97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

初二數學(xué)知識點(diǎn)總結

時(shí)間:2024-11-16 23:15:26 秀雯 知識點(diǎn)總結 我要投稿

初二數學(xué)知識點(diǎn)總結集錦

  上學(xué)的時(shí)候,說(shuō)起知識點(diǎn),應該沒(méi)有人不熟悉吧?知識點(diǎn)是知識中的最小單位,最具體的內容,有時(shí)候也叫“考點(diǎn)”。相信很多人都在為知識點(diǎn)發(fā)愁,下面是小編收集整理的初二數學(xué)知識點(diǎn)總結,歡迎大家分享。

初二數學(xué)知識點(diǎn)總結集錦

  軸對稱(chēng)

  1.如果一個(gè)平面圖形沿著(zhù)一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形,這條直線(xiàn)叫做對稱(chēng)軸。

  2.性質(zhì)

  (1)成軸對稱(chēng)的兩個(gè)圖形全等;

  (2)如果兩個(gè)圖形成軸對稱(chēng),那么對稱(chēng)軸是對稱(chēng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)。

  一次函數

  (一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變量,y是因變量。特別地,當b=0時(shí),y=kx+b(k為常數,k≠0),y叫做x的正比例函數。

  (二)函數三要素

  1.定義域:設x、y是兩個(gè)變量,變量x的變化范圍為D,如果對于每一個(gè)數x∈D,變量y遵照一定的法則總有確定的數值與之對應,則稱(chēng)y是x的函數,記作y=f(x),x∈D,x稱(chēng)為自變量,y稱(chēng)為因變量,數集D稱(chēng)為這個(gè)函數的定義域。

  2.在函數經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數的值域,在函數現代定義中是指定義域中所有元素在某個(gè)對應法則下對應的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數f(x)的值域。

  3.對應法則:一般地說(shuō),在函數記號y=f(x)中,“f”即表示對應法則,等式y=f(x)表明,對于定義域中的任意的x值,在對應法則“f”的作用下,即可得到值域中唯一y值。

  (三)一次函數的表示方法

  1.解析式法:用含自變量x的式子表示函數的方法叫做解析式法。

  2.列表法:把一系列x的值對應的函數值y列成一個(gè)表來(lái)表示的函數關(guān)系的方法叫做列表法。

  3.圖像法:用圖象來(lái)表示函數關(guān)系的方法叫做圖象法。

  (四)一次函數的性質(zhì)

  1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數)。

  2.當x=0時(shí),b為函數在y軸上的交點(diǎn),坐標為(0,b)。當y=0時(shí),該函數圖象在x軸上的交點(diǎn)坐標為(-b/k,0)。

  3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。

  4.當b=0時(shí)(即y=kx),一次函數圖象變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>

  5.函數圖象性質(zhì):當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交于Y軸;當k互為負倒數時(shí),兩直線(xiàn)垂直。

  6.平移時(shí):上加下減在末尾,左加右減在中間。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  2.含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

  3.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。

  要點(diǎn)詮釋?zhuān)孩俟垂啥ɡ淼哪娑ɡ碓谡Z(yǔ)言敘述的時(shí)候一定要注意,不能說(shuō)成“兩條邊的平方和等于斜邊的平方”,應該說(shuō)成“三角形兩邊的平方和等于第三邊的平方”。

 、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  圖形的平移與旋轉

  1.平移,是指在同一平面內,將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線(xiàn)方向做相同距離的移動(dòng),這樣的圖形運動(dòng)叫做圖形的平移運動(dòng),簡(jiǎn)稱(chēng)平移。

  2.平移性質(zhì)

  (1)圖形平移前后的形狀和大小沒(méi)有變化,只是位置發(fā)生變化。

  (2)圖形平移后,對應點(diǎn)連成的線(xiàn)段平行(或在同一直線(xiàn)上)且相等。

  拓展閱讀:初中數學(xué)提高解題速度的方法

  認真仔細審題

  對于一道具體的習題,解題時(shí)最重要的環(huán)節是審題。審題的第一步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應特別注意每一句話(huà)的內在涵義,并從中找出隱含條件。

  有些學(xué)生沒(méi)有養成讀題、思考的習慣,心里著(zhù)急,匆匆一看,就開(kāi)始解題,結果常常是漏掉了一些信息,花了很長(cháng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應特別注意,審題要認真、仔細。

  做好歸納總結

  在解過(guò)一定數量的習題之后,對所涉及到的知識、解題方法進(jìn)行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對于類(lèi)似的習題一目了然,可以節約大量的解題時(shí)間。

  熟悉習題內容

  解題、做練習只是學(xué)習過(guò)程中的一個(gè)環(huán)節,而不是學(xué)習的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。

  因此,我們在解題之前,應通過(guò)閱讀教科書(shū)和做簡(jiǎn)單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質(zhì),接著(zhù)馬上就做后面所配的練習,一刻也不要停留。

  學(xué)會(huì )主動(dòng)畫(huà)圖

  畫(huà)圖是一個(gè)翻譯的過(guò)程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫(huà)出來(lái),其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會(huì )畫(huà)圖,有時(shí)簡(jiǎn)直是無(wú)從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過(guò)程和條件,對于提高解題速度非常重要。

  逐步增加難度

  人們認識事物的過(guò)程都是從簡(jiǎn)單到復雜。簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì )形成跳躍性思維,解題的速度就會(huì )大大提高。

  我們在學(xué)習時(shí),應根據自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著(zhù)速度和能力的提高,再逐漸增加難度,就會(huì )達到事半功倍的效果。

  初二上冊知識點(diǎn)

  第一章 一次函數

  1 函數的定義,函數的定義域、值域、表達式,函數的圖像

  2 一次函數和正比例函數,包括他們的表達式、增減性、圖像

  3 從函數的觀(guān)點(diǎn)看方程、方程組和不等式

  第二章 數據的描述

  1 了解幾種常見(jiàn)的統計圖表:條形圖、扇形圖、折線(xiàn)圖、復合條形圖、直方圖,了解各種圖表的特點(diǎn)

  條形圖特點(diǎn):

 。1)能夠顯示出每組中的具體數據;

 。2)易于比較數據間的差別

  扇形圖的特點(diǎn):

 。1)用扇形的面積來(lái)表示部分在總體中所占的百分比;

 。2)易于顯示每組數據相對與總數的大小

  折線(xiàn)圖的特點(diǎn);

  易于顯示數據的變化趨勢

  直方圖的特點(diǎn):

 。1)能夠顯示各組頻數分布的情況;

 。2)易于顯示各組之間頻數的差別

  2 會(huì )用各種統計圖表示出一些實(shí)際的問(wèn)題

  第三章 全等三角形

  1 全等三角形的性質(zhì):

  全等三角形的對應邊、對應角相等

  2 全等三角形的判定

  邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

  3 角平分線(xiàn)的性質(zhì)

  角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等;

  到角的兩邊距離相等的點(diǎn)在角的平分線(xiàn)上.

