數學(xué)定理的教案
作為一位無(wú)私奉獻的人民教師,就難以避免地要準備教案,編寫(xiě)教案有利于我們弄通教材內容,進(jìn)而選擇科學(xué)、恰當的教學(xué)方法。怎樣寫(xiě)教案才更能起到其作用呢?以下是小編整理的數學(xué)定理的教案,歡迎大家分享。
數學(xué)定理的教案1
教學(xué)目標
1、知識與技能目標:探索并理解直角三角形的三邊之間的數量關(guān)系,通過(guò)探究能夠發(fā)現直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。
2、過(guò)程與方法目標:經(jīng)歷用測量和數格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價(jià)值觀(guān)目標:通過(guò)本節課的學(xué)習,培養主動(dòng)探究的習慣,并進(jìn)一步體會(huì )數學(xué)與現實(shí)生活的緊密聯(lián)系。
教學(xué)重點(diǎn)
了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。
教學(xué)難點(diǎn)
勾股定理的探究以及推導過(guò)程。
教學(xué)過(guò)程
一、創(chuàng )設問(wèn)題情景、導入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻,結合課本第六頁(yè)談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學(xué)家)在勾股定理方面的貢獻。
出示課件觀(guān)察后回答:
1、觀(guān)察圖1—2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形B中有_______個(gè)小方格,即B的面積為_(kāi)_____個(gè)單位。
正方形C中有_______個(gè)小方格,即C的面積為_(kāi)_____個(gè)單位。
2、你是怎樣得出上面的結果的?
3、在學(xué)生交流回答的基礎上教師進(jìn)一步設問(wèn):圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書(shū)中P3圖1—3)
提問(wèn):(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現什么?
學(xué)生討論、交流后,得出結論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長(cháng)表示正方形的面積嗎?
。1)你能發(fā)現直角三角形三邊長(cháng)度之間的關(guān)系嗎?在同學(xué)交流的基礎上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著(zhù)名的“勾股定理”。也就是說(shuō)如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱(chēng)直角三角形的較短的直角邊為勾,較長(cháng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。
。2)分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的長(cháng)度(學(xué)生測量后回答斜邊長(cháng)為13)請大家想一想(2)中的規律,對這個(gè)三角形仍然成立嗎?
3、想一想
我們常見(jiàn)的電視的尺寸:29英寸(74厘米)的電視機,指的是屏幕的長(cháng)嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學(xué)的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習。
1、在圖1—1的問(wèn)題中,折斷之前旗桿有多高?
2、錯例辨析:△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應滿(mǎn)足
=25即:c=5辨析:(1)要用勾股定理解題,首先應具備直角三角形這個(gè)必不可少的條件,可本題三角形ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿(mǎn)足,題目中并未交待C是斜邊。
綜上所述這個(gè)題目條件不足,第三邊無(wú)法求得
四、課堂小結
鼓勵學(xué)生自己總結、談?wù)勛约罕竟澱n的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。
五、布置作業(yè)
數學(xué)定理的教案2
學(xué)習目標:
(1) 知識與技能 :
掌握三角形內角和定理的證明過(guò)程,并能根據這個(gè)定理解決實(shí)際問(wèn)題。
(2) 過(guò)程與方法 :
通過(guò)學(xué)生猜想動(dòng)手實(shí)驗,互相交流,師生合作等活動(dòng)探索三角形內角和為180度,發(fā)展學(xué)生的推理能力和語(yǔ)言表達能力。對比過(guò)去撕紙等探索過(guò)程,體會(huì )思維實(shí)驗和符號化的理性作用。逐漸由實(shí)驗過(guò)渡到論證。
通過(guò)一題多解、一題多變等,初步體會(huì )思維的多向性,引導學(xué)生的個(gè)性化發(fā)展。
(3)情感態(tài)度與價(jià)值觀(guān):
通過(guò)猜想、推理等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索以及數學(xué)結論的確定性,提高學(xué)生的學(xué)習數學(xué)的興趣。使學(xué)生主動(dòng)探索,敢于實(shí)驗,勇于發(fā)現,合作交流。
一.自主預習
二.回顧課本
1、三角形的內角和是多少度?你是怎樣知道的?
2、那么如何證明此命題是真命題呢?你能用學(xué)過(guò)的知識說(shuō)一說(shuō)這一結論的證明思路嗎?你能用比較簡(jiǎn)潔的語(yǔ)言寫(xiě)出這一證明過(guò)程嗎?與同伴進(jìn)行交流。
3、回憶證明一個(gè)命題的步驟
、佼(huà)圖
、诜治雒}的題設和結論,寫(xiě)出已知求證,把文字語(yǔ)言轉化為幾何語(yǔ)言。
、鄯治、探究證明方法。
4、要證三角形三個(gè)內角和是180,觀(guān)察圖形,三個(gè)角間沒(méi)什么關(guān)系,能不能象前面那樣,把這三個(gè)角拼在一起呢?拼成什么樣的角呢?
、倨浇,②兩平行線(xiàn)間的同旁?xún)冉恰?/p>
5、要把三角形三個(gè)內角轉化為上述兩種角,就要在原圖形上添加一些線(xiàn),這些線(xiàn)叫做輔助線(xiàn),在平面幾何里,輔助線(xiàn)常畫(huà)成虛線(xiàn),添輔助線(xiàn)是解決問(wèn)題的重要思想方法。如何把三個(gè)角轉化為平角或兩平行線(xiàn)間的同旁?xún)冉悄?
、 如圖1,延長(cháng)BC得到一平角BCD,然后以CA為一邊,在△ABC的外部畫(huà)A。
、 如圖1,延長(cháng)BC,過(guò)C作CE∥AB
、 如圖2,過(guò)A作DE∥AB
、 如圖3,在BC邊上任取一點(diǎn)P,作PR∥AB,PQ∥AC。
三、鞏固練習
四、學(xué)習小結:
(回顧一下這一節所學(xué)的,看看你學(xué)會(huì )了嗎?)
