- 《三角形的內角和》反思 推薦度:
- 《三角形的內角和》反思 推薦度:
- 相關(guān)推薦
《三角形的內角和》反思匯編15篇
《三角形的內角和》反思1
1、課堂教學(xué)要有預見(jiàn)性,更重視課堂生成性。
教師對學(xué)生在課堂上可能出現的問(wèn)題有一定的預見(jiàn),教師才能設計出最適合本班學(xué)生的教案,才能更好地把握課堂動(dòng)態(tài)。在這節課上,我讓學(xué)生猜三角形的內角和,結果學(xué)生非?隙ǖ恼f(shuō)是180度。還說(shuō)不論什么樣的三角形內角和都是180度。這時(shí)候與老師的預見(jiàn)是不同的。原本以為學(xué)生會(huì )猜出不同的結論的。但是付老師表現出了教學(xué)機智,他問(wèn),究竟是不是180度呢?你怎么證明呢?這進(jìn)一步的提問(wèn)一下子把學(xué)生的思考的引向了課堂的中心所在。
2、找準教師“導”與學(xué)生“行”的平衡點(diǎn),關(guān)鍵詞是相信學(xué)生是能行的。
滿(mǎn)堂灌的課堂教學(xué)模式在新的教育理念的一輪輪沖擊下,逐漸被廣大教師在思想上摒棄,但是要真正實(shí)現教師變滿(mǎn)堂講為適時(shí)導,學(xué)生變“聽(tīng)”為多方面“行”的課堂局面,還需要教師找準“導”與“行”的平衡點(diǎn)。
本節課中,三角形的內角和是180度這個(gè)結論很多同學(xué)早就知道了,但是這節課的目的很顯然不在于只教給學(xué)生結論,而是要通過(guò)學(xué)習活動(dòng),培養學(xué)生的動(dòng)手能力,遇到問(wèn)題努力求證的科學(xué)精神,和同學(xué)合作交流的能力,歸納推理判斷的能力。我認為這節課還可以放手更多一些,采取小組合作學(xué)習的方式,讓學(xué)生去實(shí)驗求證結論。在相互的爭辯中明晰概念。
新的課程標準要求教師要根據孩子已經(jīng)具有的`知識和生活經(jīng)驗,對受教育者進(jìn)行有目的啟發(fā)和引導,把學(xué)生的好奇心轉化為求知欲,逐步形成穩定的學(xué)習數學(xué)的興趣。教師要在課堂上以與生活密切聯(lián)系的素材來(lái)激起學(xué)生對數學(xué)本身的濃厚興趣,通過(guò)學(xué)生自主探索活動(dòng),讓學(xué)生獲得成功的體驗,增進(jìn)學(xué)生學(xué)好數學(xué)會(huì )用數學(xué)的信心。通過(guò)課堂上學(xué)生的表現,我們看出,學(xué)生有獨立探索的精神,也有去證明求知的能力,我們要的只是信任他們,設計好實(shí)驗方案,做好組織,讓學(xué)生的操作、討論、練習等活動(dòng)有條有理。真正讓學(xué)生成為學(xué)習的主人。
《三角形的內角和》反思2
課程將探究式學(xué)習作為學(xué)生學(xué)習的主要方式之一,著(zhù)重點(diǎn)放在讓學(xué)生在主動(dòng)參與的過(guò)程中進(jìn)行學(xué)習,在探究問(wèn)題的活動(dòng)中獲取知識并主動(dòng)建構新的認知結構,了解獲取知識的途徑和技巧。
這節課我設計了以“觀(guān)察—猜想—驗證—應用”為主線(xiàn),讓學(xué)生在自主學(xué)習中“不知不覺(jué)”學(xué)習到新的知識。在學(xué)生猜測三角形內角和是多少度的基礎上,引導學(xué)生通過(guò)探究活動(dòng)來(lái)驗證自己的觀(guān)點(diǎn)是否正確,激發(fā)求知的渴望和學(xué)習的熱情,最后達成共識。
這節課我創(chuàng )設了學(xué)生喜歡的情境:“三個(gè)三角形的爭吵”入手,讓學(xué)生自己動(dòng)手探索三角形的內角和。讓學(xué)生“量一量”、“剪—拼”、貼近了學(xué)生的生活,降低了學(xué)習難度,注重學(xué)生們的動(dòng)手實(shí)踐,親生去體驗去感悟。
在操作反饋的過(guò)程中我提出了兩個(gè)問(wèn)題:第一,你選用什么三角形,采用什么方法來(lái)驗證;
第二,經(jīng)過(guò)操作得到什么結論。學(xué)生分小組對大小不一的三角形進(jìn)行驗證,經(jīng)歷量、剪、拼一系列操作活動(dòng),從而得出“三角形內角和是180°”這一結論。
本節課不足之處:
1、 學(xué)生在還沒(méi)學(xué)習三角形的特性和三角形三邊的關(guān)系及三角形的內角和的基礎上進(jìn)行學(xué)習三角形內角和。就無(wú)法復習三角形的有關(guān)知識。
2、在解決三角形內角和是什么這個(gè)問(wèn)題,說(shuō)的不夠透徹,課后我改成這樣,先讓兩個(gè)學(xué)生說(shuō),說(shuō)完讓一個(gè)學(xué)生指出來(lái),讓他用黑色水筆畫(huà)出來(lái)。為驗證三角形內是180度做鋪墊。
3、學(xué)生在介紹剪拼的方法時(shí),可以讓介紹的學(xué)生先上臺演示是如何把內角拼在一起,這樣學(xué)生在動(dòng)手操作的時(shí)候就可以節省時(shí)間。而且由于內角和這個(gè)概念沒(méi)有講清楚,學(xué)生在這一環(huán)節花了一定的時(shí)間。
4、在學(xué)生匯報方法時(shí),還應該用尺子比一下拼后的三個(gè)角是在一 條直線(xiàn)上,更直觀(guān)的說(shuō)明三個(gè)角形成一個(gè)平角,三角形的內角和是180°。
5、練習設計是有分層次,但是學(xué)生說(shuō)的較少,我比較急地去分析, 留給學(xué)生的`時(shí)間不足,這是我今后要特別注意的一個(gè)方面。
本節課我引導學(xué)生用測量或剪拼的方法探究三角形的內角和。并會(huì )運用三角形的內角和解決實(shí)際問(wèn)題,但整堂課引導的比較急躁,今后我要朝著(zhù)更加完美的方向努力,我愿意鍛煉和改變自己。
《三角形的內角和》反思3
“三角形內角和”是人教版數學(xué)四年級下冊的一節探索與發(fā)現課,讓學(xué)生在學(xué)習了三角形的特征、高以及三角形分類(lèi)的基礎上,進(jìn)一步研究三角形三個(gè)角的關(guān)系。本節課學(xué)生對知識點(diǎn)的掌握還不錯,但是,這一節課還有很多不足之處,需要加以改進(jìn):
一、優(yōu)點(diǎn):
1、教學(xué)設計不錯,環(huán)節緊湊,思路清晰。
2、重視操作過(guò)程,時(shí)間把握得好。本節課用了大量的時(shí)間來(lái)讓學(xué)生做小組實(shí)驗,從而讓他們自己感知三角形內角和是180°,印象深刻。
3、能注意前后照應,解決了前面的疑問(wèn)。在講授新課前,設置一個(gè)疑問(wèn)“為什么同一個(gè)三角形不能有兩個(gè)直角?”以此來(lái)吸引學(xué)生,找出三角形內角和的特性。在掌握了三角形內角和是180°后,再次把問(wèn)題提出來(lái),讓學(xué)生解決。
4、板書(shū)巧妙,一步步引入課題。先是讓學(xué)生復習“三角形”的定義,接著(zhù)簡(jiǎn)單說(shuō)明什么是“三角形內角”,最后再講授三角形三個(gè)內角度數的和叫做“三角形內角和”。
5、課堂紀律好,氣氛活躍,學(xué)生踴躍積極。學(xué)生在小組活動(dòng)時(shí),活躍而有序,上課時(shí)能認真聽(tīng)講,積極舉手。同時(shí),實(shí)行小組評價(jià)更是發(fā)揮了學(xué)生的主動(dòng)性。
