97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高三數學(xué)知識點(diǎn)總結

時(shí)間:2024-06-12 11:53:08 知識點(diǎn)總結 我要投稿

[優(yōu)秀]高三數學(xué)知識點(diǎn)總結

  總結就是對一個(gè)時(shí)期的學(xué)習、工作或其完成情況進(jìn)行一次全面系統的回顧和分析的書(shū)面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧?偨Y怎么寫(xiě)才不會(huì )千篇一律呢?下面是小編整理的高三數學(xué)知識點(diǎn)總結 ,歡迎大家借鑒與參考,希望對大家有所幫助。

[優(yōu)秀]高三數學(xué)知識點(diǎn)總結

高三數學(xué)知識點(diǎn)總結 1

  1.數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項.

  (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  (2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  (4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的數列,顯然數列與數集有本質(zhì)的區別.如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數列的分類(lèi)

  (1)根據數列的`項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列.在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列.

  (2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列.

  3.數列的通項公式

  數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

  由公式寫(xiě)出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀(guān)察分析,真正找到數列的內在規律,由數列前幾項寫(xiě)出其通項公式,沒(méi)有通用的方法可循.

  再強調對于數列通項公式的理解注意以下幾點(diǎn):

  (1)數列的通項公式實(shí)際上是一個(gè)以正整數集N_或它的有限子集{1,2,…,n}為定義域的函數的表達式.

  (2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數列的各項;同時(shí),用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話(huà),是第幾項.

  (3)如所有的函數關(guān)系不一定都有解析式一樣,并不是所有的數列都有通項公式.

  如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項公式.

  (4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

  (5)有些數列,只給出它的前幾項,并沒(méi)有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不.

  4.數列的圖象

  對于數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關(guān)系:

  序號:1234567

  項:45678910

  這就是說(shuō),上面可以看成是一個(gè)序號集合到另一個(gè)數的集合的映射.因此,從映射、函數的觀(guān)點(diǎn)看,數列可以看作是一個(gè)定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數,當自變量從小到大依次取值時(shí),對應的一列函數值.這里的函數是一種特殊的函數,它的自變量只能取正整數.

  由于數列的項是函數值,序號是自變量,數列的通項公式也就是相應函數和解析式.

  數列是一種特殊的函數,數列是可以用圖象直觀(guān)地表示的

  數列用圖象來(lái)表示,可以以序號為橫坐標,相應的項為縱坐標,描點(diǎn)畫(huà)圖來(lái)表示一個(gè)數列,在畫(huà)圖時(shí),為方便起見(jiàn),在平面直角坐標系兩條坐標軸上取的單位長(cháng)度可以不同,從數列的圖象表示可以直觀(guān)地看出數列的變化情況,但不精確.

  把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn).

  5.遞推數列

  一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個(gè)數列:4,5,6,7,8,9,10.①

  數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。

高三數學(xué)知識點(diǎn)總結 2

  1、函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

  (1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

  (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的.對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

  (6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

  (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10、對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個(gè)函數具有相同的單調性;

  (6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11、處理二次函數的問(wèn)題勿忘數形結合

  二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12、依據單調性

  利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題;

  13、恒成立問(wèn)題的處理方法

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解;

  a(1)=a,a(n)為公差為r的等差數列

  通項公式:

  a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

  可用歸納法證明。

  n=1時(shí),a(1)=a+(1-1)r=a。成立。

  假設n=k時(shí),等差數列的通項公式成立。a(k)=a+(k-1)r

  則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

  通項公式也成立。

  因此,由歸納法知,等差數列的通項公式是正確的。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+(a+r)+、、、+[a+(n-1)r]

  =na+r[1+2+、、、+(n-1)]

  =na+n(n-1)r/2

  同樣,可用歸納法證明求和公式。

  a(1)=a,a(n)為公比為r(r不等于0)的等比數列

  通項公式:

  a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

  可用歸納法證明等比數列的通項公式。

  求和公式:

  S(n)=a(1)+a(2)+、、、+a(n)

  =a+ar+、、、+ar^(n-1)

  =a[1+r+、、、+r^(n-1)]

  r不等于1時(shí),

  S(n)=a[1-r^n]/[1-r]

  r=1時(shí),

  S(n)=na、

  同樣,可用歸納法證明求和公式。

高三數學(xué)知識點(diǎn)總結 3

  1、三類(lèi)角的求法:

 、僬页龌蜃鞒鲇嘘P(guān)的角。

 、谧C明其符合定義,并指出所求作的角。

 、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。

  2、正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

  正棱錐的計算集中在四個(gè)直角三角形中:

  3、怎樣判斷直線(xiàn)l與圓C的位置關(guān)系?

