97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)第二冊第七章優(yōu)秀說(shuō)課稿

時(shí)間:2021-06-12 14:46:39 說(shuō)課稿 我要投稿

高中數學(xué)第二冊第七章優(yōu)秀說(shuō)課稿

  各位領(lǐng)導、專(zhuān)家、同仁:您們好!

高中數學(xué)第二冊第七章優(yōu)秀說(shuō)課稿

  我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!

  根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。

  二、教學(xué)目標

  根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:

  知識目標:

  1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;

  2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的`概念;

  3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;

  4、強化“形”與“數”一致并相互轉化的思想方法。

  能力目標:

  1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;

  2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);

  3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。

  情感目標:

  1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;

  2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。

  三、重難點(diǎn)突破

  “曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。

  五、教法分析

  新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學(xué)生的管理者,轉變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書(shū)匠轉變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習的主人而不是知識的奴隸,基于此,本節課遵循了概念學(xué)習的四個(gè)基本步驟,重點(diǎn)采用了問(wèn)題探究和啟發(fā)式相結合的教學(xué)方法。

  從實(shí)例、到類(lèi)比、到推廣的問(wèn)題探究,它對激發(fā)學(xué)生學(xué)習興趣,培養學(xué)習能力都十分有利。啟發(fā)引導學(xué)生得出概念,深化概念,并應用它去討論、研究和解決問(wèn)題。在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力打下了基礎。

  利用多媒體輔助教學(xué),節省了時(shí)間,增大了信息量,增強了直觀(guān)形象性。

  六、學(xué)法分析

  基礎教育課程改革要求加強學(xué)習方式的改變,提倡學(xué)習方式的多樣化,各學(xué)科課程通過(guò)引導學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問(wèn)題的能力,以及交流合作的能力,基于此,本節課從實(shí)例引入→類(lèi)比→推廣→得概念→概念挖掘深化→具體應用→作業(yè)中的研究性問(wèn)題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,與合作探究相結合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識的發(fā)現者和知識的研究者。

  七、教學(xué)過(guò)程分析

  1、感性認識階段——以舊帶新、提出課題

【高中數學(xué)第二冊第七章優(yōu)秀說(shuō)課稿】相關(guān)文章:

高中數學(xué)第二冊《曲線(xiàn)和方程》說(shuō)課稿11-02

《曲線(xiàn)和方程》高中數學(xué)第二冊說(shuō)課稿08-28

高中數學(xué)第二冊《曲線(xiàn)和方程》說(shuō)課稿范文11-03

高中數學(xué)《條件語(yǔ)句》優(yōu)秀說(shuō)課稿01-08

高中數學(xué)優(yōu)秀說(shuō)課稿(精選5篇)07-30

第二冊《咕咚》說(shuō)課稿01-27

高中數學(xué)的優(yōu)秀說(shuō)課稿范文(精選8篇)08-25

高中數學(xué)的說(shuō)課稿02-19

高中數學(xué)經(jīng)典說(shuō)課稿02-19