  第四章 軸對稱(chēng)

  1 軸對稱(chēng)圖形和關(guān)于直線(xiàn)對稱(chēng)的兩個(gè)圖形

  2 軸對稱(chēng)的性質(zhì)

  軸對稱(chēng)圖形的對稱(chēng)軸是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn);

  如果兩個(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),那么對稱(chēng)軸是任何一對對應點(diǎn)所連的線(xiàn)段的垂直平分線(xiàn);

  線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等;

  到線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的垂直平分線(xiàn)上

  3 用坐標表示軸對稱(chēng)

  點(diǎn)(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標是(x,-y),關(guān)于y軸對稱(chēng)的點(diǎn)的坐標是(-x,y),關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的坐標是(-x,-y).

  4 等腰三角形

  等腰三角形的兩個(gè)底角相等;(等邊對等角)

  等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高線(xiàn)互相重合;(三線(xiàn)合一)

  一個(gè)三角形的兩個(gè)相等的角所對的邊也相等.(等角對等邊)

  5 等邊三角形的性質(zhì)和判定

  等邊三角形的三個(gè)內角都相等,都等于60度;

  三個(gè)角都相等的三角形是等邊三角形;

  有一個(gè)角是60度的等腰三角形是等邊三角形;

  推論:

  直角三角形中,如果有一個(gè)銳角是30度,那么他所對的直角邊等于斜邊的一半.

  在三角形中,大角對大邊,大邊對大角.

  第五章 整式

  1 整式定義、同類(lèi)項及其合并

  2 整式的加減

  3 整式的乘法

 。1)同底數冪的乘法:

 。2)冪的乘方

 。3)積的乘方

 。4)整式的乘法

  4 乘法公式

 。1)平方差公式

 。2)完全平方公式

  5 整式的除法

 。1)同底數冪的除法

 。2)整式的除法

  6 因式分解

 。1)提共因式法

 。2)公式法

 。3)十字相乘法

  初二下冊知識點(diǎn)

  第一章 分式

  1 分式及其基本性質(zhì)

  分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變

  2 分式的運算

 。1)分式的乘除

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

  (2) 分式的加減

  加減法法則:同分母分式相加減,分母不變,把分子相加減;

  異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

  3 整數指數冪的加減乘除法

  4 分式方程及其解法

  第二章 反比例函數

  1 反比例函數的表達式、圖像、性質(zhì)

  圖像:雙曲線(xiàn)

  表達式:y=k/x(k不為0)

  性質(zhì):兩支的增減性相同;

  2 反比例函數在實(shí)際問(wèn)題中的應用

  第三章 勾股定理

  1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方

  2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.

  第四章 四邊形

  1 平行四邊形

  性質(zhì):對邊相等;對角相等;對角線(xiàn)互相平分.

  判定:兩組對邊分別相等的四邊形是平行四邊形;

  兩組對角分別相等的四邊形是平行四邊形;

  對角線(xiàn)互相平分的四邊形是平行四邊形;

  一組對邊平行而且相等的四邊形是平行四邊形.

  推論:三角形的中位線(xiàn)平行第三邊,并且等于第三邊的一半.

  2 特殊的平行四邊形:矩形、菱形、正方形

 。1) 矩形

  性質(zhì):矩形的四個(gè)角都是直角;

  矩形的對角線(xiàn)相等;

  矩形具有平行四邊形的所有性質(zhì)

  判定: 有一個(gè)角是直角的平行四邊形是矩形;

  對角線(xiàn)相等的平行四邊形是矩形;

  推論: 直角三角形斜邊的中線(xiàn)等于斜邊的一半.

 。2) 菱形

  性質(zhì):菱形的四條邊都相等;

  菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角;

  菱形具有平行四邊形的一切性質(zhì)

  判定:有一組鄰邊相等的平行四邊形是菱形;

  對角線(xiàn)互相垂直的平行四邊形是菱形;

  四邊相等的四邊形是菱形.

 。3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;

  等腰梯形的兩條對角線(xiàn)相等;

  同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.

  第五章 數據的分析

  加權平均數、中位數、眾數、極差、方差

  正方形知識點(diǎn)

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);

  (2)正方形的四個(gè)角都是直角,四條邊都相等;

  (3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;

  (4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;

  (5)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;

  (6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的兩端點(diǎn)的距離相等。

  3、正方形的判定

  (1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

  (2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  分解因式

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  以上對分解因式知識點(diǎn)的總結學(xué)習,相信同學(xué)們對此知識點(diǎn)可以很熟練的掌握了,希望能很好的幫助同學(xué)們的考試工作。

  初中數學(xué)知識點(diǎn)總結:平面直角坐標系

  下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。

  平面直角坐標系

  平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  多邊形知識點(diǎn)

  在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形

  (1)多邊形的一些要素:

  邊:組成多邊形的各條線(xiàn)段叫做多邊形的邊.

  頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn).

  內角:多邊形相鄰兩邊組成的角叫多邊形的內角,一個(gè)n邊形有n個(gè)內角。

  外角:多邊形的邊與它的鄰邊的延長(cháng)線(xiàn)組成的角叫做多邊形的外角。

  (2)在定義中應注意:

 、僖恍┚(xiàn)段(多邊形的邊數是大于等于3的正整數);

 、谑孜岔槾蜗噙B,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間

  一次函數

  一、常量、變量:

  在一個(gè)變化過(guò)程中,數值發(fā)生變化的量叫做;數值始終不變的量叫做

  二、函數的概念:

  函數的定義:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對于x的每一個(gè)確定的值,y都有唯一確定的值與其對應,那么我們就說(shuō)x是自變量,y是x的函數.

