97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)說(shuō)課稿

時(shí)間:2024-07-17 08:11:06 數學(xué)說(shuō)課稿 我要投稿

高中數學(xué)說(shuō)課稿[常用15篇]

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常需要編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以更好地組織教學(xué)活動(dòng)。那么說(shuō)課稿應該怎么寫(xiě)才合適呢?下面是小編幫大家整理的高中數學(xué)說(shuō)課稿,歡迎閱讀,希望大家能夠喜歡。

高中數學(xué)說(shuō)課稿[常用15篇]

高中數學(xué)說(shuō)課稿1

  今天我說(shuō)課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。

  一、說(shuō)教材

  1、教材的地位和作用

  本節內容選自北師大版高中數學(xué)必修1,第二章第3節。函數是高中數學(xué)的課程,它是描述事物運動(dòng)變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學(xué)習奠定重要基礎。

  2、學(xué)情分析

  本節課的學(xué)生是高一學(xué)生,他們在初中階段,通過(guò)一次函數、二次函數、反比例函數的學(xué)習已經(jīng)對函數的增減性有了初步的感性認識。在高中階段,用符號語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結果,有利于培養學(xué)生的理性思維,為后續函數的學(xué)習作準備,也為利用倒數研究單調性的相關(guān)知識奠定了基礎。

  教學(xué)目標分析

  基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分:

  1、知識與技能(1)理解函數的單調性和單調函數的意義;

 。2)會(huì )判斷和證明簡(jiǎn)單函數的單調性。

  2、過(guò)程與方法

 。1)培養從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;

 。2)體會(huì )數形結合、分類(lèi)討論的數學(xué)思想。

  3、情感態(tài)度與價(jià)值觀(guān)

  由合適的例子引發(fā)學(xué)生探求數學(xué)知識的欲望,突出學(xué)生的主觀(guān)能動(dòng)性,激發(fā)學(xué)生學(xué)習數學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)

  重點(diǎn):

  函數單調性的概念,判斷和證明簡(jiǎn)單函數的單調性。

  難點(diǎn):

  1、函數單調性概念的認知

 。1)自然語(yǔ)言到符號語(yǔ)言的轉化;

 。2)常量到變量的轉化。

  2、應用定義證明單調性的代數推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課標的教學(xué)理念,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法理解函數的單調性及特征。

  五、教學(xué)過(guò)程

  為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。

 。ㄒ唬┲R導入

  溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數圖像的情況,而且符合學(xué)生的認知結構,通過(guò)學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過(guò)程中構建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習的積極主動(dòng)性。

 。ǘ┲v授新課

  1.問(wèn)題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個(gè)區間是上升的,在哪個(gè)區間是下降的?

  通過(guò)學(xué)生熟悉的圖像,及時(shí)引導學(xué)生觀(guān)察,函數圖像上A點(diǎn)的運動(dòng)情況,引導學(xué)生能用自然語(yǔ)言描述出,隨著(zhù)x增大時(shí)圖像變化規律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。

  2、觀(guān)察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問(wèn)題:

 。1)在y軸的右側部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當x1< p="">

 。3)如何用數學(xué)符號語(yǔ)言來(lái)描述這個(gè)規律?

  教師補充:這時(shí)我們就說(shuō)函數y=x2在(0,+∞)上是增函數。

 。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

  類(lèi)似地分析圖象在y軸的左側部分。

  通過(guò)對以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì )函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關(guān)鍵詞,如:區間內,任意,當x1< p="">

  仿照單調增函數定義,由學(xué)生說(shuō)出單調減函數的定義。

  教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個(gè)區間上的局部性質(zhì),也就是說(shuō),一個(gè)函數在不同的區間上可以有不同的單調性。

 。ㄎ覍⒔o出函數y=x2,并畫(huà)出這個(gè)函數的圖像,讓學(xué)生觀(guān)察函數圖像的特點(diǎn),讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個(gè)過(guò)程中,學(xué)生把對圖像的'感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解)

 。ㄈ╈柟叹毩

  1練習1:說(shuō)出函數f(x)=的單調區間,并指明在該區間上的單調性。x

  練習2:練習2:判斷下列說(shuō)法是否正確

 、俣x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上的增函數。

 、诙x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上不是減函數。

  1③已知函數y=,因為f(-1)< p="">

  1我將給出一些具體的函數,如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數的單調區間,并指明在該區間x

  上的單調性。通過(guò)這種練習的方式,幫助學(xué)生鞏固對知識的掌握。

 。ㄋ模w納總結

  我先讓學(xué)生進(jìn)行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,為下一節課的教學(xué)過(guò)程做好準備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習題2-3A組第2,4,5題。

  選做題:習題2-3B組第2題。

  新課程理念告訴我們,不同的人在數學(xué)上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。

高中數學(xué)說(shuō)課稿2

  課題《數列的概念與簡(jiǎn)單表示方法(一)》選自普通高中課程標準試驗教科書(shū)人教版A版數學(xué)必修5第二章第一節的第一課時(shí)。我將從教材分析、學(xué)情分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程這五個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。

  一、教材分析

  1、教材的地位和作用

  數列是高中數學(xué)的重要內容之一,它的地位作用可以從三個(gè)方面來(lái)看:

 。1)數列有著(zhù)廣泛的實(shí)際應用。如堆放的物品的總數計算要用到數列的前n項和,又如分期儲蓄、付款公式的有關(guān)計算也要用到數列的一些知識。

 。2)數列起著(zhù)承前啟后的作用。一方面,初中數學(xué)的許多內容在解決數列的某些問(wèn)題中得到了充分運用,數列是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面,學(xué)習數列又為進(jìn)一步學(xué)習數列的極限,等差數列、等比數列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學(xué)好數列。

 。3)數列是培養學(xué)生數學(xué)能力的良好題材。是進(jìn)行計算,推理等基本訓練,綜合訓練的重要教材。學(xué)習數列,要經(jīng)常觀(guān)察、分析、歸納、猜想,還要綜合運用前面的知識解決數列中的一些問(wèn)題,這些都有助于學(xué)生數學(xué)能力的提高。

  二、學(xué)情分析

  從學(xué)生知識層面看:學(xué)生對數列已有初步的認識,對方程、函數、數學(xué)公式的運用已有一定的基礎,對方程、函數思想的體會(huì )也逐漸深刻。

  從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開(kāi)始,我就很注意學(xué)生自主探究習慣的養成,F階段我的學(xué)生思維活躍,課堂參與意識較強,而且已經(jīng)具有一定的分析、推理能力。

  三、教學(xué)目標分析

  根據上面的教材分析以及學(xué)情分析,確定了本節課的教學(xué)目標:

 。1)知識目標:認識數列的特點(diǎn),掌握數列的概念及表示方法,并明白數列與集合的不同點(diǎn)。了解數列通項公式的意義及數列分類(lèi)。能由數列的通項公式求出數列的各項,反之,又能由數列的前幾項寫(xiě)出數列的一個(gè)通項公式。

 。2)能力目標:通過(guò)對數列概念以及通項公式的探究、推導、應用等過(guò)程,鍛煉了學(xué)生的觀(guān)察、歸納、類(lèi)比等分析問(wèn)題的能力。同時(shí)更深層次的理解了數學(xué)知識之間的相互滲透性思想。

 。3)情感目標:在教學(xué)中使學(xué)生體會(huì )教學(xué)知識與現實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習興趣,培養熱愛(ài)生活的情感。

  四、教學(xué)重點(diǎn)與難點(diǎn)

  根據教學(xué)目標以及學(xué)生的理解能力與認知水平,我確定了如下的教學(xué)重難點(diǎn)。

  重點(diǎn):理解數列的`概念,能由函數的觀(guān)點(diǎn)去認識數列,以及對通項公式的理解。

  難點(diǎn):根據數列的前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察分析歸納出數列的一個(gè)通項公式。

  五、教法分析

  根據本節課的內容和學(xué)生的實(shí)際情況,結合波利亞的先猜后證理論,本節課主要以講解法為主,引導發(fā)現為輔,由老師帶領(lǐng)同學(xué)們發(fā)現問(wèn)題,分析問(wèn)題,并解決問(wèn)題.考慮到學(xué)生的認知過(guò)程,本節課會(huì )采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習設置,讓學(xué)生們充分體會(huì )到事物的發(fā)展規律。同時(shí)為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習熱情,本節課還會(huì )采用常規手段與現代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現.

