97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)教案

時(shí)間:2023-01-06 11:34:33 教案 我要投稿
  • 相關(guān)推薦

【推薦】高中數學(xué)教案

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,時(shí)常要開(kāi)展教案準備工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么應當如何寫(xiě)教案呢?以下是小編為大家收集的高中數學(xué)教案,希望能夠幫助到大家。

【推薦】高中數學(xué)教案

高中數學(xué)教案1

  教學(xué)目標:

  1。理解并掌握瞬時(shí)速度的定義;

  2。會(huì )運用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

  3。理解瞬時(shí)速度的實(shí)際背景,培養學(xué)生解決實(shí)際問(wèn)題的能力。

  教學(xué)重點(diǎn):

  會(huì )運用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

  教學(xué)難點(diǎn):

  理解瞬時(shí)速度和瞬時(shí)加速度的定義。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1。問(wèn)題情境。

  平均速度:物體的運動(dòng)位移與所用時(shí)間的比稱(chēng)為平均速度。

  問(wèn)題一平均速度反映物體在某一段時(shí)間段內運動(dòng)的快慢程度。那么如何刻畫(huà)物體在某一時(shí)刻運動(dòng)的快慢程度?

  問(wèn)題二跳水運動(dòng)員從10m高跳臺騰空到入水的過(guò)程中,不同時(shí)刻的速度是不同的。假設t秒后運動(dòng)員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運動(dòng)員的速度.

  2。探究活動(dòng):

  (1)計算運動(dòng)員在2s到2.1s(t∈)內的平均速度。

  (2)計算運動(dòng)員在2s到(2+?t)s(t∈)內的平均速度。

  (3)如何計算運動(dòng)員在更短時(shí)間內的平均速度。

  探究結論:

  時(shí)間區間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當?t?0時(shí),?-13.1,

  該常數可作為運動(dòng)員在2s時(shí)的瞬時(shí)速度。

  即t=2s時(shí),高度對于時(shí)間的瞬時(shí)變化率。

  二、建構數學(xué)

  1。平均速度。

  設物體作直線(xiàn)運動(dòng)所經(jīng)過(guò)的路程為,以為起始時(shí)刻,物體在?t時(shí)間內的平均速度為。

  可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。

  三、數學(xué)運用

  例1物體作自由落體運動(dòng),運動(dòng)方程為,其中位移單位是m,時(shí)

  間單位是s,,求:

 。1)物體在時(shí)間區間s上的平均速度;

 。2)物體在時(shí)間區間上的平均速度;

 。3)物體在t=2s時(shí)的瞬時(shí)速度。

  分析

  解

 。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當?t?0,2+?t?2,從而平均速度的極限為:

  例2設一輛轎車(chē)在公路上作直線(xiàn)運動(dòng),假設時(shí)的速度為,

  求當時(shí)轎車(chē)的瞬時(shí)加速度。

  解

  ∴當?t無(wú)限趨于0時(shí),無(wú)限趨于,即=。

  練習

  課本P12—1,2。

  四、回顧小結

  問(wèn)題1本節課你學(xué)到了什么?

  1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

  2實(shí)際應用問(wèn)題中瞬時(shí)速度和瞬時(shí)加速度的求解;

  問(wèn)題2解決瞬時(shí)速度和瞬時(shí)加速度問(wèn)題需要注意什么?

  注意當?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

  問(wèn)題3本節課體現了哪些數學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數學(xué)教案2

  1.教學(xué)目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會(huì )由圓的方程寫(xiě)出圓的半徑和圓心,能根據條件寫(xiě)出圓的方程.

  (2)能力目標: 1.進(jìn)一步培養學(xué)生用解析法研究幾何問(wèn)題的能力;

  2.使學(xué)生加深對數形結合思想和待定系數法的理解;

  3.增強學(xué)生用數學(xué)的意識.

  (3)情感目標:培養學(xué)生主動(dòng)探究知識、合作交流的意識,在體驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標準方程的求法及其應用.

  (2)教學(xué)難點(diǎn):會(huì )根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.