  三、函數中自變量取值范圍的求法:

 。1)用整式表示的函數,自變量的取值范圍是全體實(shí)數。

 。2)用分式表示的函數,自變量的取值范圍是使分母不為0的一切實(shí)數。

 。3)用寄次根式表示的函數,自變量的取值范圍是全體實(shí)數。

  用偶次根式表示的函數,自變量的取值范圍是使被開(kāi)方數為非負數的一切實(shí)數。

 。4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。

 。5)對于與實(shí)際問(wèn)題有關(guān)系的,自變量的取值范圍應使實(shí)際問(wèn)題有意義。

  四、函數圖象的定義:

  一般的,對于一個(gè)函數,如果把自變量與函數的每對對應值分別作為點(diǎn)的橫、縱坐標,那么在坐標平面內由這些點(diǎn)組成的圖形,就是這個(gè)函數的圖象.

  五、用描點(diǎn)法畫(huà)函數的圖象的一般步驟

  1、列表(表中給出一些自變量的值及其對應的函數值。)

  注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對稱(chēng)。

  2、描點(diǎn):(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點(diǎn)。

  3、連線(xiàn):(按照橫坐標由小到大的順序把所描的各點(diǎn)用平滑的曲線(xiàn)連接起來(lái))。

  六、函數有三種表示形式:

 。1)列表法(2)圖像法(3)解析式法

  七、正比例函數與一次函數的概念:

  一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。一般地,形如y=kx+b (k,b為常數,且k≠0)的函數叫做一次函數.

  當b =0時(shí),y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.

  八、正比例函數的圖象與性質(zhì):

 。1)圖象:正比例函數y= kx (k是常數,k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn),我們稱(chēng)它為直線(xiàn)y= kx 。

  (2)性質(zhì):當k>0時(shí),直線(xiàn)y= kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著(zhù)x的增大y也增大;當k<0時(shí),直線(xiàn)y= kx經(jīng)過(guò)二,四象限,從左向右下降,即隨著(zhù)x的增大y反而減小。

  九、求函數解析式的方法:

  待定系數法:先設出函數解析式,再根據條件確定解析式中未知的系數,從而具體寫(xiě)出這個(gè)式子的方法。

  1.一次函數與一元一次方程:從“數”的角度看x為何值時(shí)函數y= ax+b的值為0.

  2.求ax+b=0(a, b是常數,a≠0)的解,從“形”的角度看,求直線(xiàn)y= ax+b與x軸交點(diǎn)的橫坐標

  3.一次函數與一元一次不等式:

  解不等式ax+b>0(a,b是常數,a≠0).從“數”的角度看,x為何值時(shí)函數y= ax+b的值大于0.

  4.解不等式ax+b>0(a,b是常數,a≠0).從“形”的角度看,求直線(xiàn)y= ax+b在x軸上方的部分(射線(xiàn))

  所對應的的橫坐標的取值范圍.

  十、一次函數與正比例函數的圖象與性質(zhì)

  解方程組??a1x?b1y?c1從“數”的角度看,自變量(x)為何值時(shí)兩個(gè)函數的值相等.并???a2x?b2y?c2求出這個(gè)函數值

  ?a 1 x ? b解方程組? 1 y ? c 1從“形”的角度看,確定兩直線(xiàn)交點(diǎn)的坐標. ? ??a2x?b2y?c2

  初二數學(xué)圖形知識點(diǎn)

  1、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半。

  2、四邊形的外角和等于360°。

  3、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等。

  4、同角或等角的余角相等。

  5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直。

  6、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。

  7、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行。

  8、同位角相等,兩直線(xiàn)平行。

  9、同旁?xún)冉腔パa,兩直線(xiàn)平行。

  10、兩直線(xiàn)平行,同位角相等。

  二次根式知識點(diǎn)

  (一)一般地,形如√a的代數式叫做二次根式,其中,a叫做被開(kāi)方數。當a≥0時(shí),√a表示a的算術(shù)平方根;當a小于0時(shí),√a的值為純虛數。

  (二)二次根式的加減法

  1.同類(lèi)二次根式:一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數相同,就把這幾個(gè)二次根式叫做同類(lèi)二次根式。

  2.合并同類(lèi)二次根式:把幾個(gè)同類(lèi)二次根式合并為一個(gè)二次根式就叫做合并同類(lèi)二次根式。

  3.二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開(kāi)方數相同的進(jìn)行合并。

  (三)二次根式的乘除法

  二次根式相乘除,把被開(kāi)方數相乘除,根指數不變,再把結果化為最簡(jiǎn)二次根式。

  一次函數知識點(diǎn)

  (一)一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變量。當b=0時(shí),一次函數y=kx,又叫做正比例函數。

  (二)一次函數的圖像及性質(zhì)

  1.在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。

  2.一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)。

  3.正比例函數的圖像總是過(guò)原點(diǎn)。

  4.k,b與函數圖像所在象限的關(guān)系:

  當k>0時(shí),y隨x的增大而增大;當k<0時(shí),y隨x的增大而減小。

  當k>0,b>0時(shí),直線(xiàn)通過(guò)一、二、三象限;

  當k>0,b<0時(shí),直線(xiàn)通過(guò)一、三、四象限;

  當k<0,b>0時(shí),直線(xiàn)通過(guò)一、二、四象限;

  當k<0,b<0時(shí),直線(xiàn)通過(guò)二、三、四象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

  初二數學(xué)下冊函數知識點(diǎn)歸納

  1、變量與常量

  在某一變化過(guò)程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一確定的值與它對應,那么就說(shuō)x是自變量,y是x的函數。

  2、函數解析式

  用來(lái)表示函數關(guān)系的數學(xué)式子叫做函數解析式或函數關(guān)系式。

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個(gè)表來(lái)表示函數關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數關(guān)系的方法叫做圖像法。

  4、由函數解析式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值

  (2)描點(diǎn):以表中每對對應值為坐標,在坐標平面內描出相應的點(diǎn)

  (3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

  實(shí)數的概念及分類(lèi)

  1、實(shí)數的分類(lèi)

  一是分類(lèi)是:正數、負數、0;

  另一種分類(lèi)是:有理數、無(wú)理數

  將兩種分類(lèi)進(jìn)行組合:負有理數,負無(wú)理數,0,正有理數,正無(wú)理數

  2、無(wú)理數:無(wú)限不循環(huán)小數叫做無(wú)理數。

  在理解無(wú)理數時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):

  (1)開(kāi)方開(kāi)不盡的數,如等;

  (2)有特定意義的數,如圓周率π,或化簡(jiǎn)后含有π的數,如+8等;

  (3)有特定結構的數,如0.1010010001…等;

  (4)某些三角函數值,如sin60o等

  實(shí)數的倒數、相反數和絕對值

  1、相反數

  實(shí)數與它的相反數時(shí)一對數(只有符號不同的兩個(gè)數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個(gè)數所對應的點(diǎn)關(guān)于原點(diǎn)對稱(chēng),如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。

  2、絕對值

  在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數

  如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒(méi)有倒數。

  4、數軸

  規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸(畫(huà)數軸時(shí),要注意上述規定的三要素缺一不可)。

  解題時(shí)要真正掌握數形結合的思想,理解實(shí)數與數軸的點(diǎn)是一一對應的,并能靈活運用。

  一次函數

  一、正比例函數與一次函數的概念:

  一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。

  一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.