高中數學(xué)說(shuō)課稿3

  尊敬的各位考官,大家好,我是今天的X號考生,今天我說(shuō)課的題目是《向量減法運算及其幾何意義》。

  下面開(kāi)始我的說(shuō)課。

  一、說(shuō)教材

  首先談?wù)勎覍滩牡睦斫!断蛄繙p法運算及其幾何意義》是人教A版實(shí)驗版高中數學(xué)必修4的內容。本節課主要學(xué)習向量減法運算的定義及幾何意義。本節課的學(xué)習建立在學(xué)生已經(jīng)掌握平面向量的基本概念以及向量加法運算的基礎之上。向量減法的學(xué)習是運算認識的一次飛躍,本節課的知識在整個(gè)章節中也起到了承上啟下的重要作用。

  二、說(shuō)學(xué)情

  接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。新課標指出學(xué)生是教學(xué)的主體,所以要成為符合新課標要求的教師,深入了解所面對的學(xué)生可以說(shuō)是必修課。這一階段的學(xué)生思維較為活躍,求知欲也較強,但是未形成良好的思維習慣。

  三、說(shuō)教學(xué)目標

  根據以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:

 。ㄒ唬┲R與技能

  借助向量加法運算及相反向量的概念,理解向量減法運算的定義和幾何意義。

 。ǘ┻^(guò)程與方法

  通過(guò)將向量減法運算轉化為向量加法運算的計算過(guò)程,體會(huì )向量加、減法的內在聯(lián)系,滲透轉化的數學(xué)思想。

 。ㄈ┣楦、態(tài)度與價(jià)值觀(guān)

  在探究向量減法運算定義及幾何意義的'過(guò)程中,養成良好的學(xué)習習慣和嚴謹的思維方式。

  四、說(shuō)教學(xué)重難點(diǎn)

  根據授課內容可以確定本節課的教學(xué)重點(diǎn)是向量減法運算的定義及幾何意義,教學(xué)難點(diǎn)是向量減法幾何意義的理解。

  五、說(shuō)教法和學(xué)法

  結合本節課的內容特點(diǎn)和學(xué)生的年齡特征,本節課我采用講授法、練習法的教法,觀(guān)察、分析、歸納概括探索知識的學(xué)法來(lái)進(jìn)行教學(xué)。

  六、說(shuō)教學(xué)過(guò)程

  下面我將重點(diǎn)談?wù)勎覍虒W(xué)過(guò)程的設計。

 。ㄒ唬⿲胄抡n

  首先是導入環(huán)節。先回憶上節課學(xué)習的向量加法運算法則,再回憶實(shí)數運算中,減去一個(gè)數相當于什么?通過(guò)提問(wèn):向量的減法是否也有類(lèi)似的法則?引出本節課的內容《向量減法運算及其幾何意義》。

  通過(guò)相關(guān)概念的復習和向量加法運算法則的鞏固,為后續向量減法運算的教學(xué)奠定理論基礎。

高中數學(xué)說(shuō)課稿4

  拋物線(xiàn)焦點(diǎn)性質(zhì)的探索(說(shuō)課)

  一、教材分析

  1 教材的地位與作用 “拋物線(xiàn)焦點(diǎn)的性質(zhì)”是拋物線(xiàn)的重要性質(zhì)之一,它是在學(xué)生學(xué)習拋物線(xiàn)的一般性質(zhì)的基礎上,學(xué)習和研究的拋物線(xiàn)有關(guān)問(wèn)題的基本工具之一;本節教材對于培養學(xué)生觀(guān)察、猜想、概括能力和邏輯推理能力具有重要的意義。

  2 教學(xué)目的 全日制普通高級中學(xué)《數學(xué)教學(xué)大綱》第22頁(yè)“重視現代教育技術(shù)的.運用”中明確提出:在數學(xué)教學(xué)過(guò)程中,應有意識地利用計算機網(wǎng)絡(luò )等現代信息技術(shù),認識計算機的智能圖形、快速計算、機器證明、自動(dòng)求解及人機交互等功能在數學(xué)教學(xué)中的巨大潛力,努力探索在現代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設計和組織能吸引學(xué)生積極參與的數學(xué)活動(dòng),支持和鼓勵學(xué)生運用信息技術(shù)學(xué)習數學(xué)、開(kāi)展課題研究,改進(jìn)學(xué)習方式,提高學(xué)生的自主學(xué)習能力和創(chuàng )新意識。因此本人在現行高中新教材(試驗修訂本·必修)數學(xué)第二冊(上)拋物線(xiàn)這一節內容為背景材料,以多媒體網(wǎng)絡(luò )教室為場(chǎng)地,以《幾何畫(huà)板》為教學(xué)工具與學(xué)習工具,設計了一堂《拋物線(xiàn)焦點(diǎn)性質(zhì)的探索》,具體目標如下:

 。1) 知識目標:了解焦點(diǎn)的有關(guān)性質(zhì);并掌握這些性質(zhì)的證明方法;體會(huì )數形結合思想與分類(lèi)討論思想在解決解析幾何題中的指導作用

 。2) 能力目標:使學(xué)生學(xué)會(huì )研究數學(xué)問(wèn)題的基本過(guò)程,能夠根據條件建立恰當的數學(xué)模型;培養辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運動(dòng)與靜止)培養學(xué)生通過(guò)計算機來(lái)自主學(xué)習的能力與創(chuàng )新的能力。

 。3) 情感目標:培養學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng )新的精神,在挫折中成長(cháng)鍛煉,培養學(xué)生良好的心理素質(zhì)和抗挫折能力,通過(guò)拋物線(xiàn)焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數學(xué)美和創(chuàng )造美的享受。

  3 教學(xué)內容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節安排兩節課,

  第一節課:主要內容是利用《幾何畫(huà)板》探索拋物線(xiàn)的有關(guān)性質(zhì);

  第二節課:證明第一節所得到的有關(guān)性質(zhì)。

  重點(diǎn):

 。1)如何利用《幾何畫(huà)板》探索、發(fā)現拋物線(xiàn)焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  難點(diǎn);

 。1)如何利用《幾何畫(huà)板》探索、發(fā)現拋物線(xiàn)焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  二、教學(xué)策略及教法設計

  學(xué)生在網(wǎng)絡(luò )教室(每人一機),其中裝有《幾何畫(huà)板》軟件及上課系統,每個(gè)學(xué)生的窗口,其他學(xué)生及教師都可以通過(guò)教師機切換,從而和其他學(xué)生交流,也可以通過(guò)網(wǎng)上論壇交流研究結果。

  三、網(wǎng)絡(luò )教學(xué)環(huán)境設計

  學(xué)生在網(wǎng)絡(luò )教室(每人一機)中有幾何畫(huà)板軟件,學(xué)生通過(guò)教師提供的網(wǎng)絡(luò ),自已閱讀,下載有關(guān),利用《幾何畫(huà)板》的操作、試驗、猜想,通過(guò)自己的研究獲得結論,并互相討論觀(guān)察到的現象、交流研究結果。

  四、教學(xué)過(guò)程設計

  4.1 使學(xué)生學(xué)會(huì )研究數學(xué)問(wèn)題的基本過(guò)程,能夠根據條件建立恰當的數學(xué)模型 問(wèn)題1 回顧一下拋物線(xiàn)的定義,并根據拋物線(xiàn)的定義思考用《幾何畫(huà)板》如何作出焦點(diǎn)在x軸上的拋物線(xiàn)圖象。 由于創(chuàng )設了一個(gè)創(chuàng )作的《幾何畫(huà)板》的窗口及網(wǎng)絡(luò )窗口,學(xué)生通過(guò)網(wǎng)絡(luò )學(xué)習,得到以上問(wèn)題的多種作法,以下就其中的一種作法作為探索、研究拋物線(xiàn)焦點(diǎn)性質(zhì)的基本圖形。

高中數學(xué)說(shuō)課稿5

  一、教學(xué)內容分析

  圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習情況分析

  我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標

  1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。

  2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對圓錐曲線(xiàn)定義的理解

  2.利用圓錐曲線(xiàn)的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線(xiàn)定義解題

  六、教學(xué)過(guò)程設計

  【設計思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當地給出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在

  (2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的.定義的運用為主線(xiàn),精心準備了兩道練習題。

  【學(xué)情預設】

  估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  七、教學(xué)反思

  1.本課將借助于“XXX”,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。

高中數學(xué)說(shuō)課稿6

  一、教材分析

  本節內容是等差數列(第一課時(shí))的內容,屬于數與代數領(lǐng)域的知識。本節是數列課程的新授課,為后面等比數列以及數列求和的知識點(diǎn)作基礎。數列是高中數學(xué)重要內容之一,它有著(zhù)廣泛的實(shí)際應用。等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。在數學(xué)思想的方面,數列在處理數與數之間的關(guān)系中,更多地培養了學(xué)生運用函數與函數關(guān)系的思想。

  二、教學(xué)目標

  根據課程標準的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標

 。1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想。

 。2)在能力上:培養學(xué)生觀(guān)察、分析、歸納、推理的能力;以形象的'實(shí)際例子作為學(xué)生理解與練習的模板,使學(xué)生在不斷實(shí)踐中鞏固學(xué)習到的知識;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

 。3)在情感上:通過(guò)對等差數列在實(shí)際問(wèn)題中的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據課程標準的要求我確定本節課的教學(xué)重點(diǎn)為: ①等差數列的概念。

 、诘炔顢盗械耐椆降耐茖н^(guò)程及應用。

  三、教學(xué)方法分析:

  對于高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實(shí)際中的問(wèn)題出發(fā),以學(xué)生日常生活中較易接觸的一些數學(xué)問(wèn)題,籍此啟發(fā)學(xué)生對于數列知識點(diǎn)的理解。本節課大多采用啟發(fā)式、討論式的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題,并學(xué)會(huì )將數學(xué)知識運用到實(shí)際問(wèn)題的解決中。

  四、教學(xué)過(guò)程

  通過(guò)復習上節課數列的定義來(lái)引入幾個(gè)數列

  1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通過(guò)這3個(gè)數列,初步認識等差數列的特征,為后面的概念學(xué)習建立基礎。由學(xué)生觀(guān)察第一個(gè)數列與第三個(gè)數列的特點(diǎn),并與第二個(gè)做對比,引出等差數列的概念。

  (二)新課探究

  1、由引入自然的給出等差數列的概念:

  定義:如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調:

 、 “從第二項起”滿(mǎn)足條件;

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個(gè)常數;

  在理解概念的基礎上,由學(xué)生將等差數列的文字語(yǔ)言轉化為數學(xué)語(yǔ)言,歸納出數學(xué)表達式:

  an+1-an=d (n≥1)

  同時(shí)為了配合概念的理解,引導學(xué)生講本不是等差數列的第二組數列修改成等差數列。并由觀(guān)察三組數列的不同特點(diǎn),由此強調:公差可以是正數、負數,并再舉出特例數列1,1,1,1,1,1,1......說(shuō)明公差也可以是0。

  2、第二個(gè)重點(diǎn)部分為等差數列的通項公式

  在歸納等差數列通項公式中,我采用討論式的教學(xué)方法。給出等差數列的首項,公差d,運用求數列通項公式的辦法------迭加法:整個(gè)過(guò)程通過(guò)互相討論的方式既培養了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

  若一等差數列{an }的首項是a1,公差是d,則據其定義可得:

  a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)

  當n=1時(shí),(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數列{an}的通項公式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項公式。

  在這里通過(guò)運用迭加法這一數學(xué)思想,便于學(xué)生從概念理解的過(guò)程過(guò)渡到運用概念的過(guò)程。

  接著(zhù)舉例說(shuō)明:若一個(gè)等差數列{an}的首項是1,公差是2,得出這個(gè)數列的通項公式是:an=1+(n-1)×2,

  即an=2n-1以此來(lái)鞏固等差數列通項公式運用。

 。ㄈ⿷门e例

  現實(shí)生活中,以學(xué)生較為熟悉的iphone手機的數據作為例子。觀(guān)察Iphone手機的發(fā)布時(shí)間,iphone第一代發(fā)布于20xx年,第二代發(fā)布于20xx年,第三代發(fā)布于20xx年,第四代發(fā)布于20xx年,F在第六代發(fā)布于今年20xx年。首先,讓學(xué)生觀(guān)察從04年到10年每?jì)纱鷌phone發(fā)布的間隔時(shí)間,讓學(xué)生自行尋找規律,并在此基礎上讓學(xué)生估測第五代iphone的發(fā)布時(shí)間,并驗證第五代iphone發(fā)布于20xx年。同時(shí),再讓學(xué)生預測在未來(lái),下一部iphone發(fā)布的時(shí)間,是學(xué)生體驗到將數學(xué)知識運用到實(shí)際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價(jià)格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在給出的數據上,將價(jià)格隨時(shí)間的變化以坐標軸的形式作圖表示出來(lái),讓學(xué)生觀(guān)察到雖然這些數據非等差,但是可以大致變?yōu)榈炔畹闹本(xiàn)圖像,讓學(xué)生體會(huì )到“擬合數據”的思想。在此基礎上,讓學(xué)生進(jìn)行練習,預測14年如今iphone6的上市價(jià)格為6888元,并與學(xué)生通過(guò)數列進(jìn)行推理的價(jià)格進(jìn)行對比,讓學(xué)生對自己在實(shí)踐中解決問(wèn)題的過(guò)程中找到一定的認同感。

  五、歸納小結

  提問(wèn)學(xué)生,總結這節課的收獲

  1、等差數列的概念及數學(xué)表達式,并強調關(guān)鍵字:從第二項開(kāi)始,它的每一項與前一項之差都等于同一常數。

  2、等差數列的通項公式an= a1+(n-1) d

  3、將讓學(xué)生在實(shí)踐中了解,將數列知識點(diǎn)運用到實(shí)際中的方法。

  4、在課末提出啟發(fā)性問(wèn)題,若是有人將每一部iphone都買(mǎi)入,那他一共花費了多少錢(qián)?借此引出了下一節,等差數列求和的知識點(diǎn)。讓學(xué)生嘗試自行去思考這樣的問(wèn)題。

  5、布置作業(yè)

高中數學(xué)說(shuō)課稿7

  說(shuō)課內容:普通高中課程標準實(shí)驗教科書(shū)(人教A版)《數學(xué)必修4》第二章第四節“平面向量的數量積”的第一課時(shí)---平面向量數量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標設計、課堂結構設計、教學(xué)過(guò)程設計、教學(xué)媒體設計及教學(xué)評價(jià)設計六個(gè)方面對本節課的思考進(jìn)行說(shuō)明。

  一、 背景分析

  1、學(xué)習任務(wù)分析

  平面向量的數量積是繼向量的線(xiàn)性運算之后的又一重要運算,也是高中數學(xué)的一個(gè)重要概念,在數學(xué)、物理等學(xué)科中應用十分廣泛。本節內容教材共安排兩課時(shí),其中第一課時(shí)主要研究數量積的概念,第二課時(shí)主要研究數量積的坐標運算,本節課是第一課時(shí)。

  本節課的主要學(xué)習任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質(zhì)與運算律,使學(xué)生體會(huì )類(lèi)比的思想方法,進(jìn)一步培養學(xué)生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎。同時(shí)也因為在這個(gè)概念中,既有長(cháng)度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點(diǎn),不僅應用廣泛,而且很好的體現了數形結合的數學(xué)思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學(xué)的重點(diǎn)。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習本節內容之前,已熟知了實(shí)數的運算體系,掌握了向量的概念及其線(xiàn)性運算,具備了功等物理知識,并且初步體會(huì )了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數運算類(lèi)比的基礎上研究性質(zhì)和運算律。這為學(xué)生學(xué)習數量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數量積概念的理解,一方面,相對于線(xiàn)性運算而言,數量積的結果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數的向量經(jīng)過(guò)數量積運算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數乘法運算的影響,也會(huì )造成學(xué)生對數量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節課教學(xué)的難點(diǎn)數量積的概念。

  二、 教學(xué)目標設計

  《普通高中數學(xué)課程標準(實(shí)驗)》 對本節課的要求有以下三條:

  (1)通過(guò)物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

  (2)體會(huì )平面向量的數量積與向量投影的關(guān)系。

  (3)能用運數量積表示兩個(gè)向量的夾角,會(huì )用數量積判斷兩個(gè)平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數量積的概念既是本節課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計算和判斷的理論依據。最后,無(wú)論是數量積的性質(zhì)還是運算律,都希望學(xué)生在類(lèi)比的基礎上,通過(guò)主動(dòng)探究來(lái)發(fā)現,因而對培養學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。

  綜上所述,結合“課標”要求和學(xué)生實(shí)際,我將本節課的教學(xué)目標定為:

  1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

  2、體會(huì )平面向量的數量積與向量投影的關(guān)系,掌握數量積的性質(zhì)和運算律,

  并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷;

  3、體會(huì )類(lèi)比的數學(xué)思想和方法,進(jìn)一步培養學(xué)生抽象概括、推理論證的能力。

  三、課堂結構設計

  本節課從總體上講是一節概念教學(xué),依據數學(xué)課程改革應關(guān)注知識的發(fā)生和發(fā)展過(guò)程的理念,結合本節課的知識的邏輯關(guān)系,我按照以下順序安排本節課的教學(xué):

  即先從數學(xué)和物理兩個(gè)角度創(chuàng )設問(wèn)題情景,通過(guò)歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過(guò)例題和練習使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結提高學(xué)生認識,形成知識體系。

  四、 教學(xué)媒體設計

  和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來(lái)分兩節課完成的內容合并成一節,相比較而言本節課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現本節課的教學(xué)目標,考慮到本節課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設想主要有以下兩點(diǎn):

  1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內容的呈現方式,以此來(lái)節約課時(shí),增加課堂容量。

  2、設計科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節內容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò )。

  平面向量數量積的物理背景及其含義

  一、 數量積的概念 二、數量積的性質(zhì) 四、應用與提高

  1、 概念: 例1:

  2、 概念強調 (1)記法 例2:

  (2)“規定” 三、數量積的運算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過(guò)程設計

  課標指出:數學(xué)教學(xué)過(guò)程是教師引導學(xué)生進(jìn)行學(xué)習活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節課我主要安排以下六個(gè)活動(dòng):

  活動(dòng)一:創(chuàng )設問(wèn)題情景,激發(fā)學(xué)習興趣

  正如教材主編寄語(yǔ)所言,數學(xué)是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的`線(xiàn)性運算一樣,也有其數學(xué)背景和物理背景,為了體現這一點(diǎn),我設計以下幾個(gè)問(wèn)題:

  問(wèn)題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結果是什么?