  3.教學(xué)過(guò)程

  (一)創(chuàng )設情境(啟迪思維)

  問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  [引導] 畫(huà)圖建系

  [學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線(xiàn)的方程(對求曲線(xiàn)的方程的步驟及圓的定義進(jìn)行提示性復習)

  解:以某一截面半圓的圓心為坐標原點(diǎn),半圓的直徑ab所在直線(xiàn)為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線(xiàn)2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛入這個(gè)隧道。

  (二)深入探究(獲得新知)

  問(wèn)題二:1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點(diǎn),根據定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

  2.根據圓的方程寫(xiě)出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問(wèn)題四:1.求以 為圓心,并且和直線(xiàn) 相切的圓的方程.

  [教師引導]由問(wèn)題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線(xiàn)方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數法(利用代數關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線(xiàn)的方程是: .

  iii.實(shí)際應用(回歸自然)

  問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(cháng)度(精確到0.01m).

  [多媒體課件演示創(chuàng )設實(shí)際問(wèn)題情境]

  (四)反饋訓練(形成方法)

  問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線(xiàn)方程.

  4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線(xiàn)方程.

高中數學(xué)教案3

  高中數學(xué)趣味競賽題(共10題)

  1 、撒謊的有幾人

  5個(gè)高中生有,她們面對學(xué)校的新聞采訪(fǎng)說(shuō)了如下的話(huà):

  愛(ài):“我還沒(méi)有談過(guò)戀愛(ài)! 靜香:“愛(ài)撒謊了!

  瑪麗:“我曾經(jīng)去過(guò)昆明! 惠美:“瑪麗在撒謊!

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

  2、她們到底是誰(shuí)

  有天使、惡魔、人三者,天使時(shí)刻都說(shuō)真話(huà),惡魔時(shí)時(shí)刻刻都說(shuō)假話(huà),人呢,有時(shí)候說(shuō)真話(huà),有時(shí)候說(shuō)假話(huà)。

  穿黑色衣服的女子說(shuō):“我不是天使! 穿藍色衣服的女子說(shuō):“我不是人! 穿白色衣服的女子說(shuō):“我不是惡魔!蹦敲,這三人到底分別是誰(shuí)呢?

  3、半只小貓

  聽(tīng)說(shuō)祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來(lái)到祖父家?墒,只剩下1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽(tīng)說(shuō)以后,馬上來(lái)買(mǎi)走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無(wú)論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲(chóng)子吃掉的算式

  一只愛(ài)吃墨水的蟲(chóng)子把下圖的算式中的數字全部吃掉了。當然,沒(méi)有數字的部分它沒(méi)有吃(因為沒(méi)有墨水)。

  那么,請問(wèn)原來(lái)的算式是什么樣子的呢?

  5、巧動(dòng)火柴

  用16根火柴擺成5個(gè)正方形。請移動(dòng)2根火柴,

  使

  正形變成4。

  6、折過(guò)來(lái)的角

  把正三角形的紙如圖那樣折過(guò)來(lái)時(shí),角?的度數是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、!雙胞胎?

  丈夫臨死前,給有身孕的妻子留下遺言說(shuō),生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。

  結果,生出來(lái)的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財產(chǎn)好呢?

  9、贈送和降價(jià)哪個(gè)更好?

  1罐100元的咖啡,“買(mǎi)5罐送1罐”和“買(mǎi)5罐便宜20%”這兩種促銷(xiāo)方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡(jiǎn)單是吧。那么,請折成15度,你會(huì )嗎?

高中數學(xué)教案4

  一、課程性質(zhì)與任務(wù)

  數學(xué)是研究空間形式和數量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎,是人類(lèi)文化的重要組成部分。數學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門(mén)公共基礎課。本課程的任務(wù)是:使學(xué)生掌握必要的數學(xué)基礎知識,具備必需的相關(guān)技能與能力,為學(xué)習專(zhuān)業(yè)知識、掌握職業(yè)技能、繼續學(xué)習和終身發(fā)展奠定基礎。二、課程教學(xué)目標

  1.在九年義務(wù)教育基礎上,使學(xué)生進(jìn)一步學(xué)習并掌握職業(yè)崗位和生活中所必要的數學(xué)基礎知識。2.培養學(xué)生的計算技能、計算工具使用技能和數據處理技能,培養學(xué)生的觀(guān)察能力、空間想象能力、分析與解決問(wèn)題能力和數學(xué)思維能力。

  3.引導學(xué)生逐步養成良好的學(xué)習習慣、實(shí)踐意識、創(chuàng )新意識和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng )業(yè)能力。三、教學(xué)內容結構