  當b=0時(shí),y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.

  二、正比例函數的圖象與性質(zhì):

  (1)圖象:正比例函數y=kx(k是常數,k≠0))的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn),我們稱(chēng)它為直線(xiàn)y=kx。

  (2)性質(zhì):當k>0時(shí),直線(xiàn)y=kx經(jīng)過(guò)第三,一象限,從左向右上升,即隨著(zhù)x的增大y也增大;當k0,b>0圖像經(jīng)過(guò)一、二、三象限;

  (2)k>0,b<0圖像經(jīng)過(guò)一、三、四象限;

  (3)k>0,b=0圖像經(jīng)過(guò)一、三象限;

  (4)k<0,b>0圖像經(jīng)過(guò)一、二、四象限;

  (5)k<0,b<0圖像經(jīng)過(guò)二、三、四象限;

  (6)k<0,b=0圖像經(jīng)過(guò)二、四象限。

  一次函數表達式的確定

  求一次函數y=kx+b(k、b是常數,k≠0)時(shí),需要由兩個(gè)點(diǎn)來(lái)確定;求正比例函數y=kx(k≠0)時(shí),只需一個(gè)點(diǎn)即可.

  5.一次函數與二元一次方程組:

  解方程組

  從“數”的角度看,自變量(x)為何值時(shí)兩個(gè)函數的值相等.并

  求出這個(gè)函數值

  解方程組從“形”的角度看,確定兩直線(xiàn)交點(diǎn)的坐標.

  數據的分析

  數據的代表:平均數、眾數、中位數、極差、方差

  三角形知識點(diǎn)

  第一章勾股定理

  1、探索勾股定理

 、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

  2、一定是直角三角形嗎

 、偃绻切蔚娜呴L(cháng)a b c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

  3、勾股定理的應用

  第二章實(shí)數

  1、認識無(wú)理數

 、儆欣頂担嚎偸强梢杂糜邢扌岛蜔o(wú)限循環(huán)小數表示

 、跓o(wú)理數:無(wú)限不循環(huán)小數

  2、平方根

 、偎銛灯椒礁阂话愕,如果一個(gè)正數x的平方等于a,即x2=a,那么這個(gè)正數x就叫做a的算數平方根

 、谔貏e地,我們規定:0的算數平方根是0

 、燮椒礁阂话愕,如果一個(gè)數x的平方等于a,即x2=a。那么這個(gè)數x就叫做a的平方根,也叫做二次方根

 、芤粋(gè)正數有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負數沒(méi)有平方根

 、菡龜涤袃蓚(gè)平方根,一個(gè)是a的算數平方,另一個(gè)是—,它們互為相反數,這兩個(gè)平方根合起來(lái)可記作±

 、揲_(kāi)平方:求一個(gè)數a的平方根的運算叫做開(kāi)平方,a叫做被開(kāi)方數

  3、立方根

 、倭⒎礁阂话愕,如果一個(gè)數x的立方等于a,即x3=a,那么這個(gè)數x就叫做a的立方根,也叫三次方根

 、诿總(gè)數都有一個(gè)立方根,正數的立方根是正數;0立方根是0;負數的立方根是負數。

 、坶_(kāi)立方:求一個(gè)數a的立方根的運算叫做開(kāi)立方,a叫做被開(kāi)方數

  4、估算

 、俟浪,一般結果是相對復雜的小數,估算有精確位數

  5、用計算機開(kāi)平方

  6、實(shí)數

 、賹(shí)數:有理數和無(wú)理數的統稱(chēng)

 、趯(shí)數也可以分為正實(shí)數、0、負實(shí)數

 、勖恳粋(gè)實(shí)數都可以在數軸上表示,數軸上每一個(gè)點(diǎn)都對應一個(gè)實(shí)數,在數軸上,右邊的點(diǎn)永遠比左邊的點(diǎn)表示的數大

  7、二次根式

 、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開(kāi)方數

 、 =(a≥0,b≥0),=(a≥0,b>0)

 、圩詈(jiǎn)二次根式:一般地,被開(kāi)方數不含分母,也不含能開(kāi)的盡方的因數或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式

 、芑(jiǎn)時(shí),通常要求最終結果中分母不含有根號,而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式

  第三章位置與坐標

  1、確定位置

 、僭谄矫鎯,確定一個(gè)物體的位置一般需要兩個(gè)數據

  2、平面直角坐標系

 、俸x:在平面內,兩條互相垂直且有公共原點(diǎn)的數軸組成平面直角坐標系

 、谕ǔ5,兩條數軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱(chēng)為坐標軸,它們的公共原點(diǎn)o被稱(chēng)為直角坐標系的原點(diǎn)

 、劢⒘似矫嬷苯亲鴺讼,平面內的點(diǎn)就可以用一組有序實(shí)數對來(lái)表示

 、茉谄矫嬷苯亲鴺讼抵,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針?lè )较蚪凶龅诙笙,第三象限,第四象限,坐標軸上的點(diǎn)不在任何一個(gè)象限

 、菰谥苯亲鴺讼抵,對于平面上任意一點(diǎn),都有唯一的一個(gè)有序實(shí)數對(即點(diǎn)的坐標)與它對應;反過(guò)來(lái),對于任意一個(gè)有序實(shí)數對,都有平面上唯一的一點(diǎn)與它對應

  3、軸對稱(chēng)與坐標變化

 、訇P(guān)于x軸對稱(chēng)的兩個(gè)點(diǎn)的坐標,橫坐標相同,縱坐標互為相反數;關(guān)于y軸對稱(chēng)的兩個(gè)點(diǎn)的坐標,縱坐標相同,橫坐標互為相反數