五、達標檢測:
略
六、布置作業(yè)
數學(xué)定理的教案3
教學(xué)建議
1、平行線(xiàn)等分線(xiàn)段定理
定理:如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他需直線(xiàn)上截得的線(xiàn)段也相等。
注意事項:定理中的平行線(xiàn)組是指每相鄰的兩條距離都相等的特殊的平行線(xiàn)組;它是由三條或三條以上的平行線(xiàn)組成。
定理的作用:可以用來(lái)證明同一直線(xiàn)上的線(xiàn)段相等;可以等分線(xiàn)段。
2、平行線(xiàn)等分線(xiàn)段定理的推論
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊。
記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。
推論的用途:(1)平分已知線(xiàn)段;(2)證明線(xiàn)段的倍分。
重難點(diǎn)分析
本節的重點(diǎn)是平行線(xiàn)等分線(xiàn)段定理。因為它不僅是推證三角形、梯形中位線(xiàn)定理的基礎,而且是第五章中“平行線(xiàn)分線(xiàn)段成比例定理”的基礎。
本節的難點(diǎn)也是平行線(xiàn)等分線(xiàn)段定理。由于學(xué)生初次接觸到平行線(xiàn)等分線(xiàn)段定理,在認識和理解上有一定的難度,在加上平行線(xiàn)等分線(xiàn)段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì )有應接不暇的感覺(jué),往往會(huì )有感覺(jué)新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線(xiàn)等分線(xiàn)段定理的引入
生活中有許多平行線(xiàn)等分線(xiàn)段定理的例子,并不陌生,平行線(xiàn)等分線(xiàn)段定理的引入可從下面幾個(gè)角度考慮:
、購纳顚(shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;
、诳捎脝(wèn)題式引入,開(kāi)始時(shí)設計一系列與平行線(xiàn)等分線(xiàn)段定理概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出平行線(xiàn)等分線(xiàn)段定理和推論。
教學(xué)設計示例
一、教學(xué)目標
1、使學(xué)生掌握平行線(xiàn)等分線(xiàn)段定理及推論。
2、能夠利用平行線(xiàn)等分線(xiàn)段定理任意等分一條已知線(xiàn)段,進(jìn)一步培養學(xué)生的作圖能力。
3、通過(guò)定理的變式圖形,進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
4、通過(guò)本節學(xué)習,體會(huì )圖形語(yǔ)言和符號語(yǔ)言的和諧美
二、教法設計
學(xué)生觀(guān)察發(fā)現、討論研究,教師引導分析
三、重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):平行線(xiàn)等分線(xiàn)段定理
2、教學(xué)難點(diǎn):平行線(xiàn)等分線(xiàn)段定理
四、課時(shí)安排
l課時(shí)
五、教具學(xué)具
計算機、投影儀、膠片、常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設計
教師復習引入,學(xué)生畫(huà)圖探索;師生共同歸納結論;教師示范作圖,學(xué)生板演練習
七、教學(xué)步驟
【復習提問(wèn)】
1、什么叫平行線(xiàn)?平行線(xiàn)有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動(dòng)手做一實(shí)驗:每個(gè)同學(xué)拿一張橫格紙,首先觀(guān)察橫線(xiàn)之間有什么關(guān)系?(橫線(xiàn)是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫(huà)一條垂直于橫線(xiàn)的直線(xiàn) ,看看這條直線(xiàn)被相鄰橫線(xiàn)截成的各線(xiàn)段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫(huà)一條與橫線(xiàn)相交的直線(xiàn) ,測量它被相鄰橫線(xiàn)截得的線(xiàn)段是否也相等?
。ㄒ龑W(xué)生把做實(shí)驗的條件和得到的結論寫(xiě)成一個(gè)命題,教師總結,由此得到平行線(xiàn)等分線(xiàn)段定理)
平行線(xiàn)等分線(xiàn)段定理:如果一組平行線(xiàn)在一條直線(xiàn)上掛得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等。
注意:定理中的“一組平行線(xiàn)”指的是一組具有特殊條件的平行線(xiàn),即每相鄰兩條平行線(xiàn)間的距離都相等的特殊平行線(xiàn)組,這一點(diǎn)必須使學(xué)生明確。
下面我們以三條平行線(xiàn)為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證)。
已知:如圖,直線(xiàn) , 。
求證: 。
分析1:如圖把已知相等的線(xiàn)段平移,與要求證的兩條線(xiàn)段組成三角形(也可應用平行線(xiàn)間的平行線(xiàn)段相等得 ),通過(guò)全等三角形性質(zhì),即可得到要證的結論。
。ㄒ龑W(xué)生找出另一種證法)
分析2:要證的兩條線(xiàn)段分別是梯形的腰,我們借助于前面常用的輔助線(xiàn),把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。
證明:過(guò) 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認識幾種定理的變式圖形,如圖(用計算機動(dòng)態(tài)演示)。
引導學(xué)生觀(guān)察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰。
再引導學(xué)生觀(guān)察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn)必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來(lái)講如何利用平行線(xiàn)等分線(xiàn)段定理來(lái)任意等分一條線(xiàn)段。
例 已知:如圖,線(xiàn)段 。
求作:線(xiàn)段 的五等分點(diǎn)。
作法:①作射線(xiàn) 。
、谠谏渚(xiàn) 上以任意長(cháng)順次截取 。
、圻B結 。
、苓^(guò)點(diǎn) 。 、 、 分別作 的平行線(xiàn) 、 、 、 ,分別交 于點(diǎn) 、 、 、 。
、 、 、 就是所求的五等分點(diǎn)。
。ㄕf(shuō)明略,由學(xué)生口述即可)
【總結、擴展】
小結:
。╨)平行線(xiàn)等分線(xiàn)段定理及推論。
。2)定理的證明只取三條平行線(xiàn),是在較簡(jiǎn)單的情況下證明的,對于多于三條的平行線(xiàn)的情況,也可用同樣方法證明。
。3)定理中的“平行線(xiàn)組”,是指每相鄰兩條平行線(xiàn)間的距離都相等的特殊平行線(xiàn)組。
。4)應用定理任意等分一條線(xiàn)段。
八、布置作業(yè)
教材P188中A組2、9
九、板書(shū)設計
十、隨堂練習
教材P182中1、2
數學(xué)定理的教案4
一、教學(xué)目標
1.使學(xué)生在理解的基礎上掌握平行線(xiàn)分線(xiàn)段成比例定理及其推論,并會(huì )靈活應用.
2.使學(xué)生掌握三角形一邊平行線(xiàn)的判定定理.
3.已知線(xiàn)的成已知比的作圖問(wèn)題.
4.通過(guò)應用,培養識圖能力和推理論證能力.
5.通過(guò)定理的教學(xué),進(jìn)一步培養學(xué)生類(lèi)比的數學(xué)思想.
二、教學(xué)設計
觀(guān)察、猜想、歸納、講解
三、重點(diǎn)、難點(diǎn)
l.教學(xué)重點(diǎn):是平行線(xiàn)分線(xiàn)段成比例定理和推論及其應用.
2.教學(xué)難點(diǎn):是平行線(xiàn)分線(xiàn)段成比例定理的正確性的說(shuō)明及推論應用.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準備
投影儀、膠片、常用畫(huà)圖工具.
六、教學(xué)步驟
【復習提問(wèn)】
敘述平行線(xiàn)分線(xiàn)段成比例定理(要求:結合圖形,做出六個(gè)比例式).