  圓心到直線(xiàn)的距離與圓的半徑比較。

  直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。

  4、對線(xiàn)性規劃問(wèn)題:

  作出可行域,作出以目標函數為截距的直線(xiàn),在可行域內平移直線(xiàn),求出目標函數的最值。

  培養興趣是關(guān)鍵。學(xué)生對數學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養興趣呢?

 。1)欣賞數學(xué)的美感

  比如幾何圖形中的對稱(chēng)、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

  通過(guò)對旋轉變換及其不變量的討論,我們可以證明反比例函數、“對勾函數”的圖象都是雙曲線(xiàn)——平面上到兩個(gè)定點(diǎn)的距離之差的絕對值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

 。2)注意到數學(xué)在實(shí)際生活中的應用。

  例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解、學(xué)好數學(xué),是現代公民的`基本素養之一啊

 。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

  利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。

 。4)適當看一些科普類(lèi)的書(shū)籍和文章。

  比如:學(xué)圓錐曲線(xiàn)的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線(xiàn)往往就是各種圓錐曲線(xiàn),很多文章對此都有介紹;還有圓錐曲線(xiàn)光學(xué)性質(zhì)的應用,這方面的文章也不少。

高三數學(xué)知識點(diǎn)總結 4

  1.數列的定義、分類(lèi)與通項公式

  (1)數列的定義:

 、贁盗校喊凑找欢樞蚺帕械囊涣袛.

 、跀盗械捻棧簲盗兄械拿恳粋(gè)數.

  (2)數列的分類(lèi):

  分類(lèi)標準類(lèi)型滿(mǎn)足條件

  項數有窮數列項數有限

  無(wú)窮數列項數無(wú)限

  項與項間的大小關(guān)系遞增數列an+1>an其中n∈N_

  遞減數列an+1

  常數列an+1=an

  (3)數列的通項公式:

  如果數列{an}的第n項與序號n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數列的通項公式.

  2.數列的遞推公式

  如果已知數列{an}的`首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數列的遞推公式.

  3.對數列概念的理解

  (1)數列是按一定“順序”排列的一列數,一個(gè)數列不僅與構成它的“數”有關(guān),而且還與這些“數”的排列順序有關(guān),這有別于集合中元素的無(wú)序性.因此,若組成兩個(gè)數列的數相同而排列次序不同,那么它們就是不同的兩個(gè)數列.

  (2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別.

  4.數列的函數特征

  數列是一個(gè)定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_).

高三數學(xué)知識點(diǎn)總結 5

  付正軍:高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節,主要是考函數和導數,這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二個(gè)是平面向量和三角函數。重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三,是數列,數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。

  第四,空間向量和立體幾何。在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。

  第五,概率和統計,這一板塊主要是屬于數學(xué)應用問(wèn)題的范疇,當然應該掌握下面幾個(gè)方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。

  第六,解析幾何,這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計算量最高的題,當然這一類(lèi)題,我總結下面五類(lèi)?嫉念}型,包括第一類(lèi)所講的直線(xiàn)和曲線(xiàn)的位置關(guān)系,這是考試最多的內容?忌鷳撜莆账耐ǚ,第二類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題,第三類(lèi)是弦長(cháng)問(wèn)題,第四類(lèi)是對稱(chēng)問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn),第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的'原因,往往有這個(gè)原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準確度,這是我們所講的第六大板塊。

  第七,押軸題,考生在備考復習時(shí),應該重點(diǎn)不等式計算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