  本課程的教學(xué)內容由基礎模塊、職業(yè)模塊和拓展模塊三個(gè)部分構成。

  1.基礎模塊是各專(zhuān)業(yè)學(xué)生必修的基礎性?xún)热莺蛻_到的基本要求,教學(xué)時(shí)數為128學(xué)時(shí)。2.職業(yè)模塊是適應學(xué)生學(xué)習相關(guān)專(zhuān)業(yè)需要的限定選修內容,各學(xué)校根據實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數為32~64學(xué)時(shí)。

  3.拓展模塊是滿(mǎn)足學(xué)生個(gè)性發(fā)展和繼續學(xué)習需要的任意選修內容,教學(xué)時(shí)數不做統一規定。四、教學(xué)內容與要求

 。ㄒ唬┍敬缶V教學(xué)要求用語(yǔ)的表述1.認知要求(分為三個(gè)層次)

  了解:初步知道知識的含義及其簡(jiǎn)單應用。

  理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養要求(分為三項技能與四項能力)

  計算技能:根據法則、公式,或按照一定的操作步驟,正確地進(jìn)行運算求解。計算工具使用技能:正確使用科學(xué)型計算器及常用的數學(xué)工具軟件。數據處理技能:按要求對數據(數據表格)進(jìn)行處理并提取有關(guān)信息。觀(guān)察能力:根據數據趨勢,數量關(guān)系或圖形、圖示,描述其規律。

  空間想象能力:依據文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據條件畫(huà)出圖形。

  分析與解決問(wèn)題能力:能對工作和生活中的簡(jiǎn)單數學(xué)相關(guān)問(wèn)題,作出分析并運用適當的數學(xué)方法予以解決。

  數學(xué)思維能力:依據所學(xué)的數學(xué)知識,運用類(lèi)比、歸納、綜合等方法,對數學(xué)及其應用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問(wèn)題(或需求),會(huì )選擇合適的模型(模式)。

 。ǘ┙虒W(xué)內容與要求1.基礎模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

  第2單元不等式(8學(xué)時(shí))

  第3單元函數(12學(xué)時(shí))

  第4單元指數函數與對數函數(12學(xué)時(shí))

  第5單元三角函數(18學(xué)時(shí))

  第6單元數列(10學(xué)時(shí))

  第7單元平面向量(矢量)(10學(xué)時(shí))

  第8單元直線(xiàn)和圓的方程(18學(xué)時(shí))

  第9單元立體幾何(14學(xué)時(shí))

  第10單元概率與統計初步(16學(xué)時(shí))

  2.職業(yè)模塊

  第1單元三角計算及其應用(16學(xué)時(shí))

  第2單元坐標變換與參數方程(12學(xué)時(shí))

  第3單元復數及其應用(10學(xué)時(shí))

高中數學(xué)教案5

  教學(xué)目標

 。1)了解用坐標法研究幾何問(wèn)題的方法,了解解析幾何的基本問(wèn)題。

 。2)理解曲線(xiàn)的方程、方程的曲線(xiàn)的概念,能根據曲線(xiàn)的已知條件求出曲線(xiàn)的方程,了解兩條曲線(xiàn)交點(diǎn)的概念。

 。3)通過(guò)曲線(xiàn)方程概念的教學(xué),培養學(xué)生數與形相互聯(lián)系、對立統一的辯證唯物主義觀(guān)點(diǎn)。

 。4)通過(guò)求曲線(xiàn)方程的教學(xué),培養學(xué)生的轉化能力和全面分析問(wèn)題的能力,幫助學(xué)生理解解析幾何的思想方法。

 。5)進(jìn)一步理解數形結合的思想方法。

  教學(xué)建議

  教材分析

 。1)知識結構

  曲線(xiàn)與方程是在初中軌跡概念和本章直線(xiàn)方程概念之后的解析幾何的基本概念,在充分討論曲線(xiàn)方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問(wèn)題,即由曲線(xiàn)的已知條件,求曲線(xiàn)方程;通過(guò)方程,研究曲線(xiàn)的性質(zhì)。曲線(xiàn)方程的概念和求曲線(xiàn)方程的問(wèn)題又有內在的邏輯順序。前者回答什么是曲線(xiàn)方程,后者解決如何求出曲線(xiàn)方程。至于用曲線(xiàn)方程研究曲線(xiàn)性質(zhì)則更在其后,本節不予研究。因此,本節涉及曲線(xiàn)方程概念和求曲線(xiàn)方程兩大基本問(wèn)題。