  問(wèn)題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應用

  問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學(xué)們分析這個(gè)公式的特點(diǎn):

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問(wèn)題1的設計意圖在于使學(xué)生了解數量積的數學(xué)背景,讓學(xué)生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線(xiàn)性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質(zhì)的變化。

  問(wèn)題2的設計意圖在于使學(xué)生在與向量加法類(lèi)比的基礎上明了本節課的研究方法和順序,為教學(xué)活動(dòng)指明方向。

  問(wèn)題3的設計意圖在于使學(xué)生了解數量積的物理背景,讓學(xué)生知道,我們研究數量積絕不僅僅是為了數學(xué)自身的完善,而是有其客觀(guān)背景和現實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時(shí),也為抽象數量積的概念做好鋪墊。

  活動(dòng)二:探究數量積的概念

  1、概念的抽象

  在分析“功”的計算公式的基礎上提出問(wèn)題4

  問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

  學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數量積概念的文字表述了,在此基礎上,我進(jìn)一步明晰數量積的概念。

  2、概念的明晰

  已知兩個(gè)非零向量

  與

  ,它們的夾角為

  ,我們把數量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數量積(或內積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強調記法和“規定”后 ,為了讓學(xué)生進(jìn)一步認識這一概念,提出問(wèn)題5

  問(wèn)題5:向量的數量積運算與線(xiàn)性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過(guò)此環(huán)節不僅使學(xué)生認識到數量積的結果與線(xiàn)性運算的結果有著(zhù)本質(zhì)的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質(zhì)和運算律做好鋪墊。

  3、探究數量積的幾何意義

  這個(gè)問(wèn)題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問(wèn)題6:數量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認識數量積的概念,從中體會(huì )數量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節約了課時(shí)。

  4、研究數量積的物理意義

  數量積的概念是由物理中功的概念引出的,學(xué)習了數量積的概念后,學(xué)生就會(huì )明白功的數學(xué)本質(zhì)就是力與位移的數量積。為此,我設計以下問(wèn)題 一方面使學(xué)生嘗試計算數量積,另一方面使學(xué)生理解數量積的物理意義,同時(shí)也為數量積的性質(zhì)埋下伏筆。

  問(wèn)題7:

  (1) 請同學(xué)們用一句話(huà)來(lái)概括功的數學(xué)本質(zhì):功是力與位移的數量積 。

  (2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動(dòng):

 、、在水平面上位移為10米;

 、、豎直下降10米;

 、、豎直向上提升10米;

 、、沿傾角為30度的斜面向上運動(dòng)10米;

  分別求重力做的功。

  活動(dòng)三:探究數量積的運算性質(zhì)

  1、性質(zhì)的發(fā)現

  教材中關(guān)于數量積的三條性質(zhì)是以探究的形式出現的,為了很好地完成這一探究活動(dòng),在完成上述練習后,我不失時(shí)機地提出問(wèn)題8:

  (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結論?

  在學(xué)生討論交流的基礎上,教師進(jìn)一步明晰數量積的性質(zhì),然后再由學(xué)生利用數量積的定義給予證明,完成探究活動(dòng)。

  2、明晰數量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設計體現了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習活動(dòng)的主體,讓學(xué)生成為學(xué)習的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養了學(xué)生由特殊到一般的思維品質(zhì)。

  活動(dòng)四:探究數量積的運算律

  1、運算律的發(fā)現

  關(guān)于運算律,教材仍然是以探究的形式出現,為此,首先提出問(wèn)題9

  問(wèn)題9:我們學(xué)過(guò)了實(shí)數乘法的哪些運算律?這些運算律對向量是否也適用?

  通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎上,猜測提出數量積的運算律。

  學(xué)生可能會(huì )提出以下猜測: ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見(jiàn)的。

  關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問(wèn)題:

  猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

  學(xué)生通過(guò)討論不難發(fā)現,猜測②是不正確的。

  這時(shí)教師在肯定猜測③的基礎上明晰數量積的運算律:

  2、明晰數量積的運算律

  3、證明運算律

  學(xué)生獨立證明運算律(2)

  我把運算運算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:

  當λ<0時(shí),向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時(shí),向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運算律(3)

  運算律(3)的證明對學(xué)生來(lái)說(shuō)是比較困難的,為了節約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。

  在這個(gè)環(huán)節中,我仍然是首先為學(xué)生創(chuàng )設情景,讓學(xué)生在類(lèi)比的基礎上進(jìn)行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學(xué)生推理論證的能力,同時(shí)也增強了學(xué)生類(lèi)比創(chuàng )新的意識,將知識的獲得和能力的培養有機的結合在一起。

  活動(dòng)五:應用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運算過(guò)程類(lèi)似于哪種運算?

  例2、(學(xué)生獨立完成)對任意向量

  ,b是否有以下結論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線(xiàn),k為何值時(shí),向量

  +k

  與

  -k

  互相垂直?并思考:通過(guò)本題你有什么收獲?

  本節教材共安排了四道例題,我根據學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質(zhì)和運算律的綜合應用,教學(xué)時(shí),我重點(diǎn)從對運算原理的分析和運算過(guò)程的規范書(shū)寫(xiě)兩個(gè)方面加強示范。完成計算后,進(jìn)一步提出問(wèn)題:此運算過(guò)程類(lèi)似于哪種運算?目的是想讓學(xué)生在類(lèi)比多項式乘法的基礎上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養了學(xué)生通過(guò)類(lèi)比這一思維模式達到創(chuàng )新的目的。例3的主要作用是,在繼續鞏固性質(zhì)和運算律的同時(shí),教給學(xué)生如何利用數量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數量積的基本應用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數與形的轉化原理。

  為了使學(xué)生更好的理解數量積的含義,熟練掌握性質(zhì)及運算律,并能夠應用數量積解決有關(guān)問(wèn)題,再安排如下練習:

  1、 下列兩個(gè)命題正確嗎?為什么?

 、、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

 、、若

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當

  ·

  <0或

  ·

  =0時(shí),試判斷△ABC的形狀。

  安排練習1的主要目的是,使學(xué)生在與實(shí)數乘法比較的基礎上全面認識數量積這一重要運算,

  通過(guò)練習2使學(xué)生學(xué)會(huì )用數量積表示兩個(gè)向量的夾角,進(jìn)一步感受數量積的應用價(jià)值。

  活動(dòng)六:小結提升與作業(yè)布置

  1、本節課我們學(xué)習的主要內容是什么?

  2、平面向量數量積的兩個(gè)基本應用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探究過(guò)程中,滲透了哪些數學(xué)思想?

  4、類(lèi)比向量的線(xiàn)性運算,我們還應該怎樣研究數量積?

  通過(guò)上述問(wèn)題,使學(xué)生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時(shí)也為下

  一節做好鋪墊,繼續激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個(gè)環(huán)節中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學(xué)生繼續加深對數量積概念的理解和應用,為后續學(xué)習打好基礎。其次,為了能讓不同的學(xué)生在數學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評價(jià)設計

  評價(jià)方式的轉變是新課程改革的一大亮點(diǎn),課標指出:相對于結果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現出學(xué)生成長(cháng)的歷程。因此,數學(xué)學(xué)習的評價(jià)既要重視結果,也要重視過(guò)程。結合“課標”對數學(xué)學(xué)習的評價(jià)建議,對本節課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:

  1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現其思維過(guò)程,在鼓勵的基礎上,糾正偏差,并對其進(jìn)行定

  性的評價(jià)。

  2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀(guān)察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現做出評價(jià),以此來(lái)調動(dòng)學(xué)生參與活動(dòng)的積極性。

  3、 通過(guò)練習來(lái)檢驗學(xué)生學(xué)習的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。

  4、 通過(guò)作業(yè),反饋信息,再次對本節課做出評價(jià),以便查漏補缺。

高中數學(xué)說(shuō)課稿8

尊敬的各位考官:

  大家好!