6、求三角形內角和的方法,一個(gè)比一個(gè)直觀(guān)、生動(dòng)。從量一量、算一算,到剪一剪、折一折,讓學(xué)生更容易感受到三角形內角和是180°。
7、練習題設計得比較好,特別是判斷題,都是學(xué)生平時(shí)容易出錯的題目,在課堂上用比較直觀(guān)的課件顯示出來(lái),讓學(xué)生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數,然后根據度數判斷出是什么三角形。
8、能尊重學(xué)生的意見(jiàn),有的小組沒(méi)有在算一算的時(shí)候,沒(méi)有得出180°的結果,老師能夠分析其中的原因。
二、不足之處:
1、在老師給出“畫(huà)有2個(gè)內角是直角的三角形”的任務(wù)時(shí),學(xué)生明顯是畫(huà)不出來(lái)。但是教師也可以把學(xué)生失敗的作品展示出來(lái),照應之后的講解。而不能一帶而過(guò)。
2、如果量一量的'方法,不能讓人信服,要在后面打個(gè)“?”,等到解決疑問(wèn)后,再去掉。
3、在進(jìn)行剪一剪、折一折的活動(dòng)時(shí),老師應該先用板書(shū)上的三角形來(lái)示范一次,告訴學(xué)生應該怎么做。因為有些學(xué)生折不出來(lái)。拼的時(shí)候,也有出錯。
4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹的態(tài)度對待,不能光用眼睛來(lái)判斷。
5、老師注意提醒學(xué)生讀題的時(shí)候要規范,要讀出度數單位,這很好。但是,在做題練習時(shí),應該請一兩個(gè)學(xué)生在黑板上做,這樣也便于教師提醒學(xué)生,在書(shū)寫(xiě)時(shí),也要注意寫(xiě)上度數單位,強調格式。
《三角形的內角和》反思4
今天講解的《三角形內角和》一課,是在四年級上學(xué)期《角》的單元教學(xué)基礎上進(jìn)行教學(xué)的,在《角》的單元教學(xué)中就已經(jīng)涉及到了三角形內角和,學(xué)生對其有了初步的了解,這學(xué)期在原有的基礎上進(jìn)一步繼續學(xué)習有關(guān)知識。
首先,在教學(xué)中我對三角形的分類(lèi)進(jìn)行了復習,通過(guò)讓學(xué)生們對原有認知的回憶,為新課的學(xué)習做好鋪墊。進(jìn)而講解內角和內角和的定義,再復習平角的概念,在此基礎上,先出示長(cháng)方形和正方形,讓學(xué)生算它們的內角和,接著(zhù)出示一個(gè)長(cháng)方形,用剪刀沿一條對角線(xiàn)剪開(kāi),把平行四邊形分成兩個(gè)三角形,再讓學(xué)生們討論三角形的內角和又是多少?根據剛才的計算,學(xué)生很快反應過(guò)來(lái)說(shuō),是180度,因為360o÷2=180o。通過(guò)這一設計,使學(xué)生對三角形的.內角和有了初步的認識,隨后我就跟著(zhù)提出問(wèn)題:是不是所有的三角形的三個(gè)內角和一定是180呢?從而給學(xué)生指出了本節課探究學(xué)習的目標。
然后讓學(xué)生先測量計算自己手中三角板的內角和,再一次初步得出三角形的內角和是180度這一結論。這時(shí)引導學(xué)生思考,這一結論是否具有普遍性,有的學(xué)生會(huì )提出結論不具有普遍性,因為三角板很特殊,不能代表所有的三角形,結論還不能成立,這樣就讓課堂教學(xué)到達了最關(guān)鍵的階段。我給每個(gè)小組任意分發(fā)了一個(gè)銳角三角形、直角三角形和鈍角三角形,讓學(xué)生們自己動(dòng)手測量計算,然后再總結結論。雖然這一教學(xué)環(huán)節中有個(gè)別學(xué)生對量角器的使用方法有遺忘或測量有差錯,對教學(xué)的時(shí)間和效率有一定的影響,但多數同學(xué)的測量計算結果是正確的,同時(shí)通過(guò)教師的糾正點(diǎn)撥使全體同學(xué)都掌握了正確的測量方法,培養了學(xué)生的實(shí)際動(dòng)手操作能力,激發(fā)了學(xué)生的學(xué)習興趣。
在測量時(shí),同學(xué)們氣氛活躍都爭先恐后的進(jìn)行測量計算,所有學(xué)生都特別積極,他們有的為了測量的誤差而爭論的面紅耳赤,有的同學(xué)也為自己精確測量而興高采烈,在測量過(guò)程中,學(xué)生們不僅復習了用量角器量角的方法,更是驗證總結出了三角形的內角和等于180度。在愉悅的教學(xué)過(guò)程中,使教學(xué)一氣呵成,分散了教學(xué)難點(diǎn),突出了教學(xué)重點(diǎn),加深了學(xué)生對本節課知識的掌握和理解,取得了較好的教學(xué)效果。
想不到我設計的一個(gè)小小的動(dòng)手操作教學(xué),竟然調動(dòng)了學(xué)生的學(xué)習積極性,激發(fā)了學(xué)生的學(xué)習興趣,對本節課的教學(xué)產(chǎn)生了不可估計的效果,不僅點(diǎn)燃了他們求知的欲望,更激發(fā)了他們特有的童趣,讓整個(gè)數學(xué)課堂散發(fā)著(zhù)一種催人奮進(jìn)的熱情,使數學(xué)課活了起來(lái),知識動(dòng)了起來(lái),學(xué)生們的腦筋更是轉了起來(lái),課堂效率也升了起來(lái)。通過(guò)這節課的教學(xué),不僅讓我感受了教學(xué)中創(chuàng )造的“意外”精彩,同時(shí)也引起了我深深地思考,作為四年級的學(xué)生,他們活潑好動(dòng),天真可愛(ài),求知欲強,如果在課堂教學(xué)中讓他們多多的參與一些動(dòng)手操作,既培養了學(xué)生的實(shí)際動(dòng)手操作能力,又調動(dòng)了學(xué)生的學(xué)習積極性,讓學(xué)生在活躍的課堂氛圍中學(xué)習知識,利于加深學(xué)生的記憶,更好的掌握和理解所學(xué)知識。
通過(guò)這節課的教學(xué),讓我有了新的發(fā)現,相同的知識,不同的教法,效果也不相同。同時(shí)也使我認識到在學(xué)生的身上隱藏著(zhù)許多“寶藏”,只要我們善于尋找和發(fā)現,這些“寶藏”將會(huì )給我們帶來(lái)無(wú)限的財富。
《三角形的內角和》反思5
1、通過(guò)直觀(guān)操作的方法,探索并發(fā)現三角形的內角和等于180度,在實(shí)驗活動(dòng)中,體驗探索的過(guò)程和方法。
2、能運用三角形的內角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。上課時(shí),我先出示了書(shū)本上的圖片,大的三角形對小的三角形說(shuō):“我的三個(gè)角的和一定比你大”。問(wèn)學(xué)生是這樣的嗎。起先就有同學(xué)問(wèn)了,什么是內角和,我稍微解釋后,同學(xué)們就開(kāi)始些爭論了,帶著(zhù)這個(gè)問(wèn)題,我讓孩子們自己在練習本上畫(huà)三角形(什么樣的三角形都可以)。然后讓他們量出三個(gè)角的度數,并求出他們的和。我在巡視的過(guò)程中,選出了一些同學(xué)的三角形以及他們測量出來(lái)的結果。也發(fā)現有些同學(xué)已經(jīng)忘記量角的方法,或者量的過(guò)程不認真,導致結果出錯,我在巡視的過(guò)程中就給予糾正。