【講解新課】
在黑板上畫(huà)出圖,觀(guān)察其特點(diǎn): 與 的交點(diǎn)A在直線(xiàn) 上,根據平行線(xiàn)分線(xiàn)段成比例定理有: ……(六個(gè)比例式)然后把圖中有關(guān)線(xiàn)擦掉,剩下如圖所示,這樣即可得到:
平行于 的邊BC的直線(xiàn)DE截AB、AC,所得對應線(xiàn)段成比例.
在黑板上畫(huà)出左圖,觀(guān)察其特點(diǎn): 與 的交點(diǎn)A在直線(xiàn) 上,同樣可得出: (六個(gè)比例式),然后擦掉圖中有關(guān)線(xiàn),得到右圖,這樣即可證到:
平行于 的邊BC的直線(xiàn)DE截邊BA、CA的延長(cháng)線(xiàn),所以對應線(xiàn)段成比例.
綜上所述,可以得到:
推論:(三角形一邊平行線(xiàn)的性質(zhì)定理)平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例.
如圖, (六個(gè)比例式).
此推論是判定三角形相似的基礎.
注:關(guān)于推論中“或兩邊的延長(cháng)線(xiàn)”,是指三角形兩邊在第三邊同一側的延長(cháng)線(xiàn),如果已知 ,DE是截線(xiàn),這個(gè)推論包含了下圖的各種情況.
這個(gè)推論不包含下圖的情況.
后者,教學(xué)中如學(xué)生不提起,可不必向學(xué)生交待.(考慮改用投影儀或小黑板)
例3 已知:如圖, ,求:AE.
教材上采用了先求CE再求AE的方法,建議在列比例式時(shí),把CE寫(xiě)成比例第一項,即: .
讓學(xué)生思考,是否可直接未出AE(找學(xué)生板演).
【小結】
1.知道推論的探索方法.
2.重點(diǎn)是推論的正確運用
七、布置作業(yè)
。1)教材P215中2.
。2)選作教材P222中B組1.
八、板書(shū)設計
數學(xué)教案-平行線(xiàn)分線(xiàn)段成比例定理 (第二課時(shí))
數學(xué)定理的教案5
一、利用勾股定理進(jìn)行計算
1.求面積
例1:如圖1,在等腰△ABC中,腰長(cháng)AB=10cm,底BC=16cm,試求這個(gè)三角形面積。
析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線(xiàn)合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長(cháng)
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長(cháng)。
析解:題中沒(méi)有直角三角形,不能直接用勾股定理,可考慮過(guò)點(diǎn)B作BD⊥AC,交AC的延長(cháng)線(xiàn)于D點(diǎn),構成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點(diǎn)評:這兩道題有一個(gè)共同的特征,都沒(méi)有現成的直角三角形,都是通過(guò)添加適當的輔助線(xiàn),巧妙構造直角三角形,借助勾股定理來(lái)解決問(wèn)題的,這種解決問(wèn)題的方法里蘊含著(zhù)數學(xué)中很重要的轉化思想,請同學(xué)們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長(cháng),且滿(mǎn)足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的形狀,設法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點(diǎn)評:用代數方法來(lái)研究幾何問(wèn)題是勾股定理的逆定理的"數形結合思想"的重要體現。
三、利用勾股定理說(shuō)明線(xiàn)段平方和、差之間的關(guān)系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說(shuō)明:BC2=BE2-AE2。
析解:由于要說(shuō)明的是線(xiàn)段平方差問(wèn)題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結BD來(lái)解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點(diǎn)評:若所給題目的已知或結論中含有線(xiàn)段的平方和或平方差關(guān)系時(shí),則可考慮構造直角三角形,利用勾股定理來(lái)解決問(wèn)題。
數學(xué)定理的教案6
一、學(xué)生知識狀況分析
學(xué)生技能基礎:學(xué)生在以前的幾何學(xué)習中,已經(jīng)學(xué)習過(guò)平行線(xiàn)的判定定理與平行線(xiàn)的性質(zhì)定理以及它們的嚴格證明,也熟悉三角形內角和定理的內容,而本節課是建立在學(xué)生掌握了平行線(xiàn)的性質(zhì)及嚴格的證明等知識的基礎上展開(kāi)的,因此,學(xué)生具有良好的基礎。
活動(dòng)經(jīng)驗基礎: 本節課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗.
二、教學(xué)任務(wù)分析
上一節課的學(xué)習中,學(xué)生對于平行線(xiàn)的判定定理和性質(zhì)定理以及與平行線(xiàn)相關(guān)的簡(jiǎn)單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識,形成了一定的邏輯思維能力和推理能力,本節課安排《三角形內角和定理的證明》旨在利用平行線(xiàn)的相關(guān)知識來(lái)推導出新的定理以及靈活運用新的定理解決相關(guān)問(wèn)題。為此,本節課的教學(xué)目標是:
知識與技能:(1)掌握三角形內角和定理的證明及簡(jiǎn)單應用。
(2)靈活運用三角形內角和定理解決相關(guān)問(wèn)題。
數學(xué)能力:用多種方法證明三角形定理,培養一題多解的能力。
情感與態(tài)度:對比過(guò)去撕紙等探索過(guò)程,體會(huì )思維實(shí)驗和符號化 的理性作用.
三、教學(xué)過(guò)程分析
本節課的設計分為四個(gè)環(huán)節:情境引入探索新知反饋練習課堂小結
第一環(huán)節:情境引入
活動(dòng)內容:(1)用折紙的方法驗證三角形內角和定理.
實(shí)驗1:先將紙片三角形一角折向其對邊,使頂點(diǎn)落在對邊上,折線(xiàn)與對邊平行(圖6-38(1))然后把另外兩角相向對折,使其頂點(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結果
(1) (2) (3) (4)
試用自己的語(yǔ)言說(shuō)明這一結論的證明思路。想一想,還有其它折法嗎?
(2)實(shí)驗2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。
試用自己的語(yǔ)言說(shuō)明這一結論的證明思路。想一想,如果只剪下一個(gè)角呢?
活動(dòng)目的:
對比過(guò)去撕紙等探索過(guò)程,體會(huì )思維實(shí)驗和符號化的理性作用。將自己的操作轉化為符號語(yǔ)言對于學(xué)生來(lái)說(shuō)還存在一定困難,因此需要一個(gè)臺階,使學(xué)生逐步過(guò)渡到嚴格的證明.
教學(xué)效果:
說(shuō)理過(guò)程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說(shuō)出用撕紙的方法可以驗證三角形內角和定理的原因。
第二環(huán)節:探索新知
活動(dòng)內容:
、 用嚴謹的證明來(lái)論證三角形內 角和定理.
、 看哪個(gè)同學(xué)想的方法最多?
方法一:過(guò)A點(diǎn)作DE∥BC
∵DE∥BC
DAB=B,EAC=C(兩直線(xiàn)平行,內錯角相等)
∵DAB+BAC+EAC=180
BAC+ C=180(等量代換)
方法二:作BC的延長(cháng)線(xiàn)CD,過(guò)點(diǎn)C作射線(xiàn)CE∥BA.
