高三數學(xué)知識點(diǎn)總結
在我們上學(xué)期間,大家對知識點(diǎn)應該都不陌生吧?知識點(diǎn)也可以理解為考試時(shí)會(huì )涉及到的知識,也就是大綱的分支。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?以下是小編為大家收集的高三數學(xué)知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。
高三數學(xué)知識點(diǎn)總結1
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實(shí)部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實(shí)軸、虛軸:
點(diǎn)Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數,除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點(diǎn)所成的集合是一一對應關(guān)系,即
這是因為,每一個(gè)復數有復平面內惟一的一個(gè)點(diǎn)和它對應;反過(guò)來(lái),復平面內的每一個(gè)點(diǎn),有惟一的一個(gè)復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等于-1,即i2=-1;
(2)實(shí)數可以與它進(jìn)行四則運算,進(jìn)行四則運算時(shí),原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質(zhì):
復數與實(shí)數、虛數、純虛數及0的關(guān)系:
對于復數a+bi(a、b∈R),當且僅當b=0時(shí),復數a+bi(a、b∈R)是實(shí)數a;當b≠0時(shí),復數z=a+bi叫做虛數;當a=0且b≠0時(shí),z=bi叫做純虛數;當且僅當a=b=0時(shí),z就是實(shí)數0。
高三數學(xué)知識點(diǎn)總結2
1、三類(lèi)角的求法:
、僬页龌蜃鞒鲇嘘P(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
正棱錐的計算集中在四個(gè)直角三角形中:
3、怎樣判斷直線(xiàn)l與圓C的位置關(guān)系?
圓心到直線(xiàn)的距離與圓的半徑比較。
直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。
4、對線(xiàn)性規劃問(wèn)題:
作出可行域,作出以目標函數為截距的直線(xiàn),在可行域內平移直線(xiàn),求出目標函數的最值。
高三數學(xué)知識點(diǎn)總結3
三角函數。
注意歸一公式、誘導公式的正確性。
數列題。
1、證明一個(gè)數列是等差(等比)數列時(shí),最后下結論時(shí)要寫(xiě)上以誰(shuí)為首項,誰(shuí)為公差(公比)的等差(等比)數列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數,另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學(xué)歸納法(用數學(xué)歸納法時(shí),當n=k+1時(shí),一定利用上n=k時(shí)的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進(jìn)行適當的放縮,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時(shí)一定寫(xiě)上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構造函數,利用函數單調性很簡(jiǎn)單
立體幾何題。
1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問(wèn)題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個(gè)數;
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準均值、方差、標準差公式;
4、求概率時(shí),正難則反(根據p1+p2+……+pn=1);
5、注意計數時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高三數學(xué)知識點(diǎn)總結4
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高)
3、正方體
a—邊長(cháng),S=6a2,V=a3
4、長(cháng)方體
a—長(cháng),b—寬,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面積h—高V=Sh
6、棱錐
S—底面積h—高V=Sh/3
7、棱臺
S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1—上底面積,S2—下底面積,S0—中截面積
h—高,V=h(S1+S2+4S0)/6
9、圓柱
r—底半徑,h—高,C—底面周長(cháng)
S底—底面積,S側—側面積,S表—表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)
11、直圓錐
r—底半徑h—高V=πr^2h/3
12、圓臺
r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3
13、球
r—半徑d—直徑V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球臺
r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體
R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D—桶腹直徑d—桶底直徑h—桶高
V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)
高三數學(xué)知識點(diǎn)總結5
基本事件的定義:
一次試驗連同其中可能出現的每一個(gè)結果稱(chēng)為一個(gè)基本事件。
等可能基本事件:
若在一次試驗中,每個(gè)基本事件發(fā)生的可能性都相同,則稱(chēng)這些基本事件為等可能基本事件。
古典概型:
如果一個(gè)隨機試驗滿(mǎn)足:(1)試驗中所有可能出現的基本事件只有有限個(gè);
(2)每個(gè)基本事件的發(fā)生都是等可能的;
那么,我們稱(chēng)這個(gè)隨機試驗的概率模型為古典概型.