高三數學(xué)知識點(diǎn)總結 6

  三角函數。

  注意歸一公式、誘導公式的正確性。

  數列題。

  1、證明一個(gè)數列是等差(等比)數列時(shí),最后下結論時(shí)要寫(xiě)上以誰(shuí)為首項,誰(shuí)為公差(公比)的等差(等比)數列;

  2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數,另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學(xué)歸納法(用數學(xué)歸納法時(shí),當n=k+1時(shí),一定利用上n=k時(shí)的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進(jìn)行適當的放縮,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時(shí)一定寫(xiě)上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構造函數,利用函數單調性很簡(jiǎn)單

  立體幾何題。

  1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線(xiàn)所成的.角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問(wèn)題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個(gè)數;

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準均值、方差、標準差公式;

  4、求概率時(shí),正難則反(根據p1+p2+……+pn=1);

  5、注意計數時(shí)利用列舉、樹(shù)圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

高三數學(xué)知識點(diǎn)總結 7

  1.等差數列的定義

  如果一個(gè)數列從第2項起,每一項與它的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示.

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項.

  4.等差數列的常用性質(zhì)

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

  (4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數,則S偶-S奇=nd/2;

  若n為奇數,則S奇-S偶=a中(中間項).

  注意:

  一個(gè)推導

  利用倒序相加法推導等差數列的`前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數組成等差數列的一類(lèi)問(wèn)題,要善于設元.

  (1)若奇數個(gè)數成等差數列且和為定值時(shí),可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數個(gè)數成等差數列且和為定值時(shí),可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進(jìn)行對稱(chēng)設元.

  四種方法

  等差數列的判斷方法

  (1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來(lái)判斷是否為等差數列,而不能用來(lái)證明等差數列.

高三數學(xué)知識點(diǎn)總結 8

  第一部分集合

 。1)含n個(gè)元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數與導數

  1、映射:注意

 、俚谝粋(gè)集合中的元素必須有象;

 、谝粚σ,或多對一。

  2、函數值域的求法:

 、俜治龇;

 、谂浞椒;

 、叟袆e式法;

 、芾煤瘮祮握{性;

 、輷Q元法;

 、蘩镁挡坏仁;

 、呃脭敌谓Y合或幾何意義(斜率、距離、絕對值的意義等);

 、嗬煤瘮涤薪缧;

 、釋捣

  3、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:

 、偃鬴(x)的'定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出。

 、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域。

 。2)復合函數單調性的判定:

 、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;

 、诜謩e研究?jì)、外函數在各自定義域內的單調性;

 、鄹鶕巴詣t增,異性則減”來(lái)判斷原函數在其定義域內的單調性。

  注意:外函數的定義域是內函數的值域。

  4、分段函數:值域(最值)、單調性、圖象等問(wèn)題,先分段解決,再下結論。

  5、函數的奇偶性

 。1)函數的定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件;

 。2)是奇函數;

 。3)是偶函數;

 。4)奇函數在原點(diǎn)有定義,則;

 。5)在關(guān)于原點(diǎn)對稱(chēng)的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

 。6)若所給函數的解析式較為復雜,應先等價(jià)變形,再判斷其奇偶性;

高三數學(xué)知識點(diǎn)總結 9

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。

 、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的.不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

 、鄄坏忍柕拈_(kāi)口所對的數較大,不等號的尖頭所對的數較小;

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數、非負數、不大于、小于等等。

  任一x?A,x?B,記做AB

  AB,BAA=B

  AB={x|x?A,且x?B}

  AB={x|x?A,或x?B}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

  (3)集合的運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數:2n

  真子集數:2n-1;

  非空真子集數:2n-2

高三數學(xué)知識點(diǎn)總結 10

  第一部分集合

 。1)含n個(gè)元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數與導數

  1、映射:注意①第一個(gè)集合中的元素必須有象;②一對一,或多對一。

  2、函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法

  3、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:

 、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出

 、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域。

 。2)復合函數單調性的判定:

 、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;

 、诜謩e研究?jì)、外函數在各自定義域內的單調性;