∵CE∥BA
ECD(兩直線(xiàn)平行,同位角相等)
ACE(兩直線(xiàn)平行,內錯角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代換)
活動(dòng)目的:
用平行線(xiàn)的判定定理及性質(zhì)定理來(lái)推導出新的定理,讓學(xué)生再次體會(huì )幾何證明的嚴密性和數學(xué)的嚴謹,培養 學(xué)生的邏輯推理能力。
教學(xué)效果:
添輔助線(xiàn)不是盲目的,而是為了證明某一結論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線(xiàn)創(chuàng )造條件,以達到 證明的目的.
第三環(huán)節:反饋練習
活動(dòng)內容:
(1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?
(2)△ABC中 ,C=90,A=30,B=?
(3)A=50,C,則△ABC中B=?
(4)三角形的三個(gè)內角中,只能有____個(gè)直角或____個(gè)鈍角.
(5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.
(6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度數;
(b)若BD是AC邊上的高,求 DBC的度數?
活動(dòng)目的:
通過(guò)學(xué)生的 反饋練習,使教師能全面了解學(xué)生對三角形內角和定理的概念是否清楚,能否靈活運用三角形內角和定理,以便教師能及時(shí)地進(jìn)行查缺補漏.
教學(xué)效果:
學(xué)生對于三角形內角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內角和定理相關(guān)的問(wèn)題。
第四環(huán)節:課堂小結
活動(dòng)內容:
、 證明三角形內角和定理有哪幾種方法?
、 輔助線(xiàn)的作法技巧.
、 三 角形內角和定理的簡(jiǎn)單應用.
活動(dòng)目的:
復習鞏固本課知識,提高學(xué)生的掌握程度.
教學(xué)效果:
學(xué)生對于三角形內角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運用三角形內角和定理進(jìn)行相關(guān)證明.
課后練習:課本第239頁(yè)隨堂練習;第241頁(yè)習題6.6第1,2,3題
四、教學(xué)反思
三角形的有關(guān)知識是空間與圖形中最為核心、最為重要的內容,它不僅是最基本的直線(xiàn)型平面圖形,而且幾乎是研究所有其它圖形的工具和基礎.而三角形內角和定理又是三角形中最為基礎的知識,也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識相關(guān)聯(lián)的知識,看似簡(jiǎn)單,但如果處理不好,會(huì )導致學(xué)生有厭煩心理,為此,本節課的設計力圖實(shí)現以下特點(diǎn):
(1) 通過(guò)折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗,然后從學(xué)生的直接經(jīng)驗出發(fā),逐步轉到符號化處理,最后達到推理論證的要求。
(2) 充分展示學(xué)生的個(gè)性,體現學(xué)生是學(xué)習的主人這一主題。
(3) 添加輔助線(xiàn)是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線(xiàn)則應允許學(xué)生展開(kāi)思考并爭論,展示學(xué)生的思維過(guò)程,然后在老師的引導下達成共識。
數學(xué)定理的教案7
一、教學(xué)目標
【知識與技能】
理解并掌握勾股定理的逆定理,會(huì )應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過(guò)程與方法】
經(jīng)歷得出猜想、推理證明的過(guò)程,提升自主探究、分析問(wèn)題、解決問(wèn)題的能力。
【情感、態(tài)度與價(jià)值觀(guān)】
體會(huì )事物之間的聯(lián)系,感受幾何的魅力。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】勾股定理的逆定理及其證明。
【難點(diǎn)】勾股定理的逆定理的證明。
三、教學(xué)過(guò)程
(一)導入新課
復習勾股定理,分清其題設和結論。
提問(wèn)學(xué)生畫(huà)直角三角形的方法(可用尺類(lèi)工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長(cháng)的3、4、5個(gè)繩結間距畫(huà)直角三角形的方法,以其中蘊含何道理為切入點(diǎn)引出課題。
(二)講解新知
請學(xué)生思考3,4,5之間的關(guān)系,結合勾股定理的學(xué)習經(jīng)驗明確
出示數據2.5cm,6cm,6.5cm,請學(xué)生計算驗證數據滿(mǎn)足上述平方和關(guān)系,并畫(huà)出相應邊長(cháng)的三角形檢驗是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿(mǎn)足上述平方和關(guān)系的數據,如4cm,7.5cm,8.5cm,畫(huà)出相應邊長(cháng)的三角形檢驗是否為直角三角形。
數學(xué)定理的教案8
課題:
勾股定理
課型:
新授課
課時(shí)安排:
1課時(shí)
教學(xué)目的:
一、知識與技能目標理解和掌握勾股定理的內容,能夠靈活運用勾股定理進(jìn)行計算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
二、過(guò)程與方法目標通過(guò)觀(guān)察分析,大膽猜想,并探索勾股定理,培養學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價(jià)值觀(guān)目標了解中國古代的數學(xué)成就,激發(fā)學(xué)生愛(ài)國熱情;學(xué)生通過(guò)自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時(shí)體驗數學(xué)的美感,從而了解數學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導學(xué)生經(jīng)歷探索及驗證勾股定理的過(guò)程,并能運用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準備:
多媒體ppt,相關(guān)圖片
教學(xué)過(guò)程:
。ㄒ唬┣榫硨
1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹(shù),20xx年國際數學(xué)大會(huì )會(huì )標等。通過(guò)圖形欣賞,感受數學(xué)之美,感受勾股定理的文化價(jià)值。
2、多媒體課件演示flash小動(dòng)畫(huà)片:某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習了今天的這節課后,同學(xué)們就會(huì )有辦法解決了。
。ǘ⿲W(xué)習新課問(wèn)題一是等腰直角三角形的情形(通過(guò)多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達哥拉斯(古希臘著(zhù)名的哲學(xué)家、數學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數量關(guān)系。你能觀(guān)察圖中的地面,看看能發(fā)現什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫(huà)一個(gè)任意的直角三角形,量一量,算一算。問(wèn)題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過(guò)這個(gè)觀(guān)察和驗算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現了什么規律嗎?通過(guò)前面對兩個(gè)問(wèn)題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長(cháng)分別為a、b,斜邊為c,那么a2+b2=c2。
。ㄈ╈柟叹毩1、如果一個(gè)直角三角形的兩條邊長(cháng)分別是6厘米和8厘米,那么這個(gè)三角形的周長(cháng)是多少厘米?2、解決課程開(kāi)始時(shí)提出的情境問(wèn)題。
。ㄋ模┬〗Y
1、背景知識介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現了“勾三股四弦五”這一規律;②康熙數學(xué)專(zhuān)著(zhù)《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng )。
2、通過(guò)這節課的學(xué)習,你會(huì )寫(xiě)方程了嗎?你有什么收獲和體會(huì )?