  第四章一次函數

  1、函數

 、僖话愕,如果在一個(gè)變化過(guò)程中有兩個(gè)變量x和y,并且對于變量x的每一個(gè)值,變量y都有唯一的值與它對應,那么我們稱(chēng)y是x的函數其中x是自變量

 、诒硎竞瘮档姆椒ㄒ话阌校毫斜矸、關(guān)系式法和圖象法

 、蹖τ谧宰兞吭诳扇≈捣秶鷥鹊囊粋(gè)確定的值a,函數有唯一確定的對應值,這個(gè)對應值稱(chēng)為當自變量等于a的函數值

  2、一次函數與正比例函數

 、偃魞蓚(gè)變量x,y間的對應關(guān)系可以表示成y=kx+b(k、b為常數,k≠0)的形式,則稱(chēng)y是x的一次函數,特別的,當b=0時(shí),稱(chēng)y是x的正比例函數

  3、一次函數的圖像

 、僬壤瘮祔=kx的圖像是一條經(jīng)過(guò)原點(diǎn)(0,0)的直線(xiàn)。因此,畫(huà)正比例函數圖像是,只要再確定一點(diǎn),過(guò)這個(gè)點(diǎn)與原點(diǎn)畫(huà)直線(xiàn)就可以了

 、谠谡壤瘮祔=kx中,當k>0時(shí),y的值隨著(zhù)x值的增大而減;當k<0時(shí),y的值隨著(zhù)x的值增大而減小

 、垡淮魏瘮祔=kx+b的圖像是一條直線(xiàn),因此畫(huà)一次函數圖像時(shí),只要確定兩個(gè)點(diǎn),再過(guò)這兩點(diǎn)畫(huà)直線(xiàn)就可以了。一次函數y=kx+b的圖像也稱(chēng)為直線(xiàn)y=kx+b

 、芤淮魏瘮祔=kx+b的圖像經(jīng)過(guò)點(diǎn)(0,b)。當k>0時(shí),y的值隨著(zhù)x值的增大而增大;當k<0時(shí),y的值隨著(zhù)x值的增大而減小

  4、一次函數的應用

 、僖话愕,當一次函數y=kx+b的函數值為0時(shí),相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數y=kx+b的圖像與x軸交點(diǎn)的橫坐標就是方程kx+b=0

  第五章二元一次方程組

  1、認識二元一次方程組

 、俸袃蓚(gè)未知數,并且所含有未知數的項的次數都是1的方程叫做二元一次方程

 、诠埠袃蓚(gè)未知數的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

 、鄱淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

  2、求解二元一次方程組

 、賹⑵渲幸粋(gè)方程中的某個(gè)未知數用含有另一個(gè)未知數的代數式表示出來(lái),并代入另個(gè)方程中,從而消去一個(gè)未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱(chēng)為代入消元法,簡(jiǎn)稱(chēng)代入法

 、谕ㄟ^(guò)兩式子加減,消去其中一個(gè)未知數,這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法

  3、應用二元一次方程組

 、匐u兔同籠

  4、應用二元一次方程組

 、僭鰷p收支

  5、應用二元一次方程組

 、倮锍瘫系臄

  6、二元一次方程組與一次函數

 、僖话愕,以一個(gè)二元一次方程的解為坐標的點(diǎn)組成的圖像與相應的一次函數的圖像相同,是一條直線(xiàn)

 、谝话愕,從圖形的角度看,確定兩條直線(xiàn)相交點(diǎn)的坐標,相當于求相應的二元一次方程組的解,解一個(gè)二元一次方程組相當于確定相應兩條直線(xiàn)交點(diǎn)的坐標

  7、用二元一次方程組確定一次函數表達式

 、傧仍O出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。

  8、三元一次方程組

 、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數,并且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程

 、谙襁@樣,共含有三個(gè)未知數的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

 、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

  第六章數據的分析

  1、平均數

 、僖话愕,對于n個(gè)數x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數的算數平均數,簡(jiǎn)稱(chēng)平均數記為。

 、谠趯(shí)際問(wèn)題中,一組數據里的各個(gè)數據的“重要程度”未必相同,因而在計算,這組數據的平均數時(shí),往往給每個(gè)數據一個(gè)權,叫做加權平均數

  2、中位數與眾數

 、僦形粩担阂话愕,n個(gè)數據按大小順序排列,處于最中間位置的一個(gè)數據(或最中間兩個(gè)數據的平均數)叫做這組數據的中位數

 、谝唤M數據中出現次數最多的那個(gè)數據叫做這組數據的眾數

 、燮骄鶖、中位數和眾數都是描述數據集中趨勢的統計量

 、苡嬎闫骄鶖禃r(shí),所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實(shí)生活中較為常用,但他容易受極端值影響。

 、葜形粩档膬(yōu)點(diǎn)是計算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數據的信息

 、薷鱾(gè)數據重復次數大致相等時(shí),眾數往往沒(méi)有特別意義

  3、從統計圖分析數據的集中趨勢

  4、數據的離散程度

 、賹(shí)際生活中,除了關(guān)心數據的集中趨勢外,人們還關(guān)注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱(chēng)為極差),就是刻畫(huà)數據離散程度的一個(gè)統計量

 、跀祵W(xué)上,數據的離散程度還可以用方差或標準差刻畫(huà)

 、鄯讲钍歉鱾(gè)數據與平均數差的平方的平均數

 、芷渲惺莤1x2......xn平均數,s2是方差,而標準差就是方差的算術(shù)平方根

 、菀话愣,一組數據的極差、方差或標準差越小,這組數據就越穩定。

  第七章平行線(xiàn)的證明

  1、為什么要證明

 、賹(shí)驗、觀(guān)察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個(gè)數學(xué)結論是否正確,僅僅依靠實(shí)驗、觀(guān)察、歸納是不夠的,必須進(jìn)行有根有據的證明

  2、定義與命題

 、僮C明時(shí),為了交流方便,必須對某些名稱(chēng)和術(shù)語(yǔ)形成共同的認識,為此,就要對名稱(chēng)和術(shù)語(yǔ)的含義加以描述,做出明確的規定,也就是給它們的定義

 、谂袛嘁患虑榈木渥,叫做命題

 、垡话愕,每個(gè)命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通?梢詫(xiě)成“如果....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論

 、苷_的命題稱(chēng)為真命題,不正確的命題稱(chēng)為假命題

 、菀f(shuō)明一個(gè)命題是假命題,常?梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結論,這種例子稱(chēng)為反例