最后,同學(xué)們也都發(fā)現,大小、形狀不同的三角形,其內角和都在180度左右。然后讓他們看智慧老人的一句話(huà)“實(shí)際上,三角形三個(gè)內角和就是180度,只是因為測量有誤差”,所以有些同學(xué)量出來(lái)的并不剛好是180度。那么智慧老人的話(huà)有沒(méi)有道理呢?我拋出了這么一個(gè)疑問(wèn),讓同學(xué)們想辦法證明。最開(kāi)始,有人提出了用折的方法,我就拿出了事先準備好的三角形,讓他折給大家看,發(fā)現三個(gè)角拼在一起后就成了一個(gè)平角,也就是180度。但是問(wèn)到還有沒(méi)有其他方法的時(shí)候,就沒(méi)有同學(xué)回答了,時(shí)間也快到了,我就自己匆匆忙忙的把先撕后拼的方法給講了。之后講了一道內角和的應用,然后就讓他們下課了。
在這節課的過(guò)程當中,我對自己不滿(mǎn)意的地方有幾個(gè),主要是后半節:
首先,同學(xué)在用折一折的方法證明三角形的內角和時(shí),雖然上臺演示的同學(xué)有折出來(lái),但速度不是很快,而且但并不是沒(méi)個(gè)同學(xué)都能折出來(lái)的,所以在上面的同學(xué)折出來(lái)后,我覺(jué)得讓其他同學(xué)也試一下,肯定有人沒(méi)辦法,所以要提醒他們,折時(shí)要注意平行折。這樣也會(huì )更有說(shuō)服力。但是我也沒(méi)讓大家準備三角形,也就沒(méi)辦法了。這里我更體會(huì )到提前備好一周的'課的重要性了。這也是我們校長(cháng)和教導時(shí)常強調的,以后一定得改正。
其次,讓同學(xué)們想辦法用令一種方法證明時(shí),我顯得急躁了,雖然同學(xué)們沒(méi)有一下子想出來(lái),但是我也應該多給他們些時(shí)間,讓他們多思考,或者稍微給點(diǎn)提示。我想起上學(xué)期中關(guān)村的老師上認識角的時(shí)候,就很耐心的給孩子們時(shí)間去探索,去發(fā)現。所以在課堂的時(shí)間安排上,我還要思考如何才能更加合理。
最后,也是我經(jīng)常在思考的。為什么我們班發(fā)言的情況總是那么不如人意呢。沒(méi)次到我的師傅班上聽(tīng)課時(shí),我都發(fā)現他們班孩子充滿(mǎn)了激情,而到了我們班,情況就大大的改變呢?是提問(wèn)的方式有問(wèn)題嗎?不過(guò)可能有一點(diǎn),是因為我在課堂當中對于學(xué)生的回答激勵性的語(yǔ)言太少了,導致有部分人失去熱情,還有就是自己上課總是急于求成,讓孩子們失去了思考的機會(huì ),也使有些人已經(jīng)懶得思考了。在這方面我以后還得大大的改善才行。
《三角形的內角和》反思6
1、教師的教學(xué)方式要適應學(xué)生的學(xué)習。新課程明確倡導動(dòng)手實(shí)踐、自主探究、合作交流的學(xué)習方式。這就要求教師的角色,應當從過(guò)去知識的傳授者轉變?yōu)閷W(xué)生自主性、探究性、合作性學(xué)習活動(dòng)的設計者和組織者。在教學(xué)過(guò)程中,我給學(xué)生設置了一個(gè)開(kāi)放的、面向實(shí)際的、富有挑戰性的問(wèn)題情境,讓學(xué)生獨立、自主地去探究驗證其他學(xué)生已發(fā)現的知識,通過(guò)實(shí)驗、操作、表達、交流等活動(dòng),經(jīng)歷探究過(guò)程,獲得知識與能力,掌握解決問(wèn)題的方法,獲得情感體驗。我想:只要我們堅持“為學(xué)習而設計”、“為學(xué)生的發(fā)展而教”,那么我們的課堂將會(huì )更加生機勃勃、充滿(mǎn)智慧的歡樂(lè )和創(chuàng )造的快意。
2、讓每位學(xué)生都有所發(fā)展。這節課我進(jìn)行了8次課堂巡視,其中4次參與學(xué)生的'討論、交流,兩次分別對三名學(xué)困生進(jìn)行重點(diǎn)輔導,巡視時(shí)關(guān)注面較廣,目的性明確。但在“個(gè)別學(xué)生課堂行為表現”的重點(diǎn)觀(guān)察中,一位學(xué)困生在前半節課中共舉了兩次手,未被我關(guān)注,之后再沒(méi)舉過(guò)一次手。課后這位學(xué)生找到我問(wèn)我原因。我與他進(jìn)行了個(gè)別談話(huà),問(wèn)他為什么后半節課沒(méi)再舉手,回答是:“反正也不會(huì )提問(wèn)到我!睂W(xué)生的態(tài)度似乎有些不以為然,其實(shí)蘊含著(zhù)不滿(mǎn)。說(shuō)明我們教師在課堂中不應忽略個(gè)體差異、害怕問(wèn)題暴露,相反應充分重視、關(guān)愛(ài)學(xué)困生,讓每位學(xué)生都有所發(fā)展。
3、對數學(xué)學(xué)習的評價(jià)要做到既關(guān)注學(xué)生學(xué)習的結果,更要重視他們學(xué)習的過(guò)程;要關(guān)注學(xué)生數學(xué)學(xué)習的水平,更要關(guān)注他們在數學(xué)活動(dòng)中所表現出來(lái)的情感與態(tài)度,幫助學(xué)生認識自我,建立信心。對學(xué)生的精彩回答應予以熱情的肯定,促使學(xué)生的思維更加活躍。
4、加強對學(xué)生的思維和方法的指導。創(chuàng )造一個(gè)好的數學(xué)問(wèn)題情境,提供孩子們理解數學(xué)的模型和材料是教學(xué)設計活動(dòng)中的第一步,但是要讓學(xué)生看到其中所蘊涵的數學(xué)觀(guān)念,作為教師不能讓這些數學(xué)活動(dòng)只停留在表面。
《三角形的內角和》反思7
“合作探究,實(shí)驗論證”生動(dòng)地詮釋了新教育的基本理念,本課新知識傳授很好的把握三個(gè)環(huán)節。
一是學(xué)生獨立思考,教師引導學(xué)生討論驗證方法,掌握要領(lǐng)。上課開(kāi)始,我通過(guò)提問(wèn)三角板中每個(gè)角的度數以及每塊三角板的內角的和是多少?初步讓學(xué)生感知直角三角形的內角和是180,然后質(zhì)疑:,這僅僅是一副三角板的內角和,而且也是直角三角形,那是不是所有的三角形中的三個(gè)內角的都是180°呢?這個(gè)問(wèn)題一提出去就激發(fā)學(xué)生的探究學(xué)習的熱情。因此接著(zhù)就讓學(xué)生討論:有什么辦法可以驗證得出這樣的結論。學(xué)生提出度量、折一折、拼一拼等方法。
二是動(dòng)手操作驗證猜想。讓學(xué)生拿出課前準備的銳角三角形、直角三角形、鈍角三角形以小組為單位有選擇的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通過(guò)小組合作交流,印證猜想,得出任意三角形的內角和是180°的結論。
三是進(jìn)行總結強化了學(xué)生對結論的理解與記憶,激發(fā)學(xué)生探索知識的熱情?茖W(xué)驗證了結果,讓學(xué)生用簡(jiǎn)潔的語(yǔ)言總結結論:三角形的內角和是180°。
《三角形的內角和》是九年制義務(wù)教育人教版四年級下冊第五章《三角形》的第二節內容,本節課是在學(xué)生學(xué)習了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎上,讓學(xué)生動(dòng)手操作,通過(guò)一些活動(dòng)得出“三角形的內角和等于180°”成立的理由,由淺入深,循序漸進(jìn),引導學(xué)生觀(guān)察、猜測、實(shí)驗,總結。逐步培養學(xué)生的邏輯推理能力.