。ㄎ澹┳鳂I(yè)練習18.1中的1、2、3題。板書(shū)設計:勾股定理:如果直角三角形的兩直角邊長(cháng)分別為a、b,斜邊為c,那么a2+b2=c2。
數學(xué)定理的教案9
教學(xué)目標
1、知識與技能目標
學(xué)會(huì )觀(guān)察圖形,勇于探索圖形間的關(guān)系,培養學(xué)生的空間觀(guān)念.
2、過(guò)程與方法
(1)經(jīng)歷一般規律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力.
(2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數學(xué)建模的思想.
3、情感態(tài)度與價(jià)值觀(guān)
(1)通過(guò)有趣的問(wèn)題提高學(xué)習數學(xué)的`興趣.
(2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗數學(xué)學(xué)習的實(shí)用性.
教學(xué)重點(diǎn):
探索、發(fā)現事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題.
教學(xué)難點(diǎn):
利用數學(xué)中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題.
教學(xué)準備:
多媒體
教學(xué)過(guò)程:
第一環(huán)節:創(chuàng )設情境,引入新課(3分鐘,學(xué)生觀(guān)察、猜想)
情景:
如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A(yíng)處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節:合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線(xiàn),充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線(xiàn)計算方法,通過(guò)具體計算,總結出最短路線(xiàn)。讓學(xué)生發(fā)現:沿圓柱體母線(xiàn)剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jì)牲c(diǎn)連線(xiàn)最短問(wèn)題,引導學(xué)生體會(huì )利用數學(xué)解決實(shí)際問(wèn)題的方法:建立數學(xué)模型,構圖,計算.
學(xué)生匯總了四種方案:
。ǎ保 (2) (3)(4)
學(xué)生很容易算出:情形(1)中A→B的路線(xiàn)長(cháng)為:AA’+d,情形(2)中A→B的路線(xiàn)長(cháng)為:AA’+πd/2所以情形(1)的路線(xiàn)比情形(2)要短.
學(xué)生在情形(3)和(4)的比較中出現困難,但還是有學(xué)生提出用剪刀沿母線(xiàn)AA’剪開(kāi)圓柱得到矩形,前三種情形A→B是折線(xiàn),而情形(4)是線(xiàn)段,故根據兩點(diǎn)之間線(xiàn)段最短可判斷(4)最短.
如圖:
。ǎ保┲蠥→B的路線(xiàn)長(cháng)為:AA’+d;
。ǎ玻┲蠥→B的路線(xiàn)長(cháng)為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線(xiàn)長(cháng)為:AO+OB>AB;
。ǎ矗┲蠥→B的路線(xiàn)長(cháng)為:AB.
得出結論:利用展開(kāi)圖中兩點(diǎn)之間,線(xiàn)段最短解決問(wèn)題.在這個(gè)環(huán)節中,可讓學(xué)生沿母線(xiàn)剪開(kāi)圓柱體,具體觀(guān)察.接下來(lái)后提問(wèn):怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節:做一做(7分鐘,學(xué)生合作探究)
教材23頁(yè)
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務(wù)嗎?
。2)李叔叔量得AD長(cháng)是30厘米,AB長(cháng)是40厘米,BD長(cháng)是50厘米,AD邊垂直于A(yíng)B邊嗎?為什么?
。3)小明隨身只有一個(gè)長(cháng)度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于A(yíng)B邊嗎?BC邊與AB邊呢?
第四環(huán)節:鞏固練習(10分鐘,學(xué)生獨立完成)
1.甲、乙兩位探險者到沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個(gè)高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問(wèn)這根鐵棒有多長(cháng)?
第五環(huán)節 課堂小結(3分鐘,師生問(wèn)答)
內容:
1、如何利用勾股定理及逆定理解決最短路程問(wèn)題?
第六 環(huán)節:布置作業(yè)(2分鐘,學(xué)生分別記錄)
內容:
作業(yè):1.課本習題1.5第1,2,3題.
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書(shū)設計:
教學(xué)反思:
數學(xué)定理的教案10
教學(xué)目標
知識與技能:
了解勾股定理的一些證明方法,會(huì )簡(jiǎn)單應用勾股定理解決問(wèn)題
過(guò)程與方法:
在充分觀(guān)察、歸納、猜想的基礎上,探究勾股定理,在探究的過(guò)程中,發(fā)展合情推理,體會(huì )數形結合、從特殊到一般等數學(xué)思想。
情感態(tài)度價(jià)值觀(guān):
通過(guò)對我國古代研究勾股定理的成就介紹,培養學(xué)生的民族自豪感。
教學(xué)過(guò)程
1、創(chuàng )設情境
問(wèn)題1國際數學(xué)家大會(huì )是最高水平的全球性數學(xué)學(xué)科學(xué)術(shù)會(huì )議,被譽(yù)為數學(xué)界的“奧運會(huì )”。2002年在北京召開(kāi)了第24屆國際數學(xué)家大會(huì )。下圖就是大會(huì )會(huì )徽的圖案。你見(jiàn)過(guò)這個(gè)圖案嗎?它由哪些我們學(xué)習過(guò)的基本圖形組成?這個(gè)圖案有什么特別的含義?
師生活動(dòng):教師引導學(xué)生尋找圖形中的直角三角形和正方形等,并引導學(xué)生發(fā)現直角三角形的全等關(guān)系,指出通過(guò)今天的學(xué)習,就能理解會(huì )徽圖案的含義。
設計意圖:本節課是本章的起始課,重視引言教學(xué),從國際數學(xué)家大會(huì )的會(huì )徽說(shuō)起,設置懸念,引入課題。
2、探究勾股定理
觀(guān)看洋蔥數學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數學(xué)世界
問(wèn)題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時(shí),發(fā)現朋友家用轉鋪成的地面圖案反應了直角三角形三邊的某種數量關(guān)系,請你觀(guān)察下圖,你從中發(fā)現了什么數量關(guān)系?
師生活動(dòng):學(xué)生先獨立觀(guān)察思考一分鐘后,小組交流合作分析圖形中兩個(gè)藍色正方形與橙色正方形有哪些數量關(guān)系,教師參與學(xué)生的討論
追問(wèn):由這三個(gè)正方形的邊長(cháng)構成的等腰直角三角形三條邊長(cháng)之間又有怎么樣的關(guān)系?
