時(shí),這兩個(gè)復數互為共軛復數.(5)復平面:建立直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部
分叫做虛軸。
(6)兩個(gè)實(shí)數可以比較大小,但兩個(gè)復數如果不全是實(shí)數就不能比較大小。
考點(diǎn)二:復數的運算
1.復數的加,減,乘,除按以下法則進(jìn)行設z1abi,z2cdi(a,b,c,dR)則
z1z2(ac)(bd)iz1z2(acbd)(adbc)i
z1z2(acbd)(adbc)icd22(z20)
2,幾個(gè)重要的結論
2222(1)|z1z2||z1z2|2(|z1||z2|)
(2)zz|z|2|z|2(3)若z為虛數,則|z|z3.運算律
(1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)
224.關(guān)于虛數單位i的一些固定結論:
。1)i1(2)ii(3)i1(2)ii234nn2in3in
擴展閱讀:高中數學(xué)文科選修1-2知識點(diǎn)總結
高中數學(xué)選修1-2知識點(diǎn)總結
第一章統計案例
1.線(xiàn)性回歸方程①變量之間的兩類(lèi)關(guān)系:函數關(guān)系與相關(guān)關(guān)系;②制作散點(diǎn)圖,判斷線(xiàn)性相關(guān)關(guān)系
、劬(xiàn)性回歸方程:ybxa(最小二乘法)
nxiyinxyi1bn2其中,2xinxi1aybx注意:線(xiàn)性回歸直線(xiàn)經(jīng)過(guò)定點(diǎn)(x,y).
2.相關(guān)系數(判定兩個(gè)變量線(xiàn)性相關(guān)性):r(xi1nix)(yiy)2
(xi1nix)(yi1niy)2注:⑴r>0時(shí),變量x,y正相關(guān);r第二章框圖
1.流程圖
流程圖是由一些圖形符號和文字說(shuō)明構成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點(diǎn)是直觀(guān)、清晰.3.結構圖
一些事物之間不是先后順序關(guān)系,而是存在某種邏輯關(guān)系,像這樣的關(guān)系可以用結構圖來(lái)描述.常用的結構圖一般包括層次結構圖,分類(lèi)結構圖及知識結構圖等.
第三章推理與證明
1.推理⑴合情推理:
歸納推理和類(lèi)比推理都是根據已有事實(shí),經(jīng)過(guò)觀(guān)察、分析、比較、聯(lián)想,在進(jìn)行歸納、類(lèi)比,然后提出猜想的推理,我們把它們稱(chēng)為合情推理。①歸納推理
由某類(lèi)食物的部分對象具有某些特征,推出該類(lèi)事物的全部對象都具有這些特征的推理,或者有個(gè)別事實(shí)概括出一般結論的推理,稱(chēng)為歸納推理,簡(jiǎn)稱(chēng)歸納。歸納推理是由部分到整體,由個(gè)別到一般的推理。②類(lèi)比推理
由兩類(lèi)對象具有類(lèi)似和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理,稱(chēng)為類(lèi)比推理,簡(jiǎn)稱(chēng)類(lèi)比。類(lèi)比推理是特殊到特殊的推理。⑵演繹推理
從一般的原理出發(fā),推出某個(gè)特殊情況下的結論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。
“三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結論;⑵小前提---------所研究的特殊情況;⑶結論---------根據一般原理,對特殊情況得出的判斷。
2
2.證明
(1)直接證明①綜合法
一般地,利用已知條件和某些數學(xué)定義、定理、公理等,經(jīng)過(guò)一系列的推理論證,最后推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。②分析法
一般地,從要證明的結論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個(gè)明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。(2)間接證明……反證法
一般地,假設原命題不成立,經(jīng)過(guò)正確的推理,最后得出矛盾,因此說(shuō)明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
第四章復數
1.復數的有關(guān)概念
(1)把平方等于-1的數用符號i表示,規定i2=-1,把i叫作虛數單位.
(2)形如a+bi的數叫作復數(a,b是實(shí)數,i是虛數單位).通常表示為z=a+bi(a,b∈R).(3)對于復數z=a+bi,a與b分別叫作復數z的______與______,并且分別用Rez與Imz表示.2.數集之間的關(guān)系
復數的全體組成的集合叫作_____________,記作C.3.復數的分類(lèi)
實(shí)數(b=0)
復數a+bi
純虛數(a=0)(a,b∈R)虛數(b≠0)
非純虛數(a≠0)
4.兩個(gè)復數相等的充要條件
設a,b,c,d都是實(shí)數,則a+bi=c+di,當且僅當_________
3
5.復平面
(1)定義:當用__________________的點(diǎn)來(lái)表示復數時(shí),我們稱(chēng)這個(gè)直角坐標平面為復平面.(2)實(shí)軸:_______稱(chēng)為實(shí)軸.虛軸:_________稱(chēng)為虛軸.6.復數的模
若z=a+bi(a,b∈R),則_______________.7.共軛復數
(1)定義:當兩個(gè)復數的實(shí)部________,虛部互為_(kāi)__________時(shí),這樣的兩個(gè)復數叫作互為共軛復數.復數z的共軛復數用______表示,即若z=a+bi,則z-=__________.2)性質(zhì):==___________.
必背結論
1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數b≠0(a,b∈R);
(3)z=a+bi是純虛數a=0且b≠0(a,b∈R)z+z=0(z≠0)z2
【高中數學(xué)選修2-2知識點(diǎn)總結】相關(guān)文章:
化學(xué)選修知識點(diǎn)總結11-15
生物選修一知識點(diǎn)總結10-27
高二物理選修一知識點(diǎn)總結09-21
高中數學(xué)選修教學(xué)計劃11-14