 、鄹鶕巴詣t增,異性則減”來(lái)判斷原函數在其定義域內的單調性。

  注意:外函數的定義域是內函數的值域。

  4、分段函數:值域(最值)、單調性、圖象等問(wèn)題,先分段解決,再下結論。

  5、函數的.奇偶性

 、藕瘮档亩x域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件;

 、剖瞧婧瘮;

 、鞘桥己瘮;

 、绕婧瘮翟谠c(diǎn)有定義,則;

 、稍陉P(guān)于原點(diǎn)對稱(chēng)的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

 。6)若所給函數的解析式較為復雜,應先等價(jià)變形,再判斷其奇偶性;

  1、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數;

  2、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數;

  3、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對稱(chēng);

  4、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱(chēng)。

  5、函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);

  6、由函數奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則—x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng))。

高三數學(xué)知識點(diǎn)總結 11

  反三角函數主要是三個(gè):

  y=arcsin(x),定義域[-1,1],值域[-π/2,π/2]圖象用紅色線(xiàn)條;

  y=arccos(x),定義域[-1,1],值域[0,π],圖象用藍色線(xiàn)條;

  y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線(xiàn)條;

  sin(arcsinx)=x,定義域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

  其他公式:

  三角函數其他公式

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  當x∈[—π/2,π/2]時(shí),有arcsin(sinx)=x

  當x∈[0,π],arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x

  x〉0,arctanx=π/2-arctan1/x,arccotx類(lèi)似

  若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)高三數學(xué)必背知識點(diǎn)歸納

  二項式定理:

 、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

 、谥饕再|(zhì)和主要結論:對稱(chēng)性Cnm=Cnn-m

  二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

  所有二項式系數的`和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數項二項式系數的和=偶數項而是系數的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

 、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數項、有理項等有關(guān)問(wèn)題。

高三數學(xué)知識點(diǎn)總結 12

  復數的概念:

  形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。

  復數的表示:

  復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實(shí)部,b叫復數的虛部。

  復數的幾何意義:

  (1)復平面、實(shí)軸、虛軸:

  點(diǎn)Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數,除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數

  (2)復數的幾何意義:復數集C和復平面內所有的點(diǎn)所成的集合是一一對應關(guān)系,即

  這是因為,每一個(gè)復數有復平面內惟一的`一個(gè)點(diǎn)和它對應;反過(guò)來(lái),復平面內的每一個(gè)點(diǎn),有惟一的一個(gè)復數和它對應。

  這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。

  復數的模:

  復數z=a+bi(a、b∈R)在復平面上對應的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復數的模,記為|Z|,即|Z|=

  虛數單位i:

  (1)它的平方等于-1,即i2=-1;

  (2)實(shí)數可以與它進(jìn)行四則運算,進(jìn)行四則運算時(shí),原有加、乘運算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復數模的性質(zhì):

  復數與實(shí)數、虛數、純虛數及0的關(guān)系:

  對于復數a+bi(a、b∈R),當且僅當b=0時(shí),復數a+bi(a、b∈R)是實(shí)數a;當b≠0時(shí),復數z=a+bi叫做虛數;當a=0且b≠0時(shí),z=bi叫做純虛數;當且僅當a=b=0時(shí),z就是實(shí)數0。

高三數學(xué)知識點(diǎn)總結 13

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無(wú)序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

  (3)集合的運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質(zhì)

  n元集合的字集數:2n

  真子集數:2n-1;

  非空真子集數:2n-2

  高三數學(xué)知識點(diǎn)2

  兩個(gè)復數相等的定義:

  如果兩個(gè)復數的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復數相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

  a=0,b=0.

  復數相等的充要條件,提供了將復數問(wèn)題化歸為實(shí)數問(wèn)題解決的途徑。

  復數相等特別提醒:

  一般地,兩個(gè)復數只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復數都是實(shí)數,就可以比較大小,也只有當兩個(gè)復數全是實(shí)數時(shí)才能比較大小。

  解復數相等問(wèn)題的方法步驟:

  (1)把給的'復數化成復數的標準形式;

  (2)根據復數相等的充要條件解之。

高三數學(xué)知識點(diǎn)總結 14

  1.不等式的定義

  在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數的大小

  兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,

  有a-b>0?;a-b=0?;a-b<0?.