 。2)重點(diǎn)、難點(diǎn)分析

 、俦竟潈热萁虒W(xué)的重點(diǎn)是使學(xué)生理解曲線(xiàn)方程概念和掌握求曲線(xiàn)方程方法,以及領(lǐng)悟坐標法和解析幾何的思想。

 、诒竟澋碾y點(diǎn)是曲線(xiàn)方程的概念和求曲線(xiàn)方程的方法。

  教法建議

 。1)曲線(xiàn)方程的概念是解析幾何的核心概念,也是基礎概念,教學(xué)中應從直線(xiàn)方程概念和軌跡概念入手,通過(guò)簡(jiǎn)單的實(shí)例引出曲線(xiàn)的點(diǎn)集與方程的解集之間的對應關(guān)系,說(shuō)明曲線(xiàn)與方程的對應關(guān)系。曲線(xiàn)與方程對應關(guān)系的基礎是點(diǎn)與坐標的對應關(guān)系。注意強調曲線(xiàn)方程的完備性和純粹性。

 。2)可以結合已經(jīng)學(xué)過(guò)的直線(xiàn)方程的知識幫助學(xué)生領(lǐng)會(huì )坐標法和解析幾何的思想,學(xué)習解析幾何的意義和要解決的問(wèn)題,為學(xué)習求曲線(xiàn)的方程做好邏輯上的和心理上的準備。

 。3)無(wú)論是判斷、證明,還是求解曲線(xiàn)的方程,都要緊扣曲線(xiàn)方程的概念,即始終以是否滿(mǎn)足概念中的兩條為準則。

 。4)從集合與對應的觀(guān)點(diǎn)可以看得更清楚:

  設 表示曲線(xiàn) 上適合某種條件的點(diǎn) 的集合;

  表示二元方程的解對應的點(diǎn)的坐標的集合。

  可以用集合相等的概念來(lái)定義“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,即

 。5)在學(xué)習求曲線(xiàn)方程的方法時(shí),應從具體實(shí)例出發(fā),引導學(xué)生從曲線(xiàn)的幾何條件,一步步地、自然而然地過(guò)渡到代數方程(曲線(xiàn)的方程),這個(gè)過(guò)渡是一個(gè)從幾何向代數不斷轉化的過(guò)程,在這個(gè)過(guò)程中提醒學(xué)生注意轉化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結出求解步驟,應在充分分析實(shí)例的基礎上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。

  這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線(xiàn)的幾何條件逐步轉化為代數方程,即

  文字語(yǔ)言中的幾何條件 數學(xué)符號語(yǔ)言中的等式 數學(xué)符號語(yǔ)言中含動(dòng)點(diǎn)坐標 , 的代數方程 簡(jiǎn)化了的 , 的代數方程

  由此可見(jiàn),曲線(xiàn)方程就是產(chǎn)生曲線(xiàn)的幾何條件的一種表現形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標的代數方程!

 。6)求曲線(xiàn)方程的問(wèn)題是解析幾何中一個(gè)基本的問(wèn)題和長(cháng)期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習中掌握的,教學(xué)中要把握好“度”。

高中數學(xué)教案6

  教學(xué)準備

  1.教學(xué)目標

  1、知識與技能:

  函數是描述客觀(guān)世界變化規律的重要數學(xué)模型.高中階段不僅把函數看成變量之間的依

  賴(lài)關(guān)系,同時(shí)還用集合與對應的語(yǔ)言刻畫(huà)函數,高中階段更注重函數模型化的思想與意識.

  2、過(guò)程與方法:

 。1)通過(guò)實(shí)例,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用;

 。2)了解構成函數的要素;

 。3)會(huì )求一些簡(jiǎn)單函數的定義域和值域;

 。4)能夠正確使用“區間”的符號表示函數的定義域;

  3、情感態(tài)度與價(jià)值觀(guān),使學(xué)生感受到學(xué)習函數的必要性和重要性,激發(fā)學(xué)習的積極性.