古典概型的概率:
如果一次試驗的等可能事件有n個(gè),考試技巧,那么,每個(gè)等可能基本事件發(fā)生的概率都是;如果某個(gè)事件A包含了其中m個(gè)等可能基本事件,那么事件A發(fā)生的概率為。
古典概型解題步驟:
(1)閱讀題目,搜集信息;
(2)判斷是否是等可能事件,并用字母表示事件;
(3)求出基本事件總數n和事件A所包含的結果數m;
(4)用公式求出概率并下結論。
求古典概型的概率的關(guān)鍵:
求古典概型的概率的關(guān)鍵是如何確定基本事件總數及事件A包含的基本事件的個(gè)數。
高三數學(xué)知識點(diǎn)總結6
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;
公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:
直線(xiàn)與直線(xiàn)—平行、相交、異面;
直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線(xiàn):
平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);
所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);
兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);
異面直線(xiàn)不同在任何一個(gè)平面內。
求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角
二、空間中的平行關(guān)系
1、直線(xiàn)與平面平行(核心)
定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)
判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)
性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行
2、平面與平面平行
定義:兩個(gè)平面沒(méi)有公共點(diǎn)
判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)
三、空間中的垂直關(guān)系
1、直線(xiàn)與平面垂直
定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直
判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直
性質(zhì):垂直于同一直線(xiàn)的兩平面平行
推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線(xiàn)和平面所成的角:【0,90】度,平面內的一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)
判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直
高三數學(xué)知識點(diǎn)總結7
集合的分類(lèi):
。1)按元素屬性分類(lèi),如點(diǎn)集,數集。
。2)按元素的個(gè)數多少,分為有/無(wú)限集
關(guān)于集合的概念:
。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對象就不能構成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。
。2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。
。3)無(wú)序性:判斷一些對象時(shí)候構成集合,關(guān)鍵在于看這些對象是否有明確的標準。
高三數學(xué)知識點(diǎn)總結8
一、簡(jiǎn)單隨機抽樣
設一個(gè)總體的個(gè)體數為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí),各個(gè)體被抽到的概率相等,就稱(chēng)這樣的抽樣為簡(jiǎn)單隨機抽樣。一般地如果用簡(jiǎn)單隨機抽樣從個(gè)體數為N的總體中抽取一個(gè)容量為n的樣本那么每個(gè)個(gè)體被抽到的概率等于n/N.常用的簡(jiǎn)單隨機抽樣方法有:抽簽法、隨機數法。
1.抽簽法
一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號,把號碼寫(xiě)在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本。
2.隨機數法
隨機抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產(chǎn)生的隨機數進(jìn)行抽樣。
二、活用隨機抽樣
系統抽樣的最基本特征是“等距性”,每組內所抽取的號碼需要依據第一組抽取的號碼和組距是唯一確定,每組抽取樣本的號碼依次構成一個(gè)以第一組抽取的號碼m為首項,組距d為公差的等差數列{an},第k組抽取樣本的號碼,ak=m+(k-1)d,如本題中根據第一組的樣本號碼和組距,可得第k組抽取號碼應該為9+30x(k-1)
三、系統抽樣
當總體中的個(gè)體數較多時(shí),采用簡(jiǎn)單隨機抽樣顯得較為費事,這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預先定出的規則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統抽樣。
四、分層抽樣
當已知總體有差異明顯的幾部分組成時(shí),為了使樣本更充分地反映總體的情況,常常將總體分為幾個(gè)部分,然后按照各個(gè)部分所占比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分層的各部分叫做層
高三數學(xué)知識點(diǎn)總結9
數列基本公式:
1、一般數列的通項an與前n項和Sn的關(guān)系:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時(shí),an是關(guān)于n的一次式;當d=0時(shí),an是一個(gè)常數。
3、等差數列的前n項和公式:
Sn=
Sn=
Sn=
當d≠0時(shí),Sn是關(guān)于n的二次式且常數項為0;當d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當q≠1時(shí),Sn=
Sn=
高三數學(xué)知識點(diǎn)總結10
。ㄒ唬⿲档谝欢x
設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時(shí),相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f(x0),即導數第一定義
。ǘ⿲档诙x
設函數y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時(shí),相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時(shí)極限存在,則稱(chēng)函數y = f(x)在點(diǎn)x0處可導,并稱(chēng)這個(gè)極限值為函數y = f(x)在點(diǎn)x0處的導數記為f(x0),即導數第二定義
。ㄈ⿲Ш瘮蹬c導數
如果函數y = f(x)在開(kāi)區間I內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間I內可導。這時(shí)函數y = f(x)對于區間I內的每一個(gè)確定的x值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數y = f(x)的導函數,記作y,f(x),dy/dx,df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。
。ㄋ模﹩握{性及其應用
1。利用導數研究多項式函數單調性的一般步驟
。1)求f¢(x)
。2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2。用導數求多項式函數單調區間的一般步驟
。1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間
高三數學(xué)知識點(diǎn)總結11
1、圓的定義
平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。
2、圓的方程
(x-a)^2+(y-b)^2=r^2
。1)標準方程,圓心(a,b),半徑為r;
