一定是直角三角形嗎說(shuō)課稿
一、學(xué)生知識狀況分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內容學(xué)習中已經(jīng)積累了一定的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線(xiàn)平行,有什么樣的結論?反之,滿(mǎn)足什么條件的兩直線(xiàn)是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應該已經(jīng)具備這樣的意識,但具體研究中,可能要用到反證等思路,對現階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導。
二、學(xué)習任務(wù)分析
本節課是北師大版數學(xué)八年級(上)第一章《勾股定理》第2節。教學(xué)任務(wù)有:探索勾股定理的逆定理,并利用該定理根據邊長(cháng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數,增加對勾股數的直觀(guān)體驗。本節課的教學(xué)目標是:
1.理解勾股定理逆定理的具體內容及勾股數的概念;
2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形;
3.經(jīng)歷一般規律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、歸納能力;
4.體驗生活中的數學(xué)的應用價(jià)值,感受數學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數學(xué)、用數學(xué)的興趣;
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗—猜想—歸納—論證
本節課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過(guò)實(shí)驗獲得數學(xué)結論已有一定的體驗,但數學(xué)思維嚴謹的同學(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現本節課的教學(xué)目標,我力求從以下三個(gè)方面對學(xué)生進(jìn)行引導:
(1)從創(chuàng )設問(wèn)題情景入手,通過(guò)知識再現,孕育教學(xué)過(guò)程;
(2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢教學(xué)過(guò)程;
(3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
2.課前準備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習本、文具。
四、教學(xué)過(guò)程設計
本節課設計了七個(gè)環(huán)節。第一環(huán)節:情境引入;第二環(huán)節:合作探究;第三環(huán)節:小試牛刀;第四環(huán)節:登高望遠;第五環(huán)節:鞏固提高;第六環(huán)節:交流小結;第七環(huán)節:布置作業(yè)。
第一環(huán)節:情境引入
內容:
情境:1.直角三角形中,三邊長(cháng)度之間滿(mǎn)足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:通過(guò)情境的創(chuàng )設引入新課,激發(fā)學(xué)生探究熱情。
效果:從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節奠定了良好的基礎。
第二環(huán)節:合作探究
內容1:探究
下面有三組數,分別是一個(gè)三角形的三邊長(cháng),①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:
1.這三組數都滿(mǎn)足嗎?
2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數。
意圖:通過(guò)學(xué)生的合作探究,得出“若一個(gè)三角形的三邊長(cháng),滿(mǎn)足,則這個(gè)三角形是直角三角形”這一結論;在活動(dòng)中體驗出數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由“特殊→一般→特殊”的發(fā)展規律。
效果:經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗結果發(fā)現:①5,12,13滿(mǎn)足,可以構成直角三角形;②7,24,25滿(mǎn)足,可以構成直角三角形;③8,15,17滿(mǎn)足,可以構成直角三角形。
從上面的分組實(shí)驗很容易得出如下結論:
如果一個(gè)三角形的三邊長(cháng),滿(mǎn)足,那么這個(gè)三角形是直角三角形
內容2:說(shuō)理
提問(wèn):有同學(xué)認為測量結果可能有誤差,不同意這個(gè)發(fā)現。你認為這個(gè)發(fā)現正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結果得到的結論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結論的可靠性,同時(shí)明晰結論:
如果一個(gè)三角形的三邊長(cháng),滿(mǎn)足,那么這個(gè)三角形是直角三角形
滿(mǎn)足的三個(gè)正整數,稱(chēng)為勾股數。
注意事項:為了讓學(xué)生確認該結論,需要進(jìn)行說(shuō)理,有條件的班級,還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀(guān)的認識。
活動(dòng)3:反思總結
提問(wèn):
1.同學(xué)們還能找出哪些勾股數呢?