師生活動(dòng):教師引導學(xué)生發(fā)現正方形的面積等于邊長(cháng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀(guān)察得到結論
問(wèn)題3:數學(xué)研究遵循從特殊到一般的數學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數量關(guān)系也同樣成立。
師生活動(dòng):學(xué)生獨立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(cháng)的正方形的面積,可由師生共同總結得出可以通過(guò)割、補兩種方法,求出其面積。
數學(xué)定理的教案11
一、教學(xué)目標
1、靈活應用勾股定理及逆定理解決實(shí)際問(wèn)題、
2、進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認識、
二、重點(diǎn)、難點(diǎn)
1、重點(diǎn):靈活應用勾股定理及逆定理解決實(shí)際問(wèn)題、
2、難點(diǎn):靈活應用勾股定理及逆定理解決實(shí)際問(wèn)題、
3、難點(diǎn)的突破方法:
三、課堂引入
創(chuàng )設情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數學(xué)知識和數學(xué)方法、
四、例習題分析
例1(p83例2)
分析:⑴了解方位角,及方位名詞;
、埔李}意畫(huà)出圖形;
、且李}意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;
、纫驗242+182=302,pq2+pr2=qr2,根據勾股定理的逆定理,知∠qpr=90°;
、伞蟨rs=∠qpr—∠qps=45°、
小結:讓學(xué)生養成“已知三邊求角,利用勾股定理的逆定理”的意識、
例2(補充)一根30米長(cháng)的細繩折成3段,圍成一個(gè)三角形,其中一條邊的長(cháng)度比較短邊長(cháng)7米,比較長(cháng)邊短1米,請你試判斷這個(gè)三角形的形狀、
分析:⑴若判斷三角形的形狀,先求三角形的三邊長(cháng);
、圃O未知數列方程,求出三角形的三邊長(cháng)5、12、13;
、歉鶕垂啥ɡ淼哪娑ɡ,由52+122=132,知三角形為直角三角形
本題幫助培養學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識
數學(xué)定理的教案12
[教學(xué)分析]
勾股定理是揭示三角形三條邊數量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數學(xué)源于生活,又用于生活”正是這章書(shū)所體現的主要思想。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應用。
本節教科書(shū)從畢達哥拉斯觀(guān)察地面發(fā)現勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀(guān)察計算一些以直角三角形兩條直角邊為邊長(cháng)的小正方形的面積與以斜邊為邊長(cháng)的正方形的面積的關(guān)系,發(fā)現兩直角邊為邊長(cháng)的小正方形的面積的和,等于以斜邊為邊長(cháng)的正方形的面積,從而發(fā)現勾股定理,這時(shí)教科書(shū)以命題的形式呈現了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數學(xué)問(wèn)題中的應用,使學(xué)生對勾股定理的作用有一定的認識。
[教學(xué)目標]
一、知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì )簡(jiǎn)單的合情推理與數學(xué)說(shuō)理
二、過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數學(xué)表達能力,并感受勾股定理的應用知識。
三、情感與態(tài)度目標
通過(guò)對勾股定理歷史的了解,感受數學(xué)文化,激發(fā)學(xué)習興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對勾股定理進(jìn)行探索與驗證,培養學(xué)生的合作交流意識和探索精神,以及自主學(xué)習的能力。
四、重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2、熟練運用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng )設情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數學(xué)著(zhù)作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請教數學(xué)知識時(shí)的對話(huà),為勾股定理的出現埋下伏筆。
周公問(wèn):“竊聞乎大夫善數也,請問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問(wèn)數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(cháng)二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也!
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著(zhù)名的數學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現在請你也動(dòng)手數一下格子,你能有什么發(fā)現嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(cháng)分別為a、b,斜邊長(cháng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)河捎谖覈糯阎苯侨切沃休^短的直角邊稱(chēng)為勾,較長(cháng)的邊稱(chēng)為股,斜邊稱(chēng)為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(cháng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長(cháng)為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡(jiǎn)得。
第二種方法:邊長(cháng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的
角三角形拼接形成的(虛線(xiàn)表示),不過(guò)中間缺出一個(gè)邊長(cháng)為的正方形“小洞”。
因為邊長(cháng)為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡(jiǎn)得。
這種證明方法很簡(jiǎn)明,很直觀(guān),它表現了我國古代數學(xué)家趙爽高超的證題思想和對數學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實(shí)際的生產(chǎn)生活當中有著(zhù)廣泛的應用。勾股定理的發(fā)現和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現屏幕只有58厘長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結
1、內容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀(guān)察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗證自己的發(fā)現。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識的機會(huì ),通過(guò)提示性的引導,讓學(xué)生對勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應用打下基礎。
我們班的同學(xué)很聰明。大家很快就通過(guò)數格子發(fā)現了勾股定理的規律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習心得。
數學(xué)定理的教案13
一、教學(xué)目標
1.體會(huì )勾股定理的逆定理得出過(guò)程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的證明方法.
3.理解原命題、逆命題、逆定理的概念及關(guān)系.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):掌握勾股定理的逆定理及證明.
2.難點(diǎn):勾股定理的逆定理的證明.
3.難點(diǎn)的突破方法:
先讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀(guān)察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.
為學(xué)生搭好臺階,掃清障礙.
、湃绾闻袛嘁粋(gè)三角形是直角三角形,現在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉化為如何判斷一個(gè)角是直角.
、评靡阎獥l件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決.
、窍茸鲋苯,再截取兩直角邊相等,利用勾股定理計算斜邊A1B1=c,則通過(guò)三邊對應相等的兩個(gè)三角形全等可證.
三、課堂引入
創(chuàng )設情境:⑴怎樣判定一個(gè)三角形是等腰三角形?
、圃鯓优卸ㄒ粋(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對比,從勾股定理的逆命題進(jìn)行猜想.
四、例習題分析
例1(補充)說(shuō)出下列命題的逆命題,這些命題的逆命題成立嗎?
、磐?xún)冉腔パa,兩條直線(xiàn)平行.
、迫绻麅蓚(gè)實(shí)數的平方相等,那么兩個(gè)實(shí)數平方相等.
、蔷(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩端點(diǎn)的距離相等.
、戎苯侨切沃30°角所對的直角邊等于斜邊的一半.
分析:⑴每個(gè)命題都有逆命題,說(shuō)逆命題時(shí)注意將題設和結論調換即可,但要分清題設和結論,并注意語(yǔ)言的運用.
、评眄標麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假.
解略.
本題意圖在于使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系.
例2(P82探究)證明:如果三角形的三邊長(cháng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形是直角三角形.
分析:⑴注意命題證明的格式,首先要根據題意畫(huà)出圖形,然后寫(xiě)已知求證.
、迫绾闻袛嘁粋(gè)三角形是直角三角形,現在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉化為如何判斷一個(gè)角是直角.
、抢靡阎獥l件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決.
、认茸鲋苯,再截取兩直角邊相等,利用勾股定理計算斜邊A1B1=c,則通過(guò)三邊對應相等的兩個(gè)三角形全等可證.
、上茸寣W(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀(guān)察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.
證明略.
通過(guò)讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀(guān)察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過(guò)探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維.