  另外,若b>0,則有>1?;=1?;<1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質(zhì)

  (1)對稱(chēng)性:a>b?;

  (2)傳遞性:a>b,b>c?;

  (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

  (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

  (5)可乘方:a>b>0?(n∈N,n≥2);

  (6)可開(kāi)方:a>b>0?(n∈N,n≥2).

  復習指導

  1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  2.“一種方法”待定系數法:求代數式的范圍時(shí),先用已知的'代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.

  3.“兩條常用性質(zhì)”

  (1)倒數性質(zhì):①a>b,ab>0?<;②a<0

 、踑>b>0,0;④0

  (2)若a>b>0,m>0,則

 、僬娣謹档男再|(zhì):<;>(b-m>0);

高三數學(xué)知識點(diǎn)總結 15

  高三數學(xué)每輪復習要領(lǐng)

  一、高三數學(xué)復習,大體可分四個(gè)階段,每一個(gè)階段的復習方法與側重點(diǎn)都各不相同,要求也層層加深,因此,同學(xué)們在每一個(gè)階段都應該有不同的復習方案,采用不同的方法和策略。

  1.第一階段,即第一輪復習,也稱(chēng)“知識篇”,大致就是高三第一學(xué)期。在這一階段,老師將帶領(lǐng)同學(xué)們重溫高一、高二所學(xué)課程,但這絕不只是以前所學(xué)知識的簡(jiǎn)單重復,而是站在更高的角度,對舊知識產(chǎn)生全新認識的重要過(guò)程。因為在高一、高二時(shí),老師是以知識點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,你學(xué)的往往時(shí)零碎的、散亂的知識點(diǎn),而在第一輪復習時(shí),老師的主線(xiàn)索是知識的縱向聯(lián)系與橫向聯(lián)系,以章節為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來(lái),并將他們系統化、綜合化,側重點(diǎn)在于各個(gè)知識點(diǎn)之間的融會(huì )貫通。所以大家在復習過(guò)程中應做到: ①立足課本,迅速激活已學(xué)過(guò)的各個(gè)知識點(diǎn)。(建議大家在高三前的一個(gè)暑假里通讀高一、高二教材) ②注意所做題目使用知識點(diǎn)覆蓋范圍的變化,有意識地思考、研究這些知識點(diǎn)在課本中所處的地位和相互之間的聯(lián)系。注意到老師選題的綜合性在不斷地加強。 ③明了課本從前到后的知識結構,將整個(gè)知識體系框架化、網(wǎng)絡(luò )化。能提煉解題所用知識點(diǎn),并說(shuō)出其出處。 ④經(jīng)常將使用最多的知識點(diǎn)總結起來(lái),研究重點(diǎn)知識所在章節,并了解各章節在課本中的地位和作用。

  2.第二輪復習,通常稱(chēng)為“方法篇”。大約從第二學(xué)期開(kāi)學(xué)到四月中旬結束。在這一階段,老師將以方法、技巧為主線(xiàn),主要研究數學(xué)思想方法。老師的復習,不再重視知識結構的先后次序,而是以提高同學(xué)們解決問(wèn)題、分析問(wèn)題的能力為目的,提出、分析、解決問(wèn)題的思路用“配方法、待定系數法、換元法、數形結合、分類(lèi)討論”等方法解決一類(lèi)問(wèn)題、一系列問(wèn)題。同學(xué)們應做到: ①主動(dòng)將有關(guān)知識進(jìn)行必要的拆分、加工重組。找出某個(gè)知識點(diǎn)會(huì )在一系列題目中出現,某種方法可以解決一類(lèi)問(wèn)題。 ②分析題目時(shí),由原來(lái)的注重知識點(diǎn),漸漸地向探尋解題的思路、方法轉變。 ③從現在開(kāi)始,解題一定要非常規范,俗語(yǔ)說(shuō):“不怕難題不得分,就怕每題都扣分”,所以大家務(wù)必將解題過(guò)程寫(xiě)得層次分明,結構完整。 ④適當選做各地模擬試卷和以往高考題,逐漸弄清高考考查的范圍和重點(diǎn)。