2.今天的結論與前面學(xué)習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過(guò)今天同學(xué)們合作探究,你能體驗出一個(gè)數學(xué)結論的`發(fā)現要經(jīng)歷哪些過(guò)程呢?
意圖:進(jìn)一步讓學(xué)生認識該定理與勾股定理之間的關(guān)系
第三環(huán)節:小試牛刀
內容:
1.下列哪幾組數據能作為直角三角形的三邊長(cháng)?請說(shuō)明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長(cháng)分別是,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖,在中,于,,則是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數后,得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:通過(guò)練習,加強對勾股定理及勾股定理逆定理認識及應用
效果:每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節:登高望遠
內容:
1.一個(gè)零件的形狀如圖2所示,按規定這個(gè)零件中都應是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗,船長(cháng)指揮船左傳90°,繼續航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫(huà)出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900==即∴△ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。
效果: 學(xué)生能用自己的語(yǔ)言表達清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數量關(guān)系判斷一個(gè)三角形是直角三角形時(shí),當遇見(jiàn)數據較大時(shí),要懂得將作適當變形(),以便于計算。
第五環(huán)節:鞏固提高
內容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問(wèn)題。
效果:
學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應用。
第六環(huán)節:交流小結
內容:
師生相互交流總結出:
1.今天所學(xué)內容①會(huì )利用三角形三邊數量關(guān)系判斷一個(gè)三角形是直角三角形;②滿(mǎn)足的三個(gè)正整數,稱(chēng)為勾股數;
2.從今天所學(xué)內容及所作練習中總結出的經(jīng)驗與方法:①數學(xué)是源于生活又服務(wù)于生活的;②數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由“特殊→一般→特殊”的發(fā)展規律;③利用三角形三邊數量關(guān)系判斷一個(gè)三角形是直角三角形時(shí),當遇見(jiàn)數據較大時(shí),要懂得將作適當變形,便于計算。
意圖:
鼓勵學(xué)生結合本節課的學(xué)習談自己的收獲和感想,體會(huì )到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學(xué)學(xué)習中的困難,并有獨立克服困難和運用知識解決問(wèn)題的成功經(jīng)驗,進(jìn)一步體會(huì )數學(xué)的應用價(jià)值,發(fā)展運用數學(xué)的信心和能力,初步形成積極參與數學(xué)活動(dòng)的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結出利用三角形三邊數量關(guān)系判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應用。
第七環(huán)節:布置作業(yè)
課本習題1.3第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入“如果一個(gè)三角形的三邊長(cháng),滿(mǎn)足,是否能得到這個(gè)三角形是直角三角形”的問(wèn)題;充分引用教材中出現的例題和練習。
2.注重引導學(xué)生積極參與實(shí)驗活動(dòng),從中體驗任何一個(gè)數學(xué)結論的發(fā)現總是要經(jīng)歷觀(guān)察、歸納、猜想和驗證的過(guò)程,同時(shí)遵循由“特殊→一般→特殊”的發(fā)展規律。
3.在利用今天所學(xué)知識解決實(shí)際問(wèn)題時(shí),引導學(xué)生善于對公式變形,便于簡(jiǎn)便計算。
4.注重對學(xué)習新知理解應用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據學(xué)生的實(shí)際情況做適當調整,不做要求。
由于本班學(xué)生整體水平較高,因而本設計教學(xué)容量相對較大,教學(xué)中,應注意根據自己班級學(xué)生的狀況進(jìn)行適當的刪減或調整。
【一定是直角三角形嗎說(shuō)課稿】相關(guān)文章:
溶劑一定是液體嗎09-07
溶劑一定是液體嗎?09-30
試劑一定是液體嗎10-12
信息傳遞一定是雙向嗎09-13
正碰一定是彈性碰撞嗎?10-09
正碰一定是彈性碰撞嗎08-28
追尾一定是后車(chē)的責任嗎05-02
老師說(shuō)的就一定是對的嗎作文09-04
等式不一定是方程對嗎09-25