  教學(xué)重點(diǎn)/難點(diǎn)

  重點(diǎn):理解函數的模型化思想,用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數;

  難點(diǎn):符號“y=f(x)”的含義,函數定義域和值域的區間表示;

  教學(xué)用具

  多媒體

  4.標簽

  函數及其表示

  教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情景,揭示課題

  1、復習初中所學(xué)函數的概念,強調函數的模型化思想;

  2、閱讀課本引例,體會(huì )函數是描述客觀(guān)事物變化規律的數學(xué)模型的思想:

 。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

 。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

 。3)“八五”計劃以來(lái)我國城鎮居民的恩格爾系數與時(shí)間的變化關(guān)系問(wèn)題.

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導學(xué)生應用集合與對應的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴(lài)關(guān)系;

  5、根據初中所學(xué)函數的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數關(guān)系.

 。ǘ┭刑叫轮

  1、函數的有關(guān)概念

 。1)函數的概念:

  設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).

  注意:

 、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.

 。2)構成函數的三要素是什么?

  定義域、對應關(guān)系和值域

 。3)區間的概念

 、賲^間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;

 、跓o(wú)窮區間;

 、蹍^間的數軸表示.

 。4)初中學(xué)過(guò)哪些函數?它們的定義域、值域、對應法則分別是什么?

  通過(guò)三個(gè)已知的函數:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì ).

  師:歸納總結

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數的定義域

  例1:已知函數f(x)=+

 。1)求函數的定義域;

 。2)求f(-3),f()的值;

 。3)當a>0時(shí),求f(a),f(a-1)的值.

  分析:函數的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,那么函數的定義域就是指能使這個(gè)式子有意義的實(shí)數的集合,函數的定義域、值域要寫(xiě)成集合或區間的形式.

  例2、設一個(gè)矩形周長(cháng)為80,其中一邊長(cháng)為x,求它的面積關(guān)于x的函數的解析式,并寫(xiě)出定義域.

  分析:由題意知,另一邊長(cháng)為x,且邊長(cháng)x為正數,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導學(xué)生小結幾類(lèi)函數的定義域:

 。1)如果f(x)是整式,那么函數的定義域是實(shí)數集R.

  2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實(shí)數的集合.

 。3)如果f(x)是二次根式,那么函數的定義域是使根號內的式子大于或等于零的實(shí)數的集合.

 。4)如果f(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合.(即求各集合的交集)

 。5)滿(mǎn)足實(shí)際問(wèn)題有意義.

  鞏固練習:課本P19第1

  2、如何判斷兩個(gè)函數是否為同一函數

  例3、下列函數中哪個(gè)與函數y=x相等?

  分析:

  1構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)

  2兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結

 、購木唧w實(shí)例引入了函數的概念,用集合與對應的語(yǔ)言描述了函數的定義及其相關(guān)概念;②初步介紹了求函數定義域和判斷同一函數的基本方法,同時(shí)引出了區間的概念.

 。ㄎ澹┰O置問(wèn)題,留下懸念

  1、課本P24習題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數的例子(三個(gè)以上),并用集合與對應的語(yǔ)言來(lái)描述函數,同時(shí)說(shuō)出函數的定義域、值域和對應關(guān)系.

  課堂小結

高中數學(xué)教案7

  一、什么是教學(xué)案例

  教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。

  這可以從以下幾個(gè)層次來(lái)理解:

  教學(xué)案例是事件:教學(xué)案例是對教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現象的動(dòng)態(tài)性的把握。

  教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內,并且也可能包含有解決問(wèn)題的方法在內。正因為這一點(diǎn),案例才成為一種獨特的研究成果的表現形式。

  案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì )。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現。是對“當前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。

  二、如何進(jìn)行教學(xué)案例研究

  教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認識到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(cháng)的過(guò)程。

  那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節:案例研究的準備及實(shí)施、案例研究報告的撰寫(xiě)與反思。

  (一)案例研究的準備與實(shí)施

  1.研究主題的選擇

  案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評價(jià)語(yǔ)言、課堂教學(xué)調控行為等;也可以從學(xué)生的學(xué)習方式確定主題——探究性學(xué)習、問(wèn)題解決學(xué)習、合作學(xué)習、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內容等都可以確定研究的主題。

  研究者要了解當前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過(guò)有關(guān)的調查,搜集詳盡的材料(如閱讀教師的教學(xué)設計,進(jìn)行訪(fǎng)談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。

  一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對于自我發(fā)現更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現了前人(或自己)過(guò)去成功的行為嗎?事件呈現的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學(xué)習、內省和深層次理解方面就可能更加富有成效。

