抽屜原理
石羊小學(xué) 陳遠德
教學(xué)目標
1.經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì )用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
2.通過(guò)操作發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數學(xué)思維。
3.通過(guò)“抽屜原理”的靈活應用感受數學(xué)的魅力。
教學(xué)重、難點(diǎn)
經(jīng)歷“抽屜原理”的探究過(guò)程,理解“抽屜原理”,并對一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教學(xué)過(guò)程
一、問(wèn)題引入。
師:同學(xué)們,你們玩過(guò)搶椅子的游戲嗎?現在,老師這里準備了3把椅子,請4個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?
1.游戲要求:開(kāi)始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話(huà)說(shuō)得對嗎?
游戲開(kāi)始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現實(shí)生活中存在著(zhù)的一種現象。
引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊含著(zhù)一個(gè)有趣的數學(xué)原理,這節課我們就一起來(lái)研究這個(gè)原理。
二、探究新知
。ㄒ唬┙虒W(xué)例1
1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?
師:請同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據學(xué)生擺的情況,師出示各種情況。
板書(shū):(4,0,0)(3,1,0)(2,2,0)(2,1,1),
問(wèn)題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?
引導學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。
問(wèn)題:
。1)“總有”是什么意思?(一定有)
。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
教師引導學(xué)生總結規律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過(guò)實(shí)際操作現了這個(gè)結論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結論呢?
學(xué)生思考并進(jìn)行組內交流,教師選代表進(jìn)行總結:如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過(guò)平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì )出現“總有一個(gè)盒子里一定至少有2枝”。
問(wèn)題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現什么?(筆的枝數比盒子數多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)
總結:只要放的鉛筆數盒數多1,總有一個(gè)盒里至少放進(jìn)2支。
2.完成課下“做一做”,學(xué)習解決問(wèn)題。
問(wèn)題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
。1)學(xué)生活動(dòng)-獨立思考自主探究
。2)交流、說(shuō)理活動(dòng)。
引導學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結論是正確的。
總結:用平均分的方法,就能說(shuō)明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。
。ǘ┙虒W(xué)例2
1.出示題目:把5本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?把7本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?把9本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
。艚o學(xué)生思考的空間,師巡視了解各種情況)
2.學(xué)生匯報,教師給予表?yè)P后并總結:
總結1:把5本書(shū)放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書(shū)不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書(shū)。
總結2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。
問(wèn)題:如果把5本書(shū)放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?用“商+2”可以嗎?(學(xué)生討論)
引導學(xué)生思考:到底是“商+1”還是“商+余數”呢?誰(shuí)的結論對呢?(學(xué)生小組里進(jìn)行研究、討論。)
總結:用書(shū)的本數除以抽屜數,再用所得的商加1,就會(huì )發(fā)現“總有一個(gè)抽屜里至少有商加1本書(shū)”了。
師:同學(xué)們的這一發(fā)現,稱(chēng)為“抽屜原理”,“抽屜原理”又稱(chēng)“鴿籠原理”,最先是由19世紀的德國數學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著(zhù)廣泛的應用!俺閷显怼钡膽檬乔ё內f(wàn)化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問(wèn)題。
。ㄈ⿲W(xué)生自學(xué)例題3并進(jìn)行自主交流,試著(zhù)用手中的用具模擬演示場(chǎng)景。
三、解決問(wèn)題
四、全課小結