。2)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線(xiàn)與圓的位置關(guān)系
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
。1)設直線(xiàn),圓,圓心到l的距離為,則有;;
。2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立,②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
高三數學(xué)知識點(diǎn)總結12
NO.1柱、錐、臺、球的結構特征
棱柱
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
棱臺
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
、趥让媸翘菪
、蹅壤饨挥谠忮F的頂點(diǎn)
圓柱
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:
、俚酌媸侨鹊膱A;
、谀妇(xiàn)與軸平行;
、圯S與底面圓的半徑垂直;
、軅让嬲归_(kāi)圖是一個(gè)矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:
、俚酌媸且粋(gè)圓;
、谀妇(xiàn)交于圓錐的頂點(diǎn);
、蹅让嬲归_(kāi)圖是一個(gè)扇形。
圓臺
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
、偕舷碌酌媸莾蓚(gè)圓;
、趥让婺妇(xiàn)交于原圓錐的頂點(diǎn);
、蹅让嬲归_(kāi)圖是一個(gè)弓形。
球體
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
高三數學(xué)知識點(diǎn)總結13
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質(zhì):
、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號方向不變。
、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數,不等號方向不變。
、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負數,不等號方向相反。
3.分類(lèi):
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個(gè)未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
、谝辉淮尾坏仁浇M:
a.關(guān)于同一個(gè)未知數的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
高三數學(xué)知識點(diǎn)總結14
1、不等式及其解集
用“<”或“>”號表示大小關(guān)系的式子叫做不等式。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡(jiǎn)稱(chēng)解集。
含有一個(gè)未知數,未知數的次數是1的不等式,叫做一元一次不等式。
2、不等式的性質(zhì)
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個(gè)數(或式子),不等號的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個(gè)正數,不等號的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個(gè)負數,不等號的方向改變。
3、實(shí)際問(wèn)題與一元一次不等式
解一元一次方程,要根據等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質(zhì),將不等式逐步化為xa)的形式。
4、一元一次不等式組
把兩個(gè)不等式合起來(lái),就組成了一個(gè)一元一次不等式組。
幾個(gè)不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對于具有多種不等關(guān)系的問(wèn)題,可通過(guò)不等式組解決。解一元一次不等式組時(shí)。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀(guān)地表示不等式組的解集。
高三數學(xué)知識點(diǎn)總結15
1.不等式的定義:
a-bb, a-b=0a=b, a-b0a
、 其實(shí)質(zhì)是運用實(shí)數運算來(lái)定義兩個(gè)實(shí)數的大小關(guān)系。它是本章的基礎,也是證明不等式與解不等式的主要依據。
、诳梢越Y合函數單調性的證明這個(gè)熟悉的知識背景,來(lái)認識作差法比大小的理論基礎是不等式的性質(zhì)。
作差后,為判斷差的符號,需要分解因式,以便使用實(shí)數運算的符號法則。
2.不等式的性質(zhì):
、 不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。
不等式基本性質(zhì)有:
(1) abb
(2) acac (傳遞性)
(3) ab+c (cR)
(4) c0時(shí),abc
c0時(shí),abac
3.運算性質(zhì)有:
(1) ada+cb+d。
(2) a0, c0acbd。
(3) a0anbn (nN, n1)。
(4) a0N, n1)。
應注意,上述性質(zhì)中,條件與結論的邏輯關(guān)系有兩種:和即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應用不等式性質(zhì)。
4. 關(guān)于不等式的性質(zhì)的考察,主要有以下三類(lèi)問(wèn)題:
(1)根據給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
(2)利用不等式的性質(zhì)及實(shí)數的性質(zhì),函數性質(zhì),判斷實(shí)數值的大小。
(3)利用不等式的性質(zhì),判斷不等式變換中條件與結論間的充分或必要關(guān)系。
高三數學(xué)知識點(diǎn)總結16
不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡(jiǎn)稱(chēng)解集(solution set)。
含有一個(gè)未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質(zhì):
不等式兩邊加(或減)同一個(gè)數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個(gè)正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個(gè)負數,不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
一元一次不等式組
把兩個(gè)一元一次不等式合在起來(lái),就組成了一個(gè)一元一次不等式組。
高三數學(xué)知識點(diǎn)總結17
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類(lèi)似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類(lèi)項;
5、系數化為1
二、不等式的基本性質(zhì):
1、不等式的兩邊都加上(或減去)同一個(gè)整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個(gè)正數,不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個(gè)負數,不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數的值,叫做不等式的解。
四、不等式的解集:
一個(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。
五、解不等式的依據不等式的基本性質(zhì):
性質(zhì)1:不等式兩邊加上(或減去)同一個(gè)數(或式子),不等號的方向不變,
性質(zhì)2:不等式兩邊乘以(或除以)同一個(gè)正數,不等號的方向不變,
性質(zhì)3:不等式兩邊乘以(或除以)同一個(gè)負數,不等號的方向改變,
【高三數學(xué)知識點(diǎn)總結】相關(guān)文章:
高三數學(xué)知識點(diǎn)總結03-08
高三數學(xué)知識點(diǎn)總結09-21