“問(wèn)題的.提出往往比解答問(wèn)題更重要”,其實(shí)三角形內角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問(wèn)題的提出,再讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵學(xué)生傾聽(tīng)他人的方法。
本課的重點(diǎn)就是要讓學(xué)生知道“知其然還要知其所以然”,所以在第二環(huán)節里。鼓勵學(xué)生親自動(dòng)手操作驗證猜想。為此,我設計了大量的操作活動(dòng):畫(huà)一畫(huà)、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒(méi)有限定了具體的操作環(huán)節,但為了節省時(shí)間,讓學(xué)生分組活動(dòng),感覺(jué)更利于我的目標落實(shí)。但在分組活動(dòng)中,我更注意解決學(xué)生活動(dòng)中遇到了問(wèn)題的解決,比如說(shuō)畫(huà),老師走入學(xué)生中指導要領(lǐng),因此學(xué)生交上來(lái)畫(huà)的作品也非常的漂亮。學(xué)生觀(guān)察能力得到了培養。再比如說(shuō)折,有的學(xué)生就是折不好,因為那第一折有一定的難度,它不僅要頂點(diǎn)和邊的重合,其實(shí)還要折痕和邊的平行,這個(gè)認識并不是每個(gè)學(xué)生都能達到的。教師也要走上前去點(diǎn)撥一下。再比如撕,如果事先沒(méi)有標好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動(dòng)中,既體現了老師的“扶”又體現了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動(dòng)畫(huà)課件,更直觀(guān)的展示了活動(dòng)過(guò)程,生動(dòng)又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動(dòng)的特點(diǎn),這對他認識能力的提高是有幫助的。在此環(huán)節增加了學(xué)生的合作探究精神培養。
在歸納總結環(huán)節,有意識地培養學(xué)生的說(shuō)理能力,邏輯推理能力,增強了語(yǔ)言表達能力。
最后通過(guò)習題鞏固三角形內角和知識,培養學(xué)生思維的廣闊性,為了強化學(xué)生對這節課的掌握,我除了設計了一些基本的已知三角形二個(gè)內角求第三個(gè)角的練習題外,還設計了幾道習題,第一道是已知一個(gè)三角形有二個(gè)銳角,你能判斷出是什么三角形嗎?通過(guò)這一問(wèn)題的思考,使學(xué)生明白,任意三角形都有二個(gè)銳角,因此直角三角形的定義是有一個(gè)角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個(gè)鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個(gè)角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學(xué)生解決三角形按角分的定義的理解。第二道題是一個(gè)三角形最大角是60°,它是什么三角形?通過(guò)對此題的研究,使學(xué)生發(fā)現判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時(shí)加深了學(xué)生對等邊三角形的特點(diǎn)的認識和理解。第三題我拓展延伸到三角形外角,第四題我設計了多邊形的內角和的探究。
《三角形的內角和》反思8
三角形內角和,是在學(xué)生認識了三角形的特點(diǎn)和分類(lèi)的基礎上進(jìn)一步對三角形內角之間的關(guān)系的學(xué)習和探究。學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內角和是多少度,學(xué)生是不陌生的,在這個(gè)過(guò)程中孩子們知道了內角的概念,但是他們卻不知道怎樣才能得出三角形的內角和是180度。因此本節課我提出的研究的重點(diǎn)是:驗證三角形的內角和是180度。
在上課前我通過(guò)故事情境導入:“大三角形”將軍和“小三角形”將軍內角和一樣大嗎?引起同學(xué)們思考,激發(fā)出學(xué)生探究學(xué)習的熱情。接著(zhù)學(xué)生討論:有什么辦法可以驗證得出這樣的`結論。學(xué)生首先提出度量角的度數的方法,之后通過(guò)測量角的度數,發(fā)現有的三角形內角和是180°,有的非常接近180°,讓學(xué)生發(fā)現測量角的度數時(shí)容易產(chǎn)生誤差,方法具有一定的局限性。之后學(xué)生通過(guò)撕角拼一拼的方法進(jìn)行驗證。通過(guò)“合作探究,實(shí)驗論證”生動(dòng)地詮釋了新教育的基本理念。
本課新知識傳授很好的把握三個(gè)環(huán)節:
1.重視動(dòng)手操作,讓學(xué)生在探究中收獲知識。
《數學(xué)課程標準》指出:“有效的數學(xué)學(xué)習活動(dòng)不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習數學(xué)的重要方式!北竟澱n通過(guò)量、折、剪、拼等多種活動(dòng),使學(xué)生主動(dòng)探究,找到新舊知識的聯(lián)系,得出研究問(wèn)題的結論,有利于學(xué)生培養“空間觀(guān)念”和動(dòng)手操作能力。讓學(xué)生獨立思考,教師引導學(xué)生討論驗證方法,掌握要領(lǐng)。還有什么辦法可以驗證得出這樣的結論?學(xué)生就發(fā)揮想象,提出度量、折一折、拼一拼等方法。
2.在動(dòng)手操作中驗證猜想。
讓學(xué)生拿出課前準備的銳角三角形、直角三角形、鈍角三角形,通過(guò)撕拼角的方式,小組合作交流,驗證猜想,得出任意三角形的內角和是180°的結論。
3.重視問(wèn)題預設,培養“空間觀(guān)念”。
“問(wèn)題的提出往往比解答問(wèn)題更重要”,其實(shí)三角形內角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是學(xué)生“知其然而不知其所以然”,所以我特別重視問(wèn)題的提出,再讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵學(xué)生傾聽(tīng)他人的方法,鼓勵學(xué)生發(fā)揮想象,鼓勵學(xué)生動(dòng)手操作,鼓勵學(xué)生驗證猜想,培養學(xué)生“空間觀(guān)念”。我在歸納總結環(huán)節,有意識地培養學(xué)生的推理能力,邏輯思維能力,增強了語(yǔ)言表達能力。最后通過(guò)習題鞏固三角形內角和知識,培養學(xué)生思維的廣闊性,強化了學(xué)生對這節課的掌握。
作為一名新教師,在接下來(lái)的教學(xué)中,我要學(xué)會(huì )大膽放手,輕松自己,發(fā)展學(xué)生。放手讓學(xué)生自己去思考去做,那怕他想錯了做錯了,只有這樣他們才有機會(huì )知道自己錯了錯在哪兒,給他們更自由更廣闊的發(fā)展空間,也只有這樣才能喚起他們思考的欲望,也只有這樣才能揚起他們創(chuàng )造的風(fēng)帆!