 、逇W幾里得在編寫(xiě)《原本》時(shí),挑選了一部分數學(xué)名詞和一部分公認的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據。其中數學(xué)名詞稱(chēng)為原名,公認的真命題稱(chēng)為公理,除了公理外,其他命題的真假都需要通過(guò)演繹推理的方法進(jìn)行判斷

 、哐堇[推理的過(guò)程稱(chēng)為證明,經(jīng)過(guò)證明的真命題稱(chēng)為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來(lái)證明

  a.本套教科書(shū)選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據,其中八條是:兩點(diǎn)確定一條直線(xiàn)

  b.兩點(diǎn)之間線(xiàn)段最短

  c.同一平面內,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直

  d.兩條直線(xiàn)被第三條直線(xiàn)所截,如果同位角相等,那么這兩條直線(xiàn)平行(簡(jiǎn)述為:同位角相等,兩直線(xiàn)平行)

  e.過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與這條直線(xiàn)平行

  f.兩邊及其夾角分別相等的兩個(gè)三角形全等

  g.兩角及其夾邊分別相等的兩個(gè)三角形全等

  h.三邊分別相等的兩個(gè)三角形全等

 、啻送,數與式的運算律和運算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據

 、 定理:同角(等角)的補角相等

  同角(等角)的余角相等

  三角形的任意兩邊之和大于第三邊

  對頂角相等

  3、平行線(xiàn)的判定

 、 定理:兩條直線(xiàn)被第三條直線(xiàn)所截,如果內錯角相等,那么這兩條直線(xiàn)平行,簡(jiǎn)述為:內錯角相等,兩直線(xiàn)平行

 、 定理:兩條直線(xiàn)被第三條直線(xiàn)所截,如果同旁?xún)冉腔パa,那么這兩條直線(xiàn)平行,簡(jiǎn)述為:同旁?xún)冉腔パa,兩直線(xiàn)平行。

  4、平行線(xiàn)的性質(zhì)

 、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,同位角相等。簡(jiǎn)述為:兩直線(xiàn)平行,同位角相等

 、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,內錯角相等。簡(jiǎn)述為:兩直線(xiàn)平行,內錯角相等

 、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,同旁?xún)冉腔パa。簡(jiǎn)述為:兩直線(xiàn)平行,同旁?xún)冉腔パa

 、 定理:平行于同一條直線(xiàn)的兩條直線(xiàn)平行

  5、三角形內角和定理

 、 三角形內角和定理:三角形的內角和等于180°

 、 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和

  定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角

 、 我們通過(guò)三角形的內角和定理直接推導出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當定理使用。

  初二數學(xué)上冊知識點(diǎn)匯總

 。ㄒ唬┻\用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

 。ǘ┢椒讲罟

  1.平方差公式

 。1)式子: a2—b2=(a+b)(a—b)

 。2)語(yǔ)言:兩個(gè)數的平方差,等于這兩個(gè)數的和與這兩個(gè)數的差的積。這個(gè)公式就是平方差公式。

 。ㄈ┮蚴椒纸

  1.因式分解時(shí),各項如果有公因式應先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個(gè)多項式因式不能再分解為止。

 。ㄋ模┩耆椒焦

 。1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過(guò)來(lái),就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  這就是說(shuō),兩個(gè)數的平方和,加上(或者減去)這兩個(gè)數的積的2倍,等于這兩個(gè)數的和(或者差)的平方。

  把a2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

 。2)完全平方式的形式和特點(diǎn)

 、夙棓担喝

 、谟袃身検莾蓚(gè)數的的平方和,這兩項的符號相同。

 、塾幸豁検沁@兩個(gè)數的積的兩倍。

 。3)當多項式中有公因式時(shí),應該先提出公因式,再用公式分解。

 。4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個(gè)整體就可以了。

 。5)分解因式,必須分解到每一個(gè)多項式因式都不能再分解為止。

 。ㄎ澹┓纸M分解法

  我們看多項式am+ an+ bm+ bn,這四項中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義。但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  這種利用分組來(lái)分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項式的項分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項式就可以用分組分解法來(lái)分解因式。

 。┨峁蚴椒

  1.在運用提取公因式法把一個(gè)多項式因式分解時(shí),首先觀(guān)察多項式的結構特點(diǎn),確定多項式的公因式。當多項式各項的公因式是一個(gè)多項式時(shí),可以用設輔助元的方法把它轉化為單項式,也可以把這個(gè)多項式因式看作一個(gè)整體,直接提取公因式;當多項式各項的公因式是隱含的時(shí)候,要把多項式進(jìn)行適當的變形,或改變符號,直到可確定多項式的公因式。

  2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

  1.必須先將常數項分解成兩個(gè)因數的積,且這兩個(gè)因數的代數和等于一次項的系數。

  2.將常數項分解成滿(mǎn)足要求的兩個(gè)因數積的多次嘗試,一般步驟:

 、 列出常數項分解成兩個(gè)因數的積各種可能情況;

 、趪L試其中的哪兩個(gè)因數的和恰好等于一次項系數。

  3.將原多項式分解成(x+q)(x+p)的形式。

 。ㄆ撸┓质降某顺

  1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

  2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。

  3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項式不能分解因式,此時(shí)就不能把分子、分母中的某些項單獨約分。

  4.分式約分中注意正確運用乘方的符號法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個(gè)分式的符號,然后再按—1的偶次方為正、奇次方為負來(lái)處理。當然,簡(jiǎn)單的分式之分子分母可直接乘方。

  6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減。

 。ò耍┓謹档募訙p法

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統一起來(lái)。

  2.通分和約分都是依據分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項式,為進(jìn)一步運算作準備。

  4.通分的依據:分式的基本性質(zhì)。

  5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

  6.類(lèi)比分數的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。

  9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號。

  10.對于整式和分式之間的加減運算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

  11.異分母分式的加減運算,首先觀(guān)察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運算簡(jiǎn)化。

  12.作為最后結果,如果是分式則應該是最簡(jiǎn)分式。

 。ň牛┖凶帜赶禂档囊辉淮畏匠

  1.含有字母系數的一元一次方程

  引例:一數的a倍(a≠0)等于b,求這個(gè)數。用x表示這個(gè)數,根據題意,可得方程 ax=b(a≠0)

  在這個(gè)方程中,x是未知數,a和b是用字母表示的已知數。對x來(lái)說(shuō),字母a是x的系數,b是常數項。這個(gè)方程就是一個(gè)含有字母系數的一元一次方程。

  含有字母系數的方程的解法與以前學(xué)過(guò)的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

  方程知識點(diǎn)

  一元一次方程:

 、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。

  二元一次方程:

  含有兩個(gè)未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程

  一元二次方程的二次函數的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了

  平方根與立方根知識點(diǎn)

  平方根:

  概括1:一般地,如果一個(gè)數的平方等于a,這個(gè)數就叫做a的平方根(或二次方根)。就是說(shuō),如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

  因為(±23)=529,所以±23是529的平方根。問(wèn):(1)16,49,100,1100都是正數,它們有幾個(gè)平方根?平方根之間有什么關(guān)系?(2)0的平方根是什么?