  我是今天的x號考生,今天我說(shuō)課的題目是《直線(xiàn)與平面平行的判定》。

  高中數學(xué)課程以學(xué)生發(fā)展為本,提升數學(xué)學(xué)科核心素養。這節課我將秉承這一教學(xué)理念,從教材分析、教學(xué)目標、教學(xué)過(guò)程等幾個(gè)方面來(lái)展開(kāi)我的說(shuō)課。

  一、說(shuō)教材

  本節課選自人教A版高中數學(xué)必修2第二章第2節。此前學(xué)生對空間立體幾何已經(jīng)有了一定的感知。通過(guò)本節課的學(xué)習,能使學(xué)生進(jìn)一步了解空間中直線(xiàn)與平面平行關(guān)系的判定方法,培養學(xué)生的邏輯思維和空間想象能力。

  二、說(shuō)學(xué)情

  學(xué)生已經(jīng)學(xué)習了空間中點(diǎn)、直線(xiàn)、平面間的位置關(guān)系,知道若直線(xiàn)與平面平行,則沒(méi)有公共點(diǎn),但直接利用定義無(wú)法進(jìn)行判斷。因而我會(huì )注意在教學(xué)時(shí)逐步引導學(xué)生,在辯證思考中探索直線(xiàn)與平面平行的條件。

  三、說(shuō)教學(xué)目標

  根據以上對教材的分析和對學(xué)情的把握,我設置本節課的教學(xué)目標如下:

 。ㄒ唬┲R與技能

  掌握直線(xiàn)與平面平行的判定定理,會(huì )用文字語(yǔ)言、符號語(yǔ)言和圖形語(yǔ)言描述判定定理,并會(huì )進(jìn)行簡(jiǎn)單應用。

 。ǘ┻^(guò)程與方法

  通過(guò)直觀(guān)感知、觀(guān)察、操作確認的認知過(guò)程,培養空間想象力和邏輯思維能力,體會(huì )“降維”的思想。

 。ㄈ┣楦、態(tài)度與價(jià)值觀(guān)

  通過(guò)生活中的實(shí)例,體會(huì )平行關(guān)系在生活中的廣泛應用;在探究線(xiàn)面平行判定定理的過(guò)程中,形成學(xué)習數學(xué)的積極態(tài)度。

  四、說(shuō)教學(xué)重難點(diǎn)

  根據學(xué)生現有的知識儲備和知識本身的難易程度,我設置本節課教學(xué)重點(diǎn)為:直線(xiàn)與平面平行的判定定理。教學(xué)難點(diǎn)為:直線(xiàn)與平面平行的判定定理的探究。

  五、說(shuō)教法和學(xué)法

  為達成教學(xué)目標,突破教學(xué)重難點(diǎn),本節課我將采用講授法、自主探究法、練習法等教學(xué)方法,以達到教與學(xué)的和諧完美統一。

  六、說(shuō)教學(xué)過(guò)程

  下面我將重點(diǎn)談?wù)勎业慕虒W(xué)過(guò)程。

 。ㄒ唬┮胄抡n

  導入環(huán)節我會(huì )帶領(lǐng)學(xué)生從文字語(yǔ)言、圖形語(yǔ)言和符號語(yǔ)言這三個(gè)角度復習直線(xiàn)與平面有哪些位置關(guān)系。接著(zhù)我會(huì )請學(xué)生思考,該如何判定直線(xiàn)與平面平行。根據定義,只需判定直線(xiàn)與平面沒(méi)有公共點(diǎn)即可。但直線(xiàn)無(wú)限伸長(cháng),平面無(wú)限延展,如何保證直線(xiàn)與平面無(wú)公共點(diǎn)。由此引發(fā)認知沖突,引入本節課的學(xué)習。

  通過(guò)復習導入,不僅鞏固了之前所學(xué),建立起新舊知識之間的`聯(lián)系,而且能夠有效激發(fā)起學(xué)生的學(xué)習興趣,從而為下面的學(xué)習打好基礎。

 。ǘ┲v解新知

  接下來(lái)是新知講解環(huán)節。

  我會(huì )請學(xué)生觀(guān)察,教室門(mén)扇的兩邊是平行的,當門(mén)扇繞著(zhù)一邊轉動(dòng)時(shí),觀(guān)察門(mén)扇轉動(dòng)的一邊和門(mén)框所在平面有怎樣的位置關(guān)系。并組織學(xué)生動(dòng)手操作,將書(shū)本平放在桌面上,翻動(dòng)書(shū)的封面,封面邊緣所在直線(xiàn)與桌面所在平面具有什么樣的位置關(guān)系。

  學(xué)生不難看出其中的平行關(guān)系。在此基礎上,我會(huì )請學(xué)生同桌兩人交流討論,如果直線(xiàn)與平面平行,則這條直線(xiàn)與平面內多少條直線(xiàn)平行。如果這條直線(xiàn)平行于平面內的無(wú)數條直線(xiàn),那么這條直線(xiàn)是否一定與這個(gè)平面平行。

 。ㄈ┱n堂練習

  除了知道知識,學(xué)生還要能對知識進(jìn)行應用。我會(huì )出示以下練習題:求證空間四邊形相鄰兩邊中點(diǎn)的連線(xiàn)平行于另外兩邊所在的平面。結合這一練習題,我會(huì )進(jìn)一步強調,線(xiàn)面平行問(wèn)題可轉化為線(xiàn)線(xiàn)平行問(wèn)題。這也為之后線(xiàn)面、面面關(guān)系的學(xué)習奠定基礎。

 。ㄋ模┬〗Y作業(yè)

  課堂小結部分,我會(huì )充分發(fā)揮學(xué)生的主體性,請學(xué)生說(shuō)一說(shuō)本節課的收獲。收獲不僅僅只是知識方面,也可以說(shuō)一說(shuō)這節課學(xué)到的思想方法等,進(jìn)一步培養學(xué)生的綜合素質(zhì)。

  課后作業(yè)我會(huì )請學(xué)生完成書(shū)上相應練習題,使學(xué)生在課后也能得到思考,夯實(shí)學(xué)生對于新知的掌握。

  七、說(shuō)板書(shū)設計

  我的板書(shū)設計遵循簡(jiǎn)潔明了、突出重點(diǎn)的原則,以下是我的板書(shū)設計:

  略。

高中數學(xué)說(shuō)課稿9

尊敬的各位考官:

  大家好,我是X號考生,今天我說(shuō)課的題目是《圓的標準方程》。

  對于本節課,我將以教什么、怎么教、為什么這么教為思路,從教材分析、學(xué)情分析、教學(xué)重難點(diǎn)等幾個(gè)方面加以闡述。

  一、說(shuō)教材

  首先談一談我對教材的理解。本節課選自人教A版實(shí)驗版高中數學(xué)必修二,主要探究圓的標準方程。此前學(xué)生已經(jīng)學(xué)習了在平面直角坐標系中用方程表示直線(xiàn),起到良好的'鋪墊作用。本節課為后續學(xué)習圓的一般方程及進(jìn)一步學(xué)習平面解析幾何打下基礎。

  二、說(shuō)學(xué)情

  再來(lái)談?wù)剬W(xué)生的情況。高中生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。

  三、說(shuō)教學(xué)目標

  基于以上分析,我制定了如下三維教學(xué)目標:

 。ㄒ唬┲R與技能

  掌握圓的標準方程,能夠在給出基本條件的情況下求出圓的標準方程。

 。ǘ┻^(guò)程與方法

  經(jīng)歷探究圓的標準方程的過(guò)程,提升邏輯推理、直觀(guān)想象與數學(xué)運算能力。

 。ㄈ┣楦、態(tài)度與價(jià)值觀(guān)

  獲得成功的體驗,增強學(xué)習數學(xué)的興趣與信心。

  四、說(shuō)教學(xué)重難點(diǎn)

  在教學(xué)目標的實(shí)現過(guò)程中,教學(xué)重點(diǎn)是圓的標準方程,教學(xué)難點(diǎn)是圓的標準方程的探究過(guò)程。

  五、說(shuō)教法學(xué)法

  現代教學(xué)理論認為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習的主體,教師是學(xué)習的組織者、引導者、合作者。根據這一教學(xué)理念,本節課我將采用自主探究為主,輔以教師講解、小組討論等教學(xué)方法,層層遞進(jìn)進(jìn)行展開(kāi)。

  六、說(shuō)教學(xué)過(guò)程

  下面重點(diǎn)談?wù)勎覍虒W(xué)過(guò)程的設計。

 。ㄒ唬⿲胄抡n

  課堂伊始,為了鋪墊用方程表示平面圖形的思路,也為了幫助學(xué)生完善知識體系,我會(huì )帶領(lǐng)學(xué)生簡(jiǎn)單回顧之前所學(xué)內容——在平面直角坐標系中用坐標、用方程的方法表示一些點(diǎn)、直線(xiàn),由確定直線(xiàn)的幾何要素推導出直線(xiàn)的方程。

  進(jìn)而提出能不能在平面直角坐標系中表示其他圖形。用大屏幕展示一些圓形物品,請學(xué)生舉例更多圓形物品。然后提問(wèn):能否用方程的思想在平面直角坐標系中表示圓?由此引出課題。

 。ǘ┲v解新知

高中數學(xué)說(shuō)課稿10

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。

  奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、

  3、教學(xué)目標

  基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:

  【知識與技能】

  1、能判斷一些簡(jiǎn)單函數的奇偶性。

  2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。

  【過(guò)程與方法】

  經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價(jià)值觀(guān)】

  通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。

  從課堂反應看,基本上達到了預期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。

  難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。

  由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。

  2、學(xué)法

  讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。

  三、教學(xué)過(guò)程

  具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。

 。ㄒ唬┰O疑導入、觀(guān)圖激趣

  由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。

 。ǘ┲笇в^(guān)察、形成概念

  在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。

  探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。

  在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。

 。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義

  探究3 下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))

 。ㄋ模┲R應用,鞏固提高

  在這一環(huán)節我設計了4道題

  例1判斷下列函數的奇偶性

  選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數的奇偶性:

  例3 判斷下列函數的奇偶性:

  例2、3設計意圖是探究一個(gè)函數奇偶性的`可能情況有幾種類(lèi)型?