《三角形的內角和》反思9
一、教材分析
三角形的內角和這堂課的內容中心的知識點(diǎn)是一句話(huà):三角形的內角和是180度。學(xué)生很容易掌握。但是,三角形的內角和為什么是180度,教材采用了觀(guān)察三角板,引導學(xué)生提出疑問(wèn):是不是所有的三角形內角和都是180度,進(jìn)而用三種不同類(lèi)型的三角形折一折,驗證出這個(gè)結論?梢哉f(shuō),教材本身的編排就是讓學(xué)生在動(dòng)手操作中自主得出結論,而不是死記硬背。
一、操作盲點(diǎn)
在教學(xué)中,我按照教材的意圖,引導學(xué)生動(dòng)手操作推導出三角形的內角和。讓我感到遺憾的是,許多學(xué)生不知道如何去折三角形,以巡視的過(guò)程中,發(fā)現了許多錯誤的折法。我想,這一環(huán)節采用小組合作的形式也許會(huì )更好。但是小組合作有時(shí)候也會(huì )流于形式,不利于一些中下等學(xué)生自主思考。在小組合作這一形式的運用上,想達到效果真的是很難以把握的事情。
二、語(yǔ)言表達
不過(guò),讓我感到高興的事,這一段時(shí)間一直在做的事情終于有了一點(diǎn)頭緒,這一學(xué)期來(lái),我一直在注重讓學(xué)生用語(yǔ)言表達出自己的思想,昨天在課上,我發(fā)現有一些學(xué)生很愿意去說(shuō),而且說(shuō)出來(lái)話(huà)的還是蠻有一點(diǎn)數學(xué)語(yǔ)言的味道的。譬如想想做做第1題,求一個(gè)直角三角形中一個(gè)銳角的'度數時(shí),大部分學(xué)生是用90度去減的,我問(wèn)了一個(gè)為什么?有學(xué)生當即就說(shuō):是因為直角三角形另外兩個(gè)銳角的和加起來(lái)是90度,所以只要用90度去減就可以了。很簡(jiǎn)單的一句話(huà),讓我很有成功感,因為出自學(xué)生的口中,我班上是這樣一種情況,大多數學(xué)生會(huì )做但是卻不愿意用語(yǔ)言去表達,而我一向認為,語(yǔ)言是思維的外殼,不說(shuō)如何能表達自己的思想,大膽自信地表達自己的語(yǔ)言,對自己的性格也是一種很好的訓練。所以強調一定要去說(shuō)。經(jīng)過(guò)一段時(shí)間的強調,終于初見(jiàn)希望。真是心情很好。
今天講了三角形的內角和,因為有些學(xué)生已經(jīng)知道了三角形的內角和是180度,而且為了使課上生動(dòng)我故意沒(méi)有讓他們課前預習。當我揭示課題后,學(xué)生中有幾位按捺不住激動(dòng),小聲嘀咕是180度。我于是順勢提問(wèn),同意他們的意見(jiàn)的舉手,一半以上的學(xué)生不約而同舉起了手。我說(shuō)到底是不是呢?你們有什么辦法可以去驗證。我讓他們拿出課前準備的三角形,小組討論后動(dòng)手驗證。經(jīng)過(guò)巡視發(fā)現所有的小組都想到了通過(guò)量出各個(gè)三角形的內角再計算出內角和來(lái)驗證的。我讓他們再想想有沒(méi)有別的方法可以驗證出三角形的內角和是180度的?上е挥袃蓚(gè)小組通過(guò)動(dòng)手折一折來(lái)驗證的,在他們的演示后我在黑板上的三角形上板書(shū)出各個(gè)角的度數及三只角的度數和的算式。同時(shí)我讓他們對直角三角形的內角和等式進(jìn)行觀(guān)察,他們發(fā)現了其中的兩個(gè)銳角和總是90度。我提問(wèn)通過(guò)折我們把三角形的三只內角拼在一起組成一個(gè)平角,還有沒(méi)有其他辦法也可以把三只角拼一拼的,可惜沒(méi)有一個(gè)同學(xué)想到把三只角撕下來(lái)拼的。以前教的時(shí)候好像學(xué)生想到的方法比現在的學(xué)生多,這讓我很難過(guò)和想不通。是不是我平時(shí)的教學(xué)沒(méi)有最大程度地調動(dòng)起學(xué)生的學(xué)習激情?是不是我平時(shí)的教學(xué)有過(guò)于急而沒(méi)有給學(xué)生足夠的時(shí)間思考?是不是我平時(shí)總有越俎代庖的現象?……可是我覺(jué)得平時(shí)我還是就最大程度注意到這些的,看來(lái)教學(xué)的確是值得我們永久去實(shí)踐、探索的。
《三角形的內角和》反思10
《三角形的內角和》教材是先讓學(xué)生通過(guò)計算三角尺得個(gè)內角的度數和,激發(fā)學(xué)生好奇心,進(jìn)而引發(fā)學(xué)生猜想:其他三角形的內角和也是180度嗎?再通過(guò)組織操作活動(dòng)驗證猜想,得出結論。根據這樣的教材安排,本課的重點(diǎn)也就應放在“三角形內角和是180度”的探索上,讓學(xué)生在探索中深入理解得出過(guò)程。針對教材的如此安排,我也設計了如下的開(kāi)放的課堂預設:
驗證過(guò)程
1、要知道我們猜測的是否正確,你有什么辦法驗證呢?