  概括2:一個(gè)正數有兩個(gè)平方根,它們互為相反數;0有一個(gè)平方根,它是0本身;負數沒(méi)有平方根。

  概括3:求一個(gè)數a(a≥0)的平方根的運算,叫做開(kāi)平方。

  開(kāi)平方運算是已知指數和冪求底數。平方與開(kāi)平方互為逆運算。一個(gè)數可以是正數、負數或者是0,它的平方數只有一個(gè),正數或負數的平方都是正數,0的平方是0。但一個(gè)正數的平方根卻有兩個(gè),這兩個(gè)數互為相反數,0的平方根是0。負數沒(méi)有平方根。因為平方與開(kāi)平方互為逆運算,因此我們可以通過(guò)平方運算來(lái)求一個(gè)數的平方根,也可以通過(guò)平方運算來(lái)檢驗一個(gè)數是不是另一個(gè)數的平方根。

  一、算術(shù)平方根的概念

  正數a有兩個(gè)平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號,a就表示a的算術(shù)平方根。a的意義有兩點(diǎn):a,我們把其中正的平方根,叫做a的算術(shù)平方

  (1)被開(kāi)方數a表示非負數,即a≥0;

  (2)a也表示非負數,即a≥0。也就是說(shuō),非負數的“算術(shù)”平方根是非負數。負數不存在算術(shù)平方根,即a<0時(shí),a無(wú)意義。

  如:=3,8是64的算術(shù)平方根,6無(wú)意義。9既表示對9進(jìn)行開(kāi)平方運算,也表示9的正的平方根。

  二、平方根與算術(shù)平方根的區別在于

 、俣x不同;

 、趥(gè)數不同:一個(gè)正數有兩個(gè)平方根,而一個(gè)正數的算術(shù)平方根只有一個(gè);③表示方法不同:正數a的平方根表示為?a,正數a的算術(shù)平方根表示為a;④取值范圍不同:正數的算術(shù)平方根一定是正數,正數的平方根是一正一負.⑤0的平方根與算術(shù)平方根都是0.

  三、例題講解:

  例1、求下列各數的算術(shù)平方根:

  (1)100;

  (2)49;

  (3)0.8164

  注意:由于正數的算術(shù)平方根是正數,零的算術(shù)平方根是零,可將它們概括成:非負數的算術(shù)平方根是非負數,即當a≥0時(shí),a≥0(當a<0時(shí),a無(wú)意義)

  用幾何圖形可以直觀(guān)地表示算術(shù)平方根的意義如有一個(gè)面積為a(a應是非負數)、邊長(cháng)為的正方形就表示a的算術(shù)平方根。

  3、立方根

  (1)立方根的定義:如果一個(gè)數x的立方等于a,這個(gè)數叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

  (2)一個(gè)數a的立方根,讀作:“三次根號a”,其中a叫被開(kāi)方數,3叫根指數,不能省略,若省略表示平方。

  (3)一個(gè)正數有一個(gè)正的立方根;0有一個(gè)立方根,是它本身;一個(gè)負數有一個(gè)負的立方根;任何數都有的立方根。

  (4)利用開(kāi)立方和立方互為逆運算關(guān)系,求一個(gè)數的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負數的立方根,可以先求出這個(gè)負數的絕對值的立方根,再取其相反數。

  多邊形知識點(diǎn)

  1、多邊形的概念:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線(xiàn)段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內角,一個(gè)n邊形有n個(gè)內角;多邊形的邊與它的鄰邊的延長(cháng)線(xiàn)組成的角叫做多邊形的外角。在定義中應注意:

 、僖恍┚(xiàn)段(多邊形的邊數是大于等于3的正整數);

 、谑孜岔槾蜗噙B,二者缺一不可;

 、劾斫鈺r(shí)要特別注意“在同一平面內”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形。

  2、多邊形的分類(lèi)

  多邊形可分為凸多邊形和凹多邊形,畫(huà)出多邊形的任何一條邊所在的直線(xiàn),如果整個(gè)多邊形都在這條直線(xiàn)的同一側,則此多邊形為凸多邊形,反之為凹多邊形。

  凸多邊形凹多邊形各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。

  3、多邊形的對角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn)。

 。1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對角線(xiàn),將多邊形分成(n-2)個(gè)三角形。

  (2)n邊形共有條對角線(xiàn)。

  4、多邊形的內角和外角

 。1)多邊形的內角和公式:n邊形的內角和為(n-2)×180°

 。2)多邊形的外角和等于360°,它與邊數的多少無(wú)關(guān)。

  推論:

 。1)內角和與邊數成正比:邊數增加,內角和增加;邊數減少,內角和減少。每增加一條邊,內角的和就增加180°(反過(guò)來(lái)也成立),且多邊形的內角和必須是180°的整數倍。

 。2)多邊形最多有三個(gè)內角為銳角,最少沒(méi)有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少沒(méi)有鈍角。

  全等三角形復習知識點(diǎn)

  一、全等三角形

  1.定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

  理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。

  2、全等三角形有哪些性質(zhì)

 。1)全等三角形的對應邊相等、對應角相等。

  理解:①長(cháng)邊對長(cháng)邊,短邊對短邊;最大角對最大角,最小角對最小角;②對應角的對邊為對應邊,對應邊對的角為對應角。

 。2)全等三角形的周長(cháng)相等、面積相等。

 。3)全等三角形的對應邊上的對應中線(xiàn)、角平分線(xiàn)、高線(xiàn)分別相等。

  3、全等三角形的判定

  邊邊邊:三邊對應相等的兩個(gè)三角形全等(可簡(jiǎn)寫(xiě)成“SSS”)

  1、性質(zhì):角的平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等.