  例4(1)判斷函數的奇偶性。

 。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。

 。ㄎ澹┛偨Y反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

  在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁(yè)練習第1-2題。

  選做題:課本第39頁(yè)習題1、3A組第6題。

  思考題:課本第39頁(yè)習題1、3B組第3題。

  設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。

高中數學(xué)說(shuō)課稿11

  教學(xué)目標

  依據教學(xué)大綱、考試說(shuō)明及學(xué)生的實(shí)際認知情況,設計目標如下:

  1、知識與技能:

 。1)了解互為反函數的函數圖像間的關(guān)系,并能利用這一關(guān)系,由已知函數的圖像作出反函數的圖像。

 。2)通過(guò)由特殊到一般的歸納,培養學(xué)生探索問(wèn)題的能力。

  2、過(guò)程與方法:由特殊事例出發(fā),由教師引導,學(xué)生主動(dòng)探索得出互為反函數的函數圖像間的關(guān)系,使學(xué)生探索知識的形成過(guò)程,本可采用自主探索,引導發(fā)現,直觀(guān)演示等教學(xué)方法,同時(shí)滲透數形結合思想。

  3、情感態(tài)度價(jià)值觀(guān):通過(guò)圖像的對稱(chēng)變換是學(xué)生該授數學(xué)的對稱(chēng)美和諧美,激發(fā)學(xué)生的學(xué)習興趣。

  重點(diǎn)難點(diǎn)

  根據教學(xué)目標,應有一個(gè)讓學(xué)生參與實(shí)踐,發(fā)現規律,總結特點(diǎn)、歸納方法的探索認知過(guò)程。特確定:

  重點(diǎn):互為反函數的函數圖像間的關(guān)系。

  難點(diǎn):發(fā)現數學(xué)規律。

  教學(xué)結構

  教學(xué)過(guò)程設計

  創(chuàng )設情景,引入新課

  1、復習提問(wèn)反函數的概念。

  〇學(xué)生活動(dòng)學(xué)生回答,教師總結

 。1)用y表示x

 。2)把y當自變量還是函數

  提出問(wèn)題,探究問(wèn)題

  一、畫(huà)出y=3x-2的圖像,并求出反函數。

  ●引導設問(wèn)1原函數中的自變量與函數值和反函數中的自變量函數值什么關(guān)系?

  〇學(xué)生活動(dòng)學(xué)生很容易回答

  原函數y=3x-2中反函數中

  y:函數x:自變量x:函數y:自變量

  ●引導設問(wèn)2在原函數定義域內任給定一個(gè)都有唯一的一個(gè)與之對應,即在原函數圖像上,那么哪一點(diǎn)在反函數圖像上?

  〇學(xué)因為=3-2成立,所以成立即(,)在反函數圖像上。

  ●引導設問(wèn)3若連結BG,則BG與y=x什么關(guān)系?點(diǎn)B與點(diǎn)G什么關(guān)系?為什么?點(diǎn)B再換一個(gè)位置行嗎?

  〇學(xué)生活動(dòng)學(xué)生根據圖形很容易得出y=x垂直平分BG,點(diǎn)B與點(diǎn)G關(guān)于y=x對稱(chēng)。學(xué)生證法可能有OB=OG,BD=GD等。

  ▲教師引導教師用幾何花板,就上面的問(wèn)題追隨學(xué)生的思路演示當在y=3x-2圖像變化時(shí)(,)也隨之變化但始終有兩點(diǎn)關(guān)于y=x對稱(chēng)。

  ●引導設問(wèn)4若不求反函數,你能畫(huà)出y=3x-2的反函數的圖像嗎?怎么畫(huà)?

  〇學(xué)生活動(dòng)有了前面的鋪墊學(xué)生很容易想到只要找出點(diǎn)G的兩個(gè)位置便可以畫(huà)出反函數的圖像。

  ●引導設問(wèn)5上題中原函數與反函數的圖像,這兩條直線(xiàn)什么關(guān)系?

  〇學(xué)生活動(dòng)由前面容易得出(關(guān)于y=x對稱(chēng))

  ●引導設問(wèn)6若把當作原函數的圖像,那么它的反函數圖像是誰(shuí)?

  〇學(xué)生活動(dòng)由圖中可以看出關(guān)于y=x相互對稱(chēng)所以他的反函數圖像應是,另外由上節課原函數與反函數互為反函數也可得。

  ●引導設問(wèn)7以上是一個(gè)特殊的函數,圖像為直線(xiàn),若對一個(gè)一般的函數圖像你能根據上題的原理畫(huà)出反函數的圖像嗎?如圖是的圖像,請你猜想出它的反函數圖像。

  〇學(xué)生活動(dòng)由上題學(xué)生不難得出做y=x的對稱(chēng)圖像(教師配合動(dòng)畫(huà)演示)

  ●引導設問(wèn)8通過(guò)上面的兩個(gè)問(wèn)題我們可以得出原函數圖像與反函數圖像有什么關(guān)系?

  ▲學(xué)生總結,教師補充結論

 。1)一個(gè)函數若存在反函數則原函數和反函數的圖像關(guān)于y=x這條直線(xiàn)對稱(chēng)。

 。2)一個(gè)函數若存在反函數則這兩個(gè)函數許違反寒暑,若把其中一個(gè)圖像當作原函數圖像則另一個(gè)圖象便是反函數圖像。

  習題精煉,深化概念

  ●引導設問(wèn)9根據圖像判斷函數有沒(méi)有反函數?為什么?對自變量加上什么條件才能有反函數?

  〇學(xué)生活動(dòng)學(xué)生從圖中可以發(fā)現在原函數中可以有兩個(gè)不等的自變量與同一個(gè)y相對應,當我們用y表示x后,對一個(gè)y會(huì )有兩個(gè)x與之對應,所以應加上自變量的范圍,使得原函數是從定義域到值域的一一映射。如:加上x(chóng)>0;x

  ●引導設問(wèn)10什么樣的函數具有反函數?

  ▲教師引導學(xué)生總結如果一個(gè)函數圖像關(guān)于y=x對稱(chēng)后還能成為一個(gè)函數的圖像,那么這個(gè)函數就有反函數,這個(gè)圖像就是反函數的圖像。這與反函數定義相對應。即定義域到值域的一一映射,這樣的函數具有反函數,而單調函數具備這個(gè)特點(diǎn),所以單調函數一定有反函數。

  ●引導設問(wèn)11通過(guò)上圖我們發(fā)現保留圖像的單調增(減)的部分,那么它的反函數也為單調增(減)的。在看一下前面的幾個(gè)例子你能得到什么樣的結論?

  〇學(xué)生活動(dòng)通過(guò)觀(guān)察學(xué)生容易得到"單調函數的反函數與原函數的單調性一致"然后教師進(jìn)一步追問(wèn)為什么?(由前面我們知道若一個(gè)函數存在反函數則x與y之間是一個(gè)對一個(gè)的關(guān)系,而原函數是增函數即x越大y也越大,當然y越大x也越大。)

  ●引導設問(wèn)12由圖中原函數的圖像作出反函數的圖像,并回答原函數的定義域值域與反函數的定義域值域有什么關(guān)系?

  〇學(xué)生活動(dòng)由上面結論很容易做出通過(guò)圖形的'樣式使學(xué)生進(jìn)一步認識到原函數的定義域值域是反函數的值域定義域。

  總結反思,納入系統:

  內容總結:

  1、在原函數圖像上,那么(,)在反函數圖像上。

  2、與(,)關(guān)于y=x對稱(chēng)。

  3、原函數和反函數的圖像關(guān)于y=x這條直線(xiàn)對稱(chēng)。

  思想總結:

  由特殊到一般的思想,數形結合的思想

  布置作業(yè),承上啟下

  ●說(shuō)明:教材中對反函數(第二課時(shí):互為反函數的函數圖像間的關(guān)系)的處理是通過(guò)畫(huà)幾個(gè)特殊的函數圖像得出一般結論的。我認為這樣處理雖然可以使學(xué)生得出并記住這個(gè)結論,但學(xué)生對這個(gè)結論理解并不深刻。這樣處理也不利于培養學(xué)生嚴密的數學(xué)思維。而我對這節課的處理是在不增加教材難度的情況下(不嚴密證明)利用在原函數圖像上,那么(,)在反函數圖像上這一性質(zhì),從圖形上充分研究與(,)的關(guān)系。經(jīng)討論研究可得出結論"與(,)關(guān)于y=x對稱(chēng)"。進(jìn)而通過(guò)任意點(diǎn)的對稱(chēng)得出原函數和反函數的圖像關(guān)于y=x這條直線(xiàn)對稱(chēng),另外利用任意點(diǎn)來(lái)研究圖像也是以后數學(xué)中經(jīng)常用到的方法。具體操作大致如下:首先請學(xué)生畫(huà)出y=3x-2的圖像,并求出反函數,然后提出問(wèn)題1:原函數中的自變量與函數值和反函數中的自變量函數值什么關(guān)系?學(xué)生很容易得出原函數與反函數中的自變量,函數值正好對調即:原函數y=3x-2中y:函數x:自變量,反函數中x:函數y:自變量。問(wèn)題2:在原函數定義域內任給定一個(gè)都有唯一的一個(gè)與之對應,即在原函數圖像上,那么哪一點(diǎn)在反函數圖像上?對于這個(gè)問(wèn)題有了上題的鋪墊,學(xué)生不難得出(,)在反函數圖像上。問(wèn)題3:若連結B,G(,),則BG與y=x什么關(guān)系?點(diǎn)B與點(diǎn)G什么關(guān)系?為什么?點(diǎn)B再換一個(gè)位置行嗎?對于這個(gè)問(wèn)題的設計重在幫助學(xué)生理解與(,)為什么關(guān)于y=x對稱(chēng),突出本課重點(diǎn)和難點(diǎn)。其它環(huán)節具體見(jiàn)教案。

高中數學(xué)說(shuō)課稿12

  各位老師:

  大家好!

  我叫***,來(lái)自**。我說(shuō)課的題目是《簡(jiǎn)單隨機抽樣》,內容選自于新課程人教A版必修3第二章第一節,課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、和教學(xué)過(guò)程分析等四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  "簡(jiǎn)單隨機抽樣"是"隨機抽樣"的基礎,"隨機抽樣"又是"統計學(xué)"的基礎,因此,在"統計學(xué)"中,"簡(jiǎn)單隨機抽樣"是基礎的基礎。在初中學(xué)生已學(xué)過(guò)相關(guān)概念,如"抽樣""總體"、"個(gè)體"、"樣本"、"樣本容量"等,具有一定基礎,新教材把"統計"這部分內容編入必修部分,突出了統計在日常生活中的應用,體現它在中學(xué)數學(xué)中的地位,但同時(shí)也給學(xué)生學(xué)習增加了難度。

  2教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):掌握簡(jiǎn)單隨機抽樣常見(jiàn)的兩種方法(抽簽法、隨機數表法)

  難點(diǎn):理解簡(jiǎn)單隨機抽樣的科學(xué)性,以及由此推斷結論的可靠性

  二、教學(xué)目標分析

  1.知識與技能目標:

  正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

  2.過(guò)程與方法目標:

 。1)能夠從現實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題;

 。2)在解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣的方法從總體中抽取樣本。

  3.情感,態(tài)度和價(jià)值觀(guān)目標

  通過(guò)對現實(shí)生活和其他學(xué)科中統計問(wèn)題的`提出,體會(huì )數學(xué)知識與現實(shí)世界及各學(xué)科知識之間的聯(lián)系,認識數學(xué)的重要性

  三、教學(xué)方法與手段分析

  為了充分讓學(xué)生自己分析、判斷、自主學(xué)習、合作交流。因此,我采用討論發(fā)現法教學(xué),并對學(xué)生滲透"從特殊到一般"的學(xué)習方法,由于本節課內容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節省時(shí)間,提高教學(xué)效率,另外采用這種形式也可強化學(xué)生感觀(guān)刺激,也能大大提高學(xué)生的學(xué)習興趣。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┰O置情境,提出問(wèn)題

  例1:請問(wèn)下列調查是"普查"還是"抽樣"調查?

  A、一鍋水餃的味道B、旅客上飛機前的安全檢查

  c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況

  E、美國總統的民意支持率

  學(xué)生討論后,教師指出生活中處處有"抽樣"

  「設計意圖」生活中處處有"抽樣"調查,明確學(xué)習"抽樣"的必要性。

 。ǘ┲鲃(dòng)探究,構建新知

  例2:語(yǔ)文老師為了了解某班同學(xué)對某首詩(shī)的背誦情況,應采用下列哪種抽查方式?為什么?

  A、在班級12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦

  B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦

  先讓學(xué)生分析、選擇B后,師生一起歸納其特征:

 。1)不放回逐一抽樣,

 。2)抽樣有代表性(個(gè)體被抽到可能性相等),學(xué)生體驗B種抽樣的科學(xué)性后,教師指出這是簡(jiǎn)單隨機抽樣,并復習初中講過(guò)的有關(guān)概念,最后教師補充板書(shū)課題--(簡(jiǎn)單隨機)抽樣及其定義。

  「設計意圖」例2從正面分析簡(jiǎn)單隨機抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節之一。

  例3我們班有44名學(xué)生,現從中抽出5名學(xué)生去參加學(xué)生座談會(huì ),要使每名學(xué)生的機會(huì )均等,我們應該怎么做?談?wù)勀愕南敕ā?/p>

  先讓學(xué)生獨立思考,然后分小組合作學(xué)習,最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:

 。1)編號制簽

 。2)攪拌均勻

 。3)逐個(gè)不放回抽取n次。教師板書(shū)上面步驟。

  「設計意圖」在自主探究,合作交流中構建新知,體驗"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。

  請一位同學(xué)說(shuō)說(shuō)例2采用"抽簽法"的實(shí)施步驟。

  「設計意圖」

  1、反饋練習,落實(shí)知識點(diǎn),突出重點(diǎn)。

  2、體會(huì )"抽簽法"具有"簡(jiǎn)單、易行"的優(yōu)點(diǎn)。

  〈屏幕出示〉

  例4、假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現從800袋牛奶中抽取60袋進(jìn)行檢驗

  提問(wèn):這道題適合用抽簽法嗎?

  讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機數表法。教師出示一份隨機數表,并介紹隨機數表,強調數表上的數字都是隨機的,各個(gè)數字出現的可能性均等,結合上例讓學(xué)生討論隨機數表法的步驟,最后師生一起歸納步驟:

 。1)編號

 。2)在隨機數表上確定起始位置

 。3)取數。教師板書(shū)上面步驟。

  請一位同學(xué)說(shuō)說(shuō)例2采用"隨機數表法"的實(shí)施步驟。

  「設計意圖」

  1、體會(huì )隨機數表法的科學(xué)性

  2、體會(huì )隨機數表法的優(yōu)越性:避免制簽、攪拌。

  3、反饋練習,落實(shí)知識點(diǎn),突出重點(diǎn)。

 、缯n堂小結:

  1.簡(jiǎn)單隨機抽樣及其兩種方法

  2.兩種方法的操作步驟

 。ú捎脝(wèn)答形式)

  「設計意圖」通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。

 、璨贾米鳂I(yè)

  課本練習2、3

  [設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。

高中數學(xué)說(shuō)課稿13

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線(xiàn)性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動(dòng),這是學(xué)習本節資料的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、經(jīng)過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。

  2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、經(jīng)過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的本事。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。

  五、教學(xué)方法

  本節采用以下教學(xué)方法:

  1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;經(jīng)過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。

  3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。

  4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。

  六、數學(xué)思想的體現:

  1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。

  2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個(gè)環(huán)節:

 、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都能夠選用。

 、谟晒簿(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。

 、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過(guò)程:

  1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情景,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,可是并沒(méi)有構成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一齊才能用平行四邊形法則,不在一齊不能用。這時(shí)要經(jīng)過(guò)講解例1,使學(xué)生認識到能夠經(jīng)過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。

  設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的`平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一齊時(shí),須把起點(diǎn)移到一齊,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來(lái)做。

  這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都能夠用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。

 。3)共線(xiàn)向量的加法

  方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,"將它們接在一齊,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度。"引導學(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由教師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。

  反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則經(jīng)過(guò)以上幾個(gè)環(huán)節的討論,能夠作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。

  設計意圖:經(jīng)過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,能夠化解難點(diǎn)。

 。4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角

  形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。

 、诮Y合律:結合律是經(jīng)過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。

  接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最終一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結

  先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結資料,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。

 。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

 。3)運算律

高中數學(xué)說(shuō)課稿14

  各位評委:下午好!

  我叫 ,來(lái)自 。今天我說(shuō)課的課題《 》(第 課時(shí))。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設計五方面逐一加以分析和說(shuō)明。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  《 》是人教版出版社 第 冊、第 單元的內容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了 的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。

  概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。

 。ǘ、學(xué)情分析

  通過(guò)前一階段的教學(xué),學(xué)生對 的認識已有了一定的認知結構,主要體現在三個(gè)層面:

  知識層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對數學(xué)新內容的學(xué)習有相當的興趣和積極性。但探究問(wèn)題的能力以及合作交流等方面發(fā)展不夠均衡.