例3(補充)已知:在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求證:∠C=90°.
分析:⑴運用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數方法計算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.
、埔C∠C=90°,只要證△ABC是直角三角形,并且c邊最大.根據勾股定理的逆定理只要證明a2+b2=c2即可.
、怯捎赼2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,從而a2+b2=c2,故命題獲證.
本題目的在于使學(xué)生明確運用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數方法計算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.
數學(xué)定理的教案14
重點(diǎn)、難點(diǎn)分析
本節內容的重點(diǎn)是勾股定理的逆定理及其應用.它可用邊的關(guān)系判斷一個(gè)三角形是否為直角三角形.為判斷三角形的形狀提供了一個(gè)有力的依據.
本節內容的難點(diǎn)是勾股定理的逆定理的應用.在用勾股定理的逆定理時(shí),分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時(shí)而出錯;另外,在解決有關(guān)綜合問(wèn)題時(shí),要將給的邊的數量關(guān)系經(jīng)過(guò)代數變化,最后達到一個(gè)目標式,這種“轉化”對學(xué)生來(lái)講也是一個(gè)困難的地方.
教法建議:
本節課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類(lèi)比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線(xiàn)定理及其逆定理,做類(lèi)比對象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學(xué)生思維能力的目的.具體說(shuō)明如下:
。1)讓學(xué)生主動(dòng)提出問(wèn)題
利用類(lèi)比的學(xué)習方法,由學(xué)生將上節課所學(xué)習的勾股定理的逆命題書(shū)寫(xiě)出來(lái).這里分別找學(xué)生口述文字;用符號、圖形的形式板書(shū)逆命題的內容.所有這些都由學(xué)生自己完成,估計學(xué)生不會(huì )感到困難.這樣設計主要是培養學(xué)生善于提出問(wèn)題的習慣及能力.
。2)讓學(xué)生自己解決問(wèn)題
判斷上述逆命題是否為真命題?對這一問(wèn)題的解決,學(xué)生會(huì )感到有些困難,這里教師可做適當的點(diǎn)撥,但要盡可能的讓學(xué)生的發(fā)現和探索,找到解決問(wèn)題的思路.
。3)通過(guò)實(shí)際問(wèn)題的解決,培養學(xué)生的數學(xué)意識.
教學(xué)目標:
1、知識目標:
。1)理解并會(huì )證明勾股定理的逆定理;
。2)會(huì )應用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;
。3)知道什么叫勾股數,記住一些覺(jué)見(jiàn)的勾股數.
2、能力目標:
。1)通過(guò)勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
。2)通過(guò)勾股定理及以前的知識聯(lián)合起來(lái)綜合運用,提高綜合運用知識的能力.
3、情感目標:
。1)通過(guò)自主學(xué)習的發(fā)展體驗獲取數學(xué)知識的感受;
。2)通過(guò)知識的縱橫遷移感受數學(xué)的辯證特征.
教學(xué)重點(diǎn):勾股定理的逆定理及其應用
教學(xué)難點(diǎn):勾股定理的逆定理及其應用
教學(xué)用具:直尺,微機
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過(guò)程:
1、新課背景知識復習(投影)
勾股定理的內容
文字敘述(投影顯示)
符號表述
圖形(畫(huà)在黑板上)
2、逆定理的獲得
。1)讓學(xué)生用文字語(yǔ)言將上述定理的逆命題表述出來(lái)
。2)學(xué)生自己證明
逆定理:如果三角形的三邊長(cháng) 有下面關(guān)系:
那么這個(gè)三角形是直角三角形
強調說(shuō)明:(1)勾股定理及其逆定理的區別
勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理.
。2)判定直角三角形的方法:
、俳菫 、②垂直、③勾股定理的逆定理
2、 定理的應用(投影顯示題目上)
例1 如果一個(gè)三角形的三邊長(cháng)分別為
則這三角形是直角三角形
例2 如圖,已知:CD⊥AB于D,且有
求證:△ACB為直角三角形。
以上例題,分別由學(xué)生先思考,然后回答.師生共同補充完善.(教師做總結)
4、課堂小結:
。1)逆定理應用時(shí)易出現的錯誤:分不清哪一條邊作斜邊(最大邊)
。2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用。
5、布置作業(yè):
a、書(shū)面作業(yè)P131#9
b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線(xiàn)DG=8
求證:△DEF是等腰三角形
數學(xué)定理的教案15
高中數學(xué)正弦定理教案,一起拉看看吧。
本節內容是正弦定理教學(xué)的第一節課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復習鞏固舊知識,使學(xué)生掌握新的有用的知識,體會(huì )聯(lián)系、發(fā)展等辯證觀(guān)點(diǎn),而且能培養學(xué)生的應用意識和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習的能力.
本節課以及后面的解三角形中涉及到計算器的使用與近似計算,這是一種基本運算能力,學(xué)生基本上已經(jīng)掌握了.若在解題中出現了錯誤,則應及時(shí)糾正,若沒(méi)出現問(wèn)題就順其自然,不必花費過(guò)多的時(shí)間.
本節可結合課件“正弦定理猜想與驗證”學(xué)習正弦定理.
三維目標
1.通過(guò)對任意三角形邊長(cháng)和角度關(guān)系的探索,掌握正弦定理的內容及其證明方法,會(huì )運用正弦定理與三角形內角和定理解斜三角形的兩類(lèi)基本問(wèn)題.
2.通過(guò)正弦定理的探究學(xué)習,培養學(xué)生探索數學(xué)規律的思維能力,培養學(xué)生用數學(xué)的方法去解決實(shí)際問(wèn)題的能力.通過(guò)學(xué)生的積極參與和親身實(shí)踐,并成功解決實(shí)際問(wèn)題,激發(fā)學(xué)生對數學(xué)學(xué)習的熱情,培養學(xué)生獨立思考和勇于探索的創(chuàng )新精神.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):正弦定理的證明及其基本運用.
教學(xué)難點(diǎn):正弦定理的探索和證明;已知兩邊和其中一邊的對角解三角形時(shí),判斷解的個(gè)數.
課時(shí)安排
1課時(shí)
教學(xué)過(guò)程
導入新課
思路1.(特例引入)教師可先通過(guò)直角三角形的特殊性質(zhì)引導學(xué)生推出正弦定理形式,如Rt△ABC中的邊角關(guān)系,若∠C為直角,則有a=csinA,b=csinB,這兩個(gè)等式間存在關(guān)系嗎?學(xué)生可以得到asinA=bsinB,進(jìn)一步提問(wèn),等式能否與邊c和∠C建立聯(lián)系?從而展開(kāi)正弦定理的探究.