先獨立思考,有想法了在小組里交流。
學(xué)生交流想法:
生一:我們組根據剛才三角板的內角和是三個(gè)角的度數加起來(lái)得出的,所以,我們就用量角器量出了三個(gè)角的度數,再加起來(lái)。
學(xué)生說(shuō)出了測量的度數相加,雖然不是很精確180度,量的過(guò)程中有點(diǎn)誤差,得到了在180度左右。
生二:我們組是把銳角三角形的三個(gè)角跟書(shū)上一樣去折,折在一起發(fā)現正好是個(gè)平角,所以我們發(fā)現銳角三角形內角和也是180度。(及時(shí)表?yè)P了能主動(dòng)預習的好習慣。)
生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發(fā)現也能拼成一個(gè)平角,所以鈍角三角形的內角和也是180度。
生四:我們組研究的是直角三角形,跟上面兩組的同學(xué)一樣折在一起,三個(gè)角拼起來(lái)也是一個(gè)平角,所以直角三角形的內角和也是180度。
生五:我們也是折的,但我們沒(méi)有把三個(gè)角折在一起,而是把兩個(gè)小的角折到直角那里發(fā)現兩個(gè)銳角合起來(lái)正好與直角三角形的直角重合,圖形也就成了一個(gè)長(cháng)方形,兩個(gè)銳角的和是90度再加個(gè)直角也就是180度。
也有同學(xué)提出了采用了減下角再拼的方法。
以上這個(gè)小片段,雖然在孩子們表述中沒(méi)這么流利,完整,但卻是他們最真實(shí)的'發(fā)現,這堂課上下來(lái),感覺(jué)收獲很大。
自己感覺(jué)這節課的設計上把握了學(xué)生學(xué)習起點(diǎn)與心理,遵循了教材讓學(xué)生先猜想再驗證的思路,從學(xué)生已有的知識背景出發(fā),為他們提供了重復粉從事數學(xué)活動(dòng)的時(shí)間和交流機會(huì )。學(xué)生思考著(zhù),討論著(zhù),交流著(zhù),感悟著(zhù),在這一過(guò)程中,學(xué)生不僅掌握了知識,尋求到了解決問(wèn)題的方法,更重要的是在交流中,學(xué)生的語(yǔ)言表達能力也得到了很大的增強。
《三角形的內角和》反思11
一、設計思路:
這節課是上“三角形內角和”,因為學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出一塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°,再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
二、教學(xué)反思
這篇教學(xué)設計通過(guò)施教,符合新課程理念,轉變學(xué)生的學(xué)習方式,能讓學(xué)生以小組合作的形式進(jìn)行問(wèn)題的探索與研究,學(xué)生在整節課中學(xué)得輕松。整節課的教學(xué)設計,條理清晰,層次清楚,教學(xué)一開(kāi)始從學(xué)生熟悉的三角板抽象出特殊的三角形探討三角形的內角和是180°,接下來(lái)很自然地引導學(xué)生探討所有的三角形的內角和是不是也是180,過(guò)渡自然且有吸引力。
但在學(xué)習活動(dòng)的過(guò)程中,首先我覺(jué)得語(yǔ)言不夠生動(dòng)、連貫,聲音也很小。其次,學(xué)生在進(jìn)行操作活動(dòng)前,我也沒(méi)有明確說(shuō)明操作方法,使學(xué)生不理解操作的'用意,也沒(méi)有讓學(xué)生在操作中真正證實(shí)“三角形的內角和是180°”的結論。最后,對三角形內角和的歸納也沒(méi)有完整,等等
總之,在這節課中存在著(zhù)很多不足,今后我將花更多的時(shí)間在課堂教學(xué)方法、策略的研究上,使自己不斷進(jìn)步。
《三角形的內角和》反思12
《三角形的內角和》是人教版四年級下冊第五單元的內容,是學(xué)生學(xué)習了三角形的特性及分類(lèi)的基礎上學(xué)習的。本節課我主要設計了四個(gè)環(huán)節,提出問(wèn)題→合作探究→學(xué)以致用→分享收獲。
第一個(gè)環(huán)節中,我先設計了一個(gè)情境,三角形三兄弟(銳角三角形、鈍角三角形、直角三角形)爭論誰(shuí)的內角和大,一下子激起了學(xué)生的探究興趣,這個(gè)時(shí)候就有學(xué)生說(shuō)一樣大,此時(shí)引出課題,同時(shí)學(xué)生提出問(wèn)題:什么是內角?三角形的內角和是多少度?
第二個(gè)環(huán)節是合作探究三角形的內角和,這個(gè)環(huán)節里學(xué)生小組合作,通過(guò)量、撕、折等方法,驗證三角形的內角和是180。
第三個(gè)環(huán)節是學(xué)以致用,我設計了三個(gè)闖關(guān)游戲,第一關(guān)是已知兩個(gè)角的度數求第三個(gè)角的度數,第二關(guān)是等邊三角形、等腰三角形和直角三角形一個(gè)角的度數,第三關(guān)是兩個(gè)相同的三角形組成一個(gè)大三角形后,大三角形的內角和是多少度。
反思師生互動(dòng)的過(guò)程,本節課的優(yōu)點(diǎn)有:
1、本節課中學(xué)生探究欲很高,課堂研討氣氛濃厚。
2、小組合作中,學(xué)生們發(fā)現測量時(shí),三角形的內角和不一定是180,培養了學(xué)生事實(shí)求是的科學(xué)態(tài)度,此時(shí)學(xué)生能運用轉化思想解決問(wèn)題,從而提升了學(xué)生解決問(wèn)題的能力。
3、量、撕、折的'動(dòng)手實(shí)踐活動(dòng),不僅提高了學(xué)生的動(dòng)手操作能力,而且讓在動(dòng)手的同時(shí)動(dòng)腦、動(dòng)口,積極參與知識學(xué)習的全過(guò)程,鼓勵學(xué)生多觀(guān)察、動(dòng)腦想、大膽猜、勤鉆研,增強了學(xué)生學(xué)習數學(xué)的興趣,給學(xué)生提供更多的活動(dòng)機會(huì )和空間,使學(xué)生在參與的過(guò)程中得到充足的體驗和發(fā)展。
4、課堂練習題的設計層層遞進(jìn),以及實(shí)踐活動(dòng)的設計,讓學(xué)生體驗了學(xué)以致用的快樂(lè ),獲得成功的喜悅。
5、學(xué)生在分享收獲中,各抒己見(jiàn),提升了自己的表達能力和歸納能力。
本節課需要改進(jìn)的地方:
1、在合作探究環(huán)節,我提出問(wèn)題:怎樣來(lái)驗證三角形的內角和?此時(shí)學(xué)生提出了測量的方法之后,我沒(méi)有給學(xué)生留有足夠的思考空間,而是直接介紹了“撕、折”的方法,讓孩子們進(jìn)行探究,課堂中缺少了更多的生成。
2、課堂中設計了實(shí)踐活動(dòng)環(huán)節,學(xué)生們非常感興趣,但是由于時(shí)間不充足,有些學(xué)生理解的不夠充分,這個(gè)環(huán)節學(xué)生的參與度不夠,考慮可以放到課后思考。
《三角形的內角和》反思13
背景:
最近,張店區教研室舉行了“青年教師優(yōu)質(zhì)課”評選,我們學(xué)校有位剛畢業(yè)一年的年輕教師參加。經(jīng)過(guò)大家共同選教材、研究商量后,確定參評課題為“三角形的內角和”。這是新實(shí)驗教材四年級下冊的內容,從教材上看,教學(xué)內容比較簡(jiǎn)單,就是讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼、折等方法推導出三角形內角和是180°,會(huì )應用這一規律進(jìn)行計算。很顯然,許多學(xué)生肯定有這樣的知識經(jīng)驗,每個(gè)班都有部分學(xué)生已經(jīng)能說(shuō)出這一知識點(diǎn)。根據這樣的現狀我們讓年輕教師根據自己的理解先備課、設計教學(xué)思路,隨后我們進(jìn)行了跟蹤聽(tīng)課。
試講教學(xué)片斷:
創(chuàng )設情境,引入新知:
教師先出示色彩鮮艷,用卡紙制作的學(xué)具:鈍角三角形、銳角三角形、直角三角形等,讓學(xué)生分辨,復習上節課的內容。學(xué)生回答的輕車(chē)熟路,感覺(jué)非常簡(jiǎn)單。繼而教師拿出直角三角形,說(shuō)道:“請大家畫(huà)出一個(gè)直角三角形!焙芸,學(xué)生便大功告成,舉起畫(huà)完的作品讓老師看。
老師邊點(diǎn)頭邊露出贊許的微笑。接著(zhù)提出第二個(gè)問(wèn)題:“聰明的同學(xué)們,能不能畫(huà)出有‘兩個(gè)’直角的三角形呢?畫(huà)畫(huà)試試!睕](méi)出5秒鐘,反應快的學(xué)生便脫口而出:“老師,畫(huà)不出來(lái)!”老師緊接追問(wèn):“為什么呢?”學(xué)生:“因為三角形的內角和是180°,兩個(gè)直角就是180°了,畫(huà)不出第三個(gè)角了。所以畫(huà)不成三角形!睂W(xué)生說(shuō)得太好了,老師趕緊接過(guò)了話(huà)題:“這位同學(xué)說(shuō)三角形的內角和是180°,你們知道嗎?”其他學(xué)生似乎還沒(méi)明白怎么回事,只好連忙點(diǎn)頭說(shuō)知道。教師肯定的說(shuō):“是的,三角形的內角和就是180°,我們怎么想辦法驗證一下呢?請大家想想辦法!睂W(xué)生經(jīng)過(guò)很長(cháng)時(shí)間的合作、探究,得出了三種辦法,全班交流匯報。練習分為基本練習和綜合練習兩個(gè)層次。學(xué)生計算的沒(méi)多大問(wèn)題。最后一題是思維拓展練習:研究一下四邊形的內角和?五邊形、六邊形的內角和呢?多邊形呢?因時(shí)間的關(guān)系,無(wú)一人能夠想出策略。
反思:
教師創(chuàng )設情境采用的是給學(xué)生制造思維障礙的方法,讓學(xué)生畫(huà)出有“兩個(gè)”直角的三角形,欲擒故縱,有其果,學(xué)生肯定會(huì )究其因,同時(shí),還能讓學(xué)生在體驗中,尋找數學(xué)的真諦,此創(chuàng )設情境的方法真是妙哉。聽(tīng)課時(shí),我也為他這樣的設計感到高興,心想,一定能產(chǎn)生好的教學(xué)效果,但事實(shí)卻不是如此,學(xué)生一堂課顯得比較沉悶,只有部分好學(xué)生在迎合老師,學(xué)生并沒(méi)有充分的參與到數學(xué)學(xué)習中來(lái)。課后,我反復的思考,為什么會(huì )這樣呢?后來(lái)發(fā)現原因有以下幾點(diǎn):
一是因為教師在出示問(wèn)題時(shí),沒(méi)有把“兩個(gè)”直角三角形的“兩個(gè)”強調清楚,有許多學(xué)生沒(méi)有聽(tīng)清要求;
二是因為教師沒(méi)有留給學(xué)生充分的思考的時(shí)間,好學(xué)生反應快,答案脫口而出,其他學(xué)生思維還沒(méi)產(chǎn)生任何的碰撞,更沒(méi)經(jīng)歷實(shí)驗的過(guò)程。
三是我們現在教育體制下的學(xué)生大都缺少質(zhì)疑權威的意識和習慣,顯得順從,沒(méi)有主張和個(gè)性。在好學(xué)生說(shuō)出三角形的內角和是180°后,其他學(xué)生對于這一知識點(diǎn)真正知道的有多少?但正因為是好學(xué)生的回答,在其他學(xué)生眼中,這是學(xué)習的權威啊,他說(shuō)的肯定是對的,結果大家只有稀里糊涂的點(diǎn)頭附和,是的,三角形的內角和是180度。
在這一環(huán)節的教學(xué)中,很多學(xué)生就吃了夾生飯,根本沒(méi)有透徹的理解和掌握?此凭实那榫硠(chuàng )設,如果得不到教師適度的調控和把握,也煥發(fā)不出它應有的光彩。
新課標指出:數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的'知識經(jīng)驗基礎之上。教師應激發(fā)學(xué)生的學(xué)習積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗。深刻的思考、仔細的推敲以上情境的創(chuàng )設,也不難發(fā)現,它盡管有它的閃光點(diǎn),但也有不足的地方,就是它的設計引入沒(méi)有從大部分學(xué)生的知識經(jīng)驗出發(fā),沒(méi)有照顧到全體,知道三角形內角和是180°的學(xué)生畢竟是少數,這也就是它沒(méi)能激發(fā)起學(xué)生學(xué)習欲望的原因所在。因此,在數學(xué)課堂教學(xué)中,我們要時(shí)刻注意發(fā)掘教材孕伏的智力因素,審時(shí)度勢,把握時(shí)機,因勢利導地為學(xué)生創(chuàng )造良好的教學(xué)情境 ,激發(fā)學(xué)生的興趣,讓學(xué)生在學(xué)習數學(xué)中愉快地探索。
再者,最后一題,是在學(xué)習了三角形內角和基礎上的拓展,任何多邊形都可以轉化為多個(gè)三角形來(lái)計算內角和,學(xué)生無(wú)一人能夠想出辦法,仔細想想,是我們的題目出的太難,還是學(xué)生太笨呢?都不是,是我們教師的引導作用沒(méi)發(fā)揮出來(lái),沒(méi)能激發(fā)起學(xué)生學(xué)習的內部活力,也就無(wú)談學(xué)生的動(dòng)手實(shí)驗、猜想、驗證。當然,學(xué)生的實(shí)驗、猜想、驗證能力的培養并不是一堂課的問(wèn)題,而是朝朝夕夕,無(wú)聲無(wú)息的滲透。作為任何一個(gè)站在教學(xué)前沿的教師,我們都應有這樣的教學(xué)理念,讓自己的學(xué)生在數學(xué)學(xué)習中通過(guò)觀(guān)察、實(shí)驗、歸納、類(lèi)比、推斷獲得數學(xué)猜想,體驗數學(xué)活動(dòng)豐富的探索性和創(chuàng )造性,感受證明的必要性、證明過(guò)程的嚴謹性以及結論的確定性。
再次實(shí)踐:
經(jīng)過(guò)大家的共同評課和授課教師自己的反思,我們重新改變了創(chuàng )設情境的方法。
師出示一正方形紙,問(wèn):這是一張(正方形)的紙,它有(4)個(gè)角,這4個(gè)角在數學(xué)里,我們給它一個(gè)名稱(chēng),把它叫做正方形的(內角),而且每個(gè)內角都是(直角),那么它的內角和是多少度呢?為什么?
生1:正方形的內角和是360°,因為每個(gè)內角都是90°,有4個(gè)內角,就是4個(gè)90°,也就是360°。
師:現在,我們把這個(gè)正方形紙沿著(zhù)對角線(xiàn)剪開(kāi)后會(huì )怎樣呢?
。◣熝菔,并指導生拿出正方形紙折一折、剪一剪)
生3:通過(guò)剛才的觀(guān)察與操作,我發(fā)現這樣沿對角線(xiàn)剪開(kāi)后,得到了2個(gè)三角形,都是等腰直角三角形。
師:誰(shuí)來(lái)猜想一下其中的1個(gè)三角形的內角和是多少度?