  2、判定:角的內部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上。

  二、學(xué)習全等三角形應注意以下幾個(gè)問(wèn)題:

 。1)要正確區分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;

 。2表示兩個(gè)三角形全等時(shí),表示對應頂點(diǎn)的字母要寫(xiě)在對應的位置上;

 。3)“有三個(gè)角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個(gè)三角形不一定全等;

 。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”

 。5)截長(cháng)補短法證三角形全等。

  三角形知識點(diǎn)

  1、全等三角形的對應邊、對應角相等。

  2、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等。

  3、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等。

  4、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等。

  5、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等。

  6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。

  7、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等。

  8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上。

  9、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合。

  10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)。

  函數與方程知識點(diǎn)

  1、一次函數也叫做線(xiàn)性函數,一般在X,Y坐標軸中用一條直線(xiàn)來(lái)表示,當一次函數中的一個(gè)變量的值確定的情況下,可以用一元一次方程來(lái)解答出另一個(gè)變量的值。

  2、任何一個(gè)一元一次方程都可以轉化成ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個(gè)一次函數的值為0時(shí),求相應的自變量的值(從數的角度);從圖像上來(lái)看,就相當于已知直線(xiàn)y=ax+b,確定它與x軸的交點(diǎn)橫坐標的值(從形的角度)。

  3、利用函數圖像解方程:-2x+2=0,可以轉化為求一次函數y=-2x+2與x軸交點(diǎn)的橫坐標。而y=-2x+2與x軸交點(diǎn)的橫坐標為1,所以方程-2x+2=0的解為x=1。

  注意:解一元一次方程ax+b=0(a≠0)與求函數y=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標是同一個(gè)問(wèn)題。不同的是前者從數的角度來(lái)解決問(wèn)題,后者從形的角度來(lái)解決問(wèn)題。

  4、每個(gè)二元一次方程組都對應兩個(gè)一次函數,從數的角度來(lái)看,解方程組相當于考慮自變量為何值時(shí)兩個(gè)函數的值相等,以及這個(gè)函數是何值;從形的角度來(lái)看,解方程組相當于確定兩條直線(xiàn)交點(diǎn)的坐標,從而使方程組得出答案。

  5、解答一次函數的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿(mǎn)足一次函數表達式的兩個(gè)點(diǎn)的坐標,來(lái)確定另一個(gè)未知數的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。通常情況下y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)即可畫(huà)出。

  初二數學(xué)上冊知識點(diǎn)總結

  一、勾股定理的逆定理:

  如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  二、直角三角形的三邊關(guān)系:

  在任何一個(gè)直角三角形中,兩條直角邊長(cháng)的平方之和一定等于斜邊長(cháng)的平方。

  三、直角三角形斜邊上的中線(xiàn):

  直角三角形斜邊上的中線(xiàn)等于斜邊的一半。

  四、完全平方公式:

  首平方,末平方,兩倍首末在中央。

  五、二次根式的乘除法:

  根式基本運算,法則一樣,只是結果要化簡(jiǎn)。

  六、代數式求值:

  字母賦值,代數式中,等于代數式的值。

  七、平方根的性質(zhì):

  一個(gè)正數有兩個(gè)平方根,它們互為相反數,零的平方根是零,負數沒(méi)有平方根。

  八、實(shí)數的性質(zhì):

  正數和零是正實(shí)數,負數和零是負實(shí)數,兩個(gè)負數絕對值大者小。

  九、不等式的性質(zhì):

  1、不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(或式子),不等號的方向不變。

  2、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數,不等號的方向不變。

  3、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負數,方向改變。

  十、一元一次不等式的性質(zhì):

  1、不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(或式子),不等號的方向不變。

  2、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數,不等號的方向不變。

  3、不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負數,方向改變。

  十一、整式的除法:

  單項式除以單項式,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。

  分解因式知識點(diǎn)

  2、把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項式分解因式。

  3、因式分解與整式乘法是互逆關(guān)系。因式分解與整式乘法的區別和聯(lián)系:

  4、整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項式;

  5、因式分解是把一個(gè)多項式化為幾個(gè)因式相乘。

  提公共因式法

  7、如果一個(gè)多項式的各項含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項式化成兩個(gè)因式乘積的形式。這種分解因式的方法叫做提公因式法。如: ab+ac=a(b+c)

  8、概念內涵:

 。1)因式分解的最后結果應當是“積”;

 。2)公因式可能是單項式,也可能是多項式;

 。3)提公因式法的理論依據是乘法對加法的分配律,即: ma+mb—mc=m(a+b—c)

  9、易錯點(diǎn)點(diǎn)評:

 。1)注意項的符號與冪指數是否搞錯;

 。2)公因式是否提“干凈”;

  10、多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉。

  運用公式法

  12、如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

  運用公式法:

  14、平方差公式:

 、賾嵌検交蛞曌鞫検降亩囗検;

 、诙検降拿宽棧ú缓枺┒际且粋(gè)單項式(或多項式)的平方;

 、鄱検钱愄。

  15、完全平方公式:

 、賾侨検;

 、谄渲袃身椡,且各為一整式的平方;

 、圻有一項可正可負,且它是前兩項冪的底數乘積的2倍。

  因式分解的思路與解題步驟:

  18、先看各項有沒(méi)有公因式,若有,則先提取公因式;

 。2)再看能否使用公式法;

 。3)用分組分解法,即通過(guò)分組后提取各組公因式或運用公式法來(lái)達到分解的目的;

  19、因式分解的最后結果必須是幾個(gè)整式的乘積,否則不是因式分解;

  20、因式分解的結果必須進(jìn)行到每個(gè)因式在有理數范圍內不能再分解為止

【初二數學(xué)知識點(diǎn)總結】相關(guān)文章:

初二數學(xué)的知識點(diǎn)總結06-26

初二數學(xué)的知識點(diǎn)總結08-26

初二數學(xué)全套知識點(diǎn)總結01-30

初二數學(xué)知識點(diǎn)總結06-21

初二數學(xué)重要知識點(diǎn)總結08-15

初二數學(xué)上冊知識點(diǎn)總結(經(jīng)典)10-21

初二數學(xué)上冊知識點(diǎn)總結01-05

初二數學(xué)下冊知識點(diǎn)總結最新06-18

初二數學(xué)知識點(diǎn)總結(精選15篇)06-08