高中數學(xué)知識點(diǎn)課件:導數
導數是微積分中的重要基礎概念。當自變量的增量趨于零時(shí),因變量的增量與自變量的增量之商的極限。在一個(gè)函數存在導數時(shí),稱(chēng)這個(gè)函數可導或者可微分。以下是小編整理的資料,歡迎閱讀參考。
可導的函數一定連續。不連續的函數一定不可導。導數實(shí)質(zhì)上就是一個(gè)求極限的過(guò)程,導數的四則運算法則來(lái)源于極限的四則運算法則。
(一)導數第一定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時(shí),相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即導數第一定義
(二)導數第二定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時(shí),相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即 導數第二定義
(三)導函數與導數
如果函數 y = f(x) 在開(kāi)區間 I 內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間 I 內可導。這時(shí)函數 y = f(x) 對于區間 I 內的每一個(gè)確定的 x 值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的函數,稱(chēng)這個(gè)函數為原來(lái)函數 y = f(x) 的.導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。
(四)單調性及其應用
1.利用導數研究多項式函數單調性的一般步驟
。1)求f(x)
。2)確定f(x)在(a,b)內符號 (3)若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
。1)求f(x)
。2)f(x)0的解集與定義域的交集的對應區間為增區間; f(x)0的解集與定義域的交集的對應區間為減區間
學(xué)習了導數基礎知識點(diǎn),接下來(lái)可以學(xué)習高二數學(xué)中涉及到的導數應用的部分。
【高中數學(xué)知識點(diǎn)課件:導數】相關(guān)文章:
導數切線(xiàn)斜率公式10-11
高中數學(xué)課使用課件的不足之處05-14
外研版高中英語(yǔ)必修1知識點(diǎn)課件:consist of05-14
《將心比心》課件05-14
春曉課件05-03
《詠柳》課件05-02