 。ㄈ┙虒W(xué)課時(shí)

  本節內容分 課時(shí)學(xué)習。(本課時(shí),品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。)

  二、教學(xué)目標分析

  根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高中生的認知規律,本節課的教學(xué)目標確定為:

  知識與技能:

  過(guò)程與方法:

  情感態(tài)度:

 。ɡ纾簞(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過(guò)程中,培養學(xué)生的合作意識和創(chuàng )新精神. 通過(guò) 對立統一關(guān)系的認識,對學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過(guò)程中,培養獨立獲取數學(xué)知識的能力。在解決問(wèn)題的過(guò)程中,讓學(xué)生感受到成功的喜悅,樹(shù)立學(xué)好數學(xué)的信心。在解答數學(xué)問(wèn)題時(shí),讓學(xué)生養成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的`興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。

 。ǘ┙谭ǚ治

  本節課設計的指導思想是:現代認知心理學(xué)--建構主義學(xué)習理論。

  建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

  本節課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設計教學(xué)過(guò)程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現。

  五、說(shuō)教學(xué)過(guò)程

  本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。

 。ㄒ唬﹦(chuàng )設情景………………….

 。ǘ┍扰f悟新………………….

 。ㄈw納提煉…………………

 。ㄋ模⿷眯轮,熟練掌握 …………………

 。ㄎ澹┛偨Y…………………

 。┳鳂I(yè)布置…………………

 。ㄆ撸┌鍟(shū)設計…………………

  以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家批評指正。謝謝

  著(zhù)名美國數學(xué)家和數學(xué)教育家波利亞 包括“弄清問(wèn)題”、“擬定計劃”、“實(shí)現計劃”和“回顧反思”四大步驟的解題全過(guò)程,它們就好比是尋找和發(fā)現解法的思維過(guò)程進(jìn)行分解,使我們對解題的思維過(guò)程看得見(jiàn),摸得著(zhù),易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

高中數學(xué)說(shuō)課稿15

  教學(xué)目標

 。1)知識目標:掌握拋物線(xiàn)的定義,掌握拋物線(xiàn)的四種標準方程形式,及其對應的焦點(diǎn)、準線(xiàn)。

 。2)能力目標:通過(guò)對拋物線(xiàn)概念和標準方程的學(xué)習,培養學(xué)生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線(xiàn)的統一定義,形成學(xué)生對事物運動(dòng)變化、對立、統一的辨證唯物主義觀(guān)點(diǎn)。

 。3)德育目標:通過(guò)拋物線(xiàn)概念和標準方程的學(xué)習,培養學(xué)生勇于探索、嚴密細致的科學(xué)態(tài)度,通過(guò)提問(wèn)、討論、思考等教學(xué)活動(dòng),調動(dòng)學(xué)生積極參與教學(xué),培養良好的學(xué)習習慣。

  教學(xué)重點(diǎn):

 。1)拋物線(xiàn)的定義及焦點(diǎn)、準線(xiàn);

 。2)利用坐標法求出拋物線(xiàn)的四種標準方程;

 。3)會(huì )根據拋物線(xiàn)的焦點(diǎn)坐標,準線(xiàn)方程求拋物線(xiàn)的標準方程。

  教學(xué)難點(diǎn):

 。1)拋物線(xiàn)的四種圖形及標準方程的區分;

 。2)拋物線(xiàn)定義及焦點(diǎn)、準線(xiàn)等知識的靈活運用。

  教學(xué)方法:

  啟發(fā)引導法(通過(guò)橢圓與雙曲線(xiàn)第二定義引出拋物線(xiàn))。

  依據建構主義教學(xué)原理,通過(guò)類(lèi)比、歸納把新知識化歸到原有的認知結構中去(二次函數與拋物線(xiàn)方程的對比,移圖與建立適當建立坐標系的方法的歸納)。

  利用多媒體教學(xué)

  教學(xué)過(guò)程:

  一、課題引入

  利用學(xué)生已有知識提問(wèn)學(xué)生:1、橢圓的第二種定義:到定點(diǎn)與到定直線(xiàn)的距離的比是小于1的常數的點(diǎn)的軌跡是橢圓。(用課件演示)

  2、雙曲線(xiàn)的第二種定義:到定點(diǎn)與到定直線(xiàn)的距離的比是大于1的常數的點(diǎn)的軌跡是雙曲線(xiàn)。(用課件演示)

  由此引出:到定點(diǎn)的距離和到定直線(xiàn)的距離的比是等于1的常數的點(diǎn)的軌跡是什么?

 。ㄒ詥(wèn)題為出發(fā)點(diǎn),創(chuàng )設情景,提高學(xué)生求知欲)

  教師用直尺、三角板和細繩演示,學(xué)生觀(guān)察所得曲線(xiàn)。

  從而引出本節課的學(xué)習內容。

  二、講授新課

  1、對拋物線(xiàn)的初步認識

  物理中拋物線(xiàn)的運動(dòng)軌跡;數學(xué)中二次函數的圖象;生活中拋物線(xiàn)的實(shí)例(圖片顯示)等。

  2、拋物線(xiàn)的定義

  3、拋物線(xiàn)標準方程的推導:

 、賹W(xué)生回顧求曲線(xiàn)方程的步驟(建系、設點(diǎn)、列方程);

 、谌艚裹c(diǎn)F和準線(xiàn)的距離為()這樣建立坐標系?由學(xué)生思考:可能出現的結果:

  四、課堂小結

  1、本節課的內容:拋物線(xiàn)的定義,焦點(diǎn)、準線(xiàn)的`意義及四種標準方程;

  2、理解參數的幾何意義(焦準距)

  3、利用坐標法求曲線(xiàn)方程是坐標系的適當選取。

  課后作業(yè):119頁(yè)習題8.52

  4、設計說(shuō)明:學(xué)生在初中學(xué)習二次函數時(shí)知道二次函數的圖象是一個(gè)拋物線(xiàn),在物理的學(xué)習中也接觸過(guò)拋物線(xiàn)(物體的運動(dòng)軌跡)。因而對拋物線(xiàn)的認識比對前面學(xué)習的兩種圓錐曲線(xiàn)橢圓和雙曲線(xiàn)更多。所以學(xué)生學(xué)起來(lái)會(huì )輕松。但是要注意的是,現在所學(xué)的拋物線(xiàn)是方程的曲線(xiàn)而不是函數的圖象。本節內容是在學(xué)習了橢圓和雙曲線(xiàn)的基礎上,利用圓錐曲線(xiàn)的第二定義統一進(jìn)行展開(kāi)的,因而對于拋物線(xiàn)的系統學(xué)習具有雙重的目標性。

  拋物線(xiàn)作為點(diǎn)的軌跡,其標準方程的推導過(guò)程充滿(mǎn)了辨證法,處處是數與形之間的對照和相互轉化。而要得到拋物線(xiàn)的標準方程,必須建立適當的坐標系,還要依賴(lài)焦點(diǎn)和準線(xiàn)的相互位置關(guān)系,這是拋物線(xiàn)標準方程有四種而不象橢圓和雙曲線(xiàn)只有兩種形式。因而拋物線(xiàn)的標準方程的推導也是培養辨證唯物主義觀(guān)點(diǎn)的好素材。

  利用圓錐曲線(xiàn)第二定義通過(guò)類(lèi)比方法,引導學(xué)生觀(guān)察和對比,啟發(fā)學(xué)生猜想與概括,利用建立坐標系求出拋物線(xiàn)的四種標準方程,讓每一個(gè)學(xué)生都能動(dòng)手,動(dòng)口,動(dòng)腦參與教學(xué)過(guò)程,真正貫徹“教師為主導,學(xué)生為主體”的教學(xué)思想。對于標準方程中的參數及其幾何意義,焦點(diǎn)坐標和準線(xiàn)方程與的關(guān)系是本節課的重點(diǎn)內容,必須讓學(xué)生掌握如何根據標準方程求、焦點(diǎn)坐標、準線(xiàn)方程或根據后三者求拋物線(xiàn)的標準方程。特別對于一些有關(guān)距離的問(wèn)題,要能靈活運用拋物線(xiàn)的定義給予解決。

  當前素質(zhì)教育的主流是培養學(xué)生的能力,讓學(xué)生學(xué)會(huì )學(xué)習。本節課采用學(xué)生通過(guò)探索、觀(guān)察、對比分析,自己發(fā)現結論的學(xué)習方法,培養了學(xué)生邏輯思維能力,動(dòng)手實(shí)踐能力以及探索的精神。

【高中數學(xué)說(shuō)課稿】相關(guān)文章:

高中數學(xué)的說(shuō)課稿06-13

高中數學(xué)說(shuō)課稿[精選]06-10

高中數學(xué)說(shuō)課稿06-12

高中數學(xué)說(shuō)課稿11-14

高中數學(xué)向量說(shuō)課稿09-09

高中數學(xué)的說(shuō)課稿【精】06-13

高中數學(xué)說(shuō)課稿06-25

關(guān)于高中數學(xué)說(shuō)課稿11-26

關(guān)于高中數學(xué)說(shuō)課稿11-29

高中數學(xué)說(shuō)課稿【推薦】01-06