  3.第三輪復習,大約一個(gè)月的時(shí)間,也稱(chēng)為“策略篇”。老師主要講述“選擇題的解發(fā)、填空題的解法、應用題的解法、探究性命題的解法、綜合題的解法、創(chuàng )新性題的.解法”,教給同學(xué)們一些解題的特殊方法,特殊技巧,以提高同學(xué)們的解題速度和應對策略為目的。同學(xué)們應做到: ①解題時(shí),會(huì )從多種方法中選擇最省時(shí)、最省事的方法,力求多方位,多角度的思考問(wèn)題,逐漸適應高考對“減縮思維”的要求。 ②注意自己的解題速度,審題要慢,思維要全,下筆要準,答題要快。 ③養成在解題過(guò)程中分析命題者的意圖的習慣,思考命題者是怎樣將考查的知識點(diǎn)有機的結合起來(lái)的,有那些思想方法被復合在其中,對命題者想要考我什么,我應該會(huì )什么,做到心知肚明。

  4.最后,就是沖刺階段,也稱(chēng)為“備考篇”。在這一階段,老師會(huì )將復習的主動(dòng)權交給你自己。以前,學(xué)習的重點(diǎn)、難點(diǎn)、方法、思路都是以老師的意志為主線(xiàn),但是,現在你要直接、主動(dòng)的研讀《考試說(shuō)明》,研究近年來(lái)的高考試題,掌握高考信息、命題動(dòng)向,并做到: ①檢索自己的知識系統,緊抓薄弱點(diǎn),并針對性地做專(zhuān)門(mén)的訓練和突擊措施(可請老師專(zhuān)門(mén)為你拎一拎);鎖定重中之重,掌握最重要的知識到爐火純青的地步。 ②抓思維易錯點(diǎn),注重典型題型。 ③瀏覽自己以前做過(guò)的習題、試卷,回憶自己學(xué)習相關(guān)知識的歷程,做好“再”糾錯工作。 ④博覽群書(shū),博聞強記,使自己見(jiàn)多識廣,注意那些背景新、方法新,知識具有代表性的問(wèn)題。 ⑤不做難題、偏題、怪題,保持情緒穩定,充滿(mǎn)信心,準備應考。

  二、高三數學(xué)復習中的幾個(gè)注意點(diǎn)

  1.復習資料要精,不可超過(guò)兩套,使用過(guò)程中,始終注重其系統性。千萬(wàn)不要貪多,資料多了,不但使自己身陷題海,不能自拔,而且會(huì )因為你的顧此失彼,而使知識體系得不到延續。

  2.有的同學(xué)漠視自己作業(yè)和考試中出現的錯誤,將他們簡(jiǎn)單的歸結為粗心大意。這是很?chē)乐氐腻e誤想法,我們的錯誤都有其必然性,一定要究根問(wèn)底,找出真正的原因,及時(shí)改正,并記住這樣的教訓。

  3.千萬(wàn)不要以為“高考以能力立意”,就是要去鉆難題、偏題、怪題。這里的能力是指:思維能力,對現實(shí)生活的觀(guān)察分析力,創(chuàng )造性的想象能力,探究性實(shí)驗動(dòng)手能力,理解運用實(shí)際問(wèn)題的能力,分析和解決問(wèn)題的探究創(chuàng )新能力,處理、運用信息的能力,新材料、新情景、新問(wèn)題應變理解能力,其重點(diǎn)是概念觀(guān)點(diǎn)形成和規律的認識過(guò)程,它往往蘊藏在最簡(jiǎn)單、最基礎的題目活事實(shí)之中。不是鉆牛角尖能鉆出來(lái)的能力。

  4.合理看待來(lái)自老師和社會(huì )各界的猜題、壓題信息,不可迷信。因為,他們也不是神,我們上了考場(chǎng)只能憑自己的實(shí)力,憑自己的智慧去打拼,所以,我們應該踏踏實(shí)實(shí)、認認真真做好復習應考工作。