生:通過(guò)剛才的觀(guān)察與操作,我發(fā)現三角形的內角和是180°。因為正方形的內角和是360°,沿對角線(xiàn)剪開(kāi)后,等于把正方形平均分成了兩份,也就是把360°平均分成兩份,每份是180°,所以這個(gè)三角形的內角和是180°。
生:我發(fā)現三角形的內角和是180°。因為沿正方形對角線(xiàn)剪開(kāi)后,等于把正方形原來(lái)的直角平均分成了兩份,每份是45°,兩個(gè)45°加上90°就得到180°,所以我知道三角形的內角和是180°!
師:同學(xué)們猜的對不對呢?用什么辦法可以知道?
生:驗證。
師:對,需要經(jīng)過(guò)驗證。
。ǚ中〗M對三角形進(jìn)行驗證?此膬冉呛褪遣皇180°)
組織學(xué)生匯報 (測量的同學(xué)邊匯報邊板書(shū),剪拼的同學(xué)利用投影匯報。)
生1:我們用量角器對3個(gè)角進(jìn)行了測量,再分別把3個(gè)角的度數相加,得出了內角和為360°。
生2:我們將這個(gè)直角三角形的兩個(gè)銳角用量角器測量,把兩個(gè)銳角相加是90°,再加上直角的度數,這樣我們知道直角三角形的內角和是180°。
生3:我們小組將三角形的兩個(gè)銳角剪下來(lái),然后拼在一起組成了一個(gè)直角,再把另一個(gè)直角拿來(lái)拼在一起,這樣組成了平角,證實(shí)直角三角形的內角和是180°。
生4:我們是先將一個(gè)角折過(guò)來(lái),使它頂點(diǎn)落在底邊上,再把另外兩個(gè)角也折過(guò)來(lái),這樣三個(gè)角正好拼成一個(gè)平角,所以我們知道這個(gè)鈍角三角形的內角和是180°。
《三角形的內角和》反思14
今天教學(xué)《三角形的內角和》,對于三角板,學(xué)生是不陌生的,所以我們從一副三角板入手,讓學(xué)生算出一副三角板的內角和是180°,于是拋出問(wèn)題,在其他三角形中三個(gè)內角的和是不是也是180°呢?學(xué)生當然會(huì )猜是。我覺(jué)得今天孩子不僅學(xué)到了三角形的內角和,還學(xué)到了對待一個(gè)猜想就要想辦法來(lái)驗證的數學(xué)思想。當我要求孩子們來(lái)驗證的時(shí)候,有的孩子想到了量,有的孩子想到了折,這里我先讓孩子們都去量,量了以后,因為有的同學(xué)量的不精確,所以我建議更精確的驗證方法,孩子又想到了折,我又讓孩子們去折。事后想想,如果我一開(kāi)始就讓孩子們嘗試用自己喜歡的方法去驗證一下,說(shuō)不定碰撞的`火花會(huì )跟激烈些。我這樣一步一步來(lái)的話(huà),就有些按部就班,沒(méi)有那種水到渠成的感覺(jué)了。后來(lái),校長(cháng)提出,一開(kāi)始有個(gè)孩子說(shuō)到他量到175°,比較接近180°的時(shí)候,我只是強調要精確,卻沒(méi)有很好的利用這一資源,如果我這時(shí)候讓孩子把他畫(huà)的這個(gè)三角形撕下來(lái),折一折來(lái)驗證的話(huà) ,學(xué)生的印象會(huì )更加深刻。這點(diǎn)我沒(méi)想到,看來(lái)我還不夠智慧!
楊教導也提出,后面的習題三,正方形內角和是360°,而把它對折變成三角形,就變成了180°,把三角形對折還是180°,這道題我沒(méi)有深入,這是教材沒(méi)把握好!
以后要注意,但是這節課上孩子的表現還是比較令我滿(mǎn)意的,比平時(shí)好!呵呵!
《三角形的內角和》反思15
本節課的內容一般作為講授內容,只要告訴學(xué)生三角形的內角和是180度,學(xué)生記住結論教學(xué)即可完成。問(wèn)題是通過(guò)這個(gè)內容的教學(xué),我們要達到什么樣的教學(xué)目標?為了達到更高的目標我把本節課定為活動(dòng)課,讓學(xué)生在玩中學(xué),并從中學(xué)會(huì )學(xué)習知識的科學(xué)方法。
課的一開(kāi)始我就由兩個(gè)大小不同的三角形在爭論誰(shuí)的內角和大入手。在學(xué)生的認知結構中,對于這場(chǎng)爭論的結果是什么已經(jīng)沒(méi)有懸念了,但這樣的爭論會(huì )引發(fā)他們思考,為什么不同的三角形內角和會(huì )一樣?是不是所有的三角形內角和都一樣?這也正是我本節課要與學(xué)生共同研究的問(wèn)題。這時(shí)學(xué)生想說(shuō)為什么又不知怎么說(shuō),又因不知道怎么說(shuō)而感情特別激動(dòng)。處于這種狀態(tài)的學(xué)生注意力特別集中,學(xué)習興趣異常高漲,到了一觸即發(fā)的地步。于是我讓他們將課前準備好的.三角形拿出來(lái)進(jìn)行研究,體現學(xué)生的主體意識與參與意識。當學(xué)生通過(guò)折一折、拼一拼、撕一撕、畫(huà)一畫(huà)之后找到自己的驗證方法時(shí),他們體驗了成功,也學(xué)會(huì )了學(xué)習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學(xué)生們拿著(zhù)他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。有的學(xué)生將三角形的三個(gè)角都撕下來(lái)拼接到一起,有的同學(xué)將三角形的三個(gè)角沿著(zhù)三角形的中位線(xiàn)拼在一起。當孩子們正愉悅于自己的發(fā)現時(shí),我適時(shí)提出:四邊形的內角和是多少呢?五邊形的內角和是多少呢?……N邊形的內角和是多少呢?孩子們求知的欲望再一次被激發(fā),專(zhuān)注的研究著(zhù)……當我進(jìn)行提問(wèn)時(shí),還沒(méi)有研究出方法的小組成員是那么用心的傾聽(tīng)其他同學(xué)的發(fā)言。當有的同學(xué)說(shuō)要將多邊形分割成學(xué)過(guò)的三角形進(jìn)行研究時(shí),他們發(fā)出贊嘆的聲音。于是我們進(jìn)一步研究求多邊形內角和的方法,他們從中體會(huì )到了探索的樂(lè )趣與成功的興奮;于是孩子們又發(fā)現多邊形外角和的奇妙之處,真是萬(wàn)種變化定在其中。
這節課下課后我自己都有一點(diǎn)興奮,因為我的孩子給了我意外的驚喜。但試想一下,如果我上課之初,就告訴孩子三角形的內角和為180°,并且告訴孩子我的驗證方法,即便告訴的方法再多,再詳細,他們學(xué)到的也只是我的有限的方法,而且是老師的方法,不是自己發(fā)現的方法。但換一種教學(xué)方式,孩子們不但找到了所有我知道的方法,也找到了我意想不到的方法,我們大家在研究中都是受益者。也許沒(méi)有什么比這更讓人興奮的了。
【《三角形的內角和》反思】相關(guān)文章:
《三角形的內角和》反思02-26
《三角形的內角和》反思15篇(精華)02-27
《三角形的認識》反思09-21
圓和三角形作文11-22
三角形、圓形和方形作文08-02
《三角形面積的計算》教后反思08-09
三角形作文07-15
“三角形”隨想作文12-18
把握三角形的支撐作文12-14