思路2.(情境導入)如圖,某農場(chǎng)為了及時(shí)發(fā)現火情,在林場(chǎng)中設立了兩個(gè)觀(guān)測點(diǎn)A和B,某日兩個(gè)觀(guān)測點(diǎn)的林場(chǎng)人員分別測到C處有火情發(fā)生.在A(yíng)處測到火情在北偏西40°方向,而在B處測到火情在北偏西60°方向,已知B在A(yíng)的正東方向10千米處.現在要確定火場(chǎng)C距A、B多遠?將此問(wèn)題轉化為數學(xué)問(wèn)題,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC與BC的長(cháng).”這就是一個(gè)解三角形的問(wèn)題.為此我們需要學(xué)習一些解三角形的必要知識,今天要探究的是解三角形的第一個(gè)重要定理——正弦定理,由此展開(kāi)新課的探究學(xué)習.
推進(jìn)新課
新知探究
提出問(wèn)題
1閱讀本章引言,明確本章將學(xué)習哪些內容及本章將要解決哪些問(wèn)題?
2聯(lián)想學(xué)習過(guò)的三角函數中的邊角關(guān)系,能否得到直角三 角形中角與它所對的邊之間在數量上有什么關(guān)系?
3由2得到的數量關(guān)系式,對一般三角形是否仍然成立?
4正弦定理的內容是什么,你能用文字語(yǔ)言敘述它嗎?你能用哪些方法證明它?
5什么叫做解三角形?
6利用正弦定理可以解決一些怎樣的三角形問(wèn)題呢?
活動(dòng):教師引導學(xué)生閱讀本章引言,點(diǎn)出本章數學(xué)知識的某些重要的實(shí)際背景及其實(shí)際需要,使學(xué)生初步認識到學(xué)習解三角形知識的必要性.如教師可提出以下問(wèn)題:怎樣在航行途中測出海上兩個(gè)島嶼之間的距離?怎樣測出海上航行的輪船的航速和航向?怎樣測量底部不可到達的建筑物的高度?怎樣在水平飛行的飛機上測量飛機下方山頂的海拔高度?這些實(shí)際問(wèn)題的解決需要我們進(jìn)一步學(xué)習任意三角形中邊與角關(guān)系的有關(guān)知識.讓學(xué)生明確本章將要學(xué)習正弦定理和余弦定理,并學(xué)習應用這兩個(gè)定理解三角形及解決測量中的一些問(wèn)題.
關(guān)于任意三角形中大邊對大角、小 邊對小角的邊角關(guān)系,教師引導學(xué)生探究其數量關(guān)系.先觀(guān)察特殊的直角三角形.如下圖,在Rt△ABC中,設BC=a,AC=b,AB=c,根據銳角三角函數中正弦函數的定義,有ac=sinA,bc=sinB,又sinC=1=cc,則asinA=bsinB=csinC=c.從而在Rt△ABC中,asinA=bsinB=csinC.
那么對于任意的三角形,以上關(guān)系式是否仍然成立呢?教師引導學(xué)生畫(huà)圖討論分析.
如下圖,當△ABC是銳角三角形時(shí),設邊AB上的高是CD,根據任意角的三角函數的定義,有CD=asinB=bsinA,則asinA=bsinB.同理,可得csinC=bsinB.從而asinA=bsinB=csinC.
(當△ABC是鈍角三角形時(shí),解法類(lèi)似銳角三角形的情況,由學(xué)生自己完成)
通過(guò)上面的討論和探究,我們知道在任意三角形中,上述等式都成立.教師點(diǎn)出這就是今天要學(xué)習的三角形中的重要定理——正弦定理.
正弦定理:在一個(gè)三角形中,各邊和它所對角的正弦的比相等,即
asinA=bsinB=csinC
上述的探究過(guò)程就是正弦定理的證明方法,即分直角三角形、銳角三角形、鈍角三角形三種情況進(jìn)行證明.教師提醒學(xué)生要掌握這種由特殊到一般的分類(lèi)證明思想,同時(shí)點(diǎn)撥學(xué)生觀(guān)察正弦定理的特征.它指出了任意三角形中,各邊與其對應角的正弦之間的一個(gè)關(guān)系式.正弦定理的重要性在于它非常好地描述了任意三角形中邊與角的一種數量關(guān)系;描述了任意三角形中大邊對大角的一種準確的數量關(guān)系.因為如果∠A<∠B,由三角形性質(zhì),得a<b.當∠A、∠B都是銳角,由正弦函數在區間(0,π2)上的單調性,可知sinA<sinB.當∠A是銳角,∠B是鈍角時(shí),由于∠A+∠B<π,因此∠B<π-∠A,由正弦函數在區間(π2,π)上的單調性,可知sinB>sin(π-A)=sinA,所以仍有sinA<sinB.
正弦定理的證明方法很多,除了上述的證明方法以外,教師鼓勵學(xué)生課下進(jìn)一步探究正弦定理的其他證明方法.
討論結果:
(1)~(4)略.
(5)已知三角形的幾個(gè)元素(把三角形的三個(gè)角A、B、C和它們的對邊a、b、c叫做三角形的元素)求其他元素的過(guò)程叫做解三角形.
(6)應用正弦定理可解決兩類(lèi)解三角形問(wèn)題:①已知三角形的任意兩個(gè)角與一邊,由三角形內角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊,即“兩角一邊問(wèn)題”.這類(lèi)問(wèn)題的解是唯一的.②已知三 角形的任意兩邊與其中一邊的對角,可以計算出另一邊的對角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和 角,即“兩邊一對角問(wèn)題”.這類(lèi)問(wèn)題的答案有時(shí)不是唯一的,需根據實(shí)際情況分類(lèi)討論.
應用示例
例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.
活動(dòng):解三角形就是已知三角形的某些邊和角,求其他的邊和角的過(guò)程,在本例中就是求解∠C,b,c.
此題屬于已知兩角和其中一角所對邊的問(wèn)題,直接應用正弦定理可求出邊b,若求邊c,則先求∠C,再利用正弦定理即可.
解:根據三角形內角和定理,得
∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.
根據正弦定理,得
b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);
c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).
點(diǎn)評:(1)此類(lèi)問(wèn)題結果為唯一解,學(xué)生較易掌握,如果已知兩角及兩角所夾的邊,也是先利用三角形內角和定理180°求出第三個(gè)角,再利用正弦定理.
【數學(xué)定理的教案】相關(guān)文章:
數學(xué)勾股定理教案11-02
勾股定理的逆定理數學(xué)教案范文06-14
勾股定理的逆定理數學(xué)教案范文08-25
數學(xué)《勾股定理的逆定理》說(shuō)課稿06-23
勾股定理的逆定理教案08-26
初中數學(xué)《勾股定理的逆定理》說(shuō)課稿07-30
初三數學(xué)切線(xiàn)長(cháng)定理教案01-13
初二數學(xué)教案《勾股定理》03-30