  高中數學(xué)學(xué)習方法

  1一本書(shū)

  就是教科書(shū),這是基礎的基礎,但是被中等生最忽視的。筆者高中時(shí),先看教科書(shū)再做題,所以往往同學(xué)做到第5題,我才剛開(kāi)始,但當我做了20題時(shí),反過(guò)來(lái)發(fā)現同學(xué)做到第17題,這就是磨刀不誤砍柴工。最后不僅省時(shí),而且比同學(xué)多鞏固了書(shū)本知識,然后從書(shū)本原理到題目及從題目到原理走了一個(gè)來(lái)回,培養了以理論解決實(shí)際問(wèn)題的能力,提高了以不變應萬(wàn)變的能力。一句話(huà),省時(shí)又高效。為擺脫題海打下了基礎。

  2兩方法

  1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識點(diǎn)及解過(guò)的經(jīng)典題,把已知與求解的差距補上,這個(gè)就是“橋梁”原理。

  2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來(lái)。

  3三部曲:

  1)先看教科書(shū),真正搞懂課本例題,并做課后練習(雖然看上去很簡(jiǎn)單,但是實(shí)質(zhì)上就是要你檢查自己是否真的掌握這些基本知識點(diǎn).),

  2)利用歷年高考真題, 這些題很有價(jià)值,先掩著(zhù)答案,根據你之前課本學(xué)的基礎內容,嘗試自己親自動(dòng)手做一下,再對答案,明白其原理.,真正弄懂它,看看能否舉一反三,可問(wèn)老師及同學(xué),也可請家教,最后達到觸類(lèi)旁通。

  3)同步練習,必須緊跟課程,不能賴(lài)下來(lái)的,一步一個(gè)腳印去做.

  數學(xué)知識點(diǎn)較多,容易忘記,但以上的步驟你都能做到的話(huà),那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內容重新鞏固一遍.

  4四層次

  1)

  基本知識點(diǎn)。含概念、定義、定理、公式等,這是基礎,這個(gè)不過(guò)關(guān),其他免談。筆者平時(shí)先看教科書(shū),就是這個(gè)道理。--這部分,雖然重要,但筆者輔導不作重點(diǎn),只是檢查與提醒,因為可自學(xué)及問(wèn)自己老師同學(xué)。會(huì )這個(gè)的人太容易找到了。

  2)

  數學(xué)思想與數學(xué)技能。數學(xué)思想如方程函數思想、數形結合思想、對稱(chēng)思想、分類(lèi)討論思想,化歸思想;數學(xué)技能如配方、待定系數法等。筆者由于這方面強,故多年不做題或見(jiàn)到陌生題均不慌,因為這些思想能力是深入骨髓的。

  3)

  數學(xué)模型與中間結論。數學(xué)模型就是具體題目的解題套路,中間結論可使學(xué)生減少解題步驟,加快解題速度,減少出錯機會(huì )。這些有了2數學(xué)思想與數學(xué)技能,就能自己推導出來(lái),但要注意總結與積累。

  4)

  特殊解題技巧。這個(gè)要求以上3方面都較強,聰明加靈感,平時(shí)善于總結與歸納,看透事物本源,熟能生巧,觸類(lèi)旁通。故對中等生不作過(guò)高要求,所謂可遇而不可求。筆者對高考實(shí)考試卷的選擇與填空,特別是選擇,有相當部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。憑的就是這個(gè)本事。

【高三數學(xué)知識點(diǎn)總結】相關(guān)文章:

高三數學(xué)知識點(diǎn)總結03-08

高三數學(xué)知識點(diǎn)總結04-27

高三數學(xué)復習知識點(diǎn)總結06-08

高三數學(xué)知識點(diǎn)總結08-24

高三數學(xué)知識點(diǎn)總結06-12

高三數學(xué)知識點(diǎn)歸納總結08-13

高三數學(xué)復習知識點(diǎn)總結范文12-12

關(guān)于高三數學(xué)知識點(diǎn)總結06-08

高三數學(xué)知識點(diǎn)歸納總結 高三數學(xué)知識梳理04-07