  高中數學(xué)教學(xué)案例研究的主題內容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現:如數學(xué)思想方法的教學(xué)、數學(xué)思維品質(zhì)的培養、本質(zhì)屬性的.抽象、數學(xué)結論的推廣等;(2)學(xué)生數學(xué)學(xué)習規律的探究:如數學(xué)學(xué)習習慣、解決問(wèn)題的思維方式、獨立思考與合作學(xué)習等;(3)教師專(zhuān)業(yè)知識的提升:如數學(xué)板書(shū)與電子屏幕的展示對學(xué)生思維的影響、數學(xué)語(yǔ)言的訓練對人們思維的影響、數學(xué)知識模式化教學(xué)的優(yōu)劣等。

  2.案例研究的基本方法

  (1)課堂觀(guān)察。觀(guān)察方法是指研究者按照一定的目的和計劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進(jìn)行觀(guān)察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀(guān)察,也可以由其他教師來(lái)實(shí)施觀(guān)察,這兩種觀(guān)察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀(guān)察方法不限于用肉眼觀(guān)察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀(guān)察的手段,以提高觀(guān)察的效果。對觀(guān)察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類(lèi)型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續分析案例提供翔實(shí)的原始材料。

  (2)訪(fǎng)談與調查。對一些課堂教學(xué)不能觀(guān)察到的師生內心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運用以及教學(xué)達標的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀(guān)察的材料;對學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調查;對學(xué)生達標的成度、效度,也可以作一些測試調查。從這些訪(fǎng)談、調查的材料中,再分析課堂教學(xué)的現象,不難發(fā)現造成各種課堂現象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節中出現問(wèn)題,從中提煉出解決問(wèn)題的對策。

  (3)文獻分析。文獻分析是通過(guò)查閱文獻資料,從過(guò)去和現在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現象的理論依據,從而增強案例分析的說(shuō)服力。當然,對廣大第一線(xiàn)教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀(guān)現象,而是通過(guò)有關(guān)教育理論文獻的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著(zhù)問(wèn)題,查閱、分析有關(guān)文獻資料,從學(xué)習中提高研究者自身的理論水平。

  (二)案例研究報告的撰寫(xiě)

  1.常見(jiàn)的案例報告格式

  撰寫(xiě)教學(xué)案例,結構可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當前,國內外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對案例的客觀(guān)描述;二是對案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。

  下面介紹兩種常用的案例編寫(xiě)的格式:

  (1)“描述+分析”式

  此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對話(huà),也可以概括式地敘述,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋?zhuān)鞔_正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。

  (2)“背景+描述+問(wèn)題+詮釋”式

  此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:

  A.主題與背景

  主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀(guān)點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當然,這部分的內容不宜很長(cháng),只需提綱挈領(lǐng)敘述清楚即可。

  B.情景描述

  與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。

  C.問(wèn)題討論

  這是根據主題要求與情景描述,進(jìn)行的分析、歸納、總結與提煉,包括學(xué)科知識的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項。這部分內容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認識水平與學(xué)生主動(dòng)學(xué)習的能力。不同的教學(xué)觀(guān)念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。

  D.詮釋與研究

  這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們?吹竭@樣的現象,課堂教學(xué)的效果高于預期的目標,反之教師期望的目標學(xué)生沒(méi)有達到或有所偏離,教學(xué)內容呈現的先后與學(xué)生理解的程度、教學(xué)方法運用與學(xué)生內在動(dòng)機的激發(fā)等環(huán)節存在著(zhù)矛盾,這些事件的背后,必然隱含著(zhù)豐富的教育思想。所以,通過(guò)詮釋?zhuān)诰蜻@些事件背后的內在思想,揭示其教育規律就顯得十分的必要。

  2.案例報告撰寫(xiě)的關(guān)鍵

  (1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習他人的案例作品以提高寫(xiě)作技巧外,還應把握以下四點(diǎn):

  A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數學(xué)教育方式、明確學(xué)生數學(xué)學(xué)習的難點(diǎn)和重點(diǎn),尋找數學(xué)教師專(zhuān)業(yè)發(fā)展的途徑與規律。報告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。

  案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨特見(jiàn)解、獨家發(fā)現。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對實(shí)踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng )意的題目《“導之有方”方能“導之有效”》、《跳出數學(xué)教數學(xué)》、《在數學(xué)的疑難處悟成長(cháng)》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。

  B.理論性原則:解決問(wèn)題的策略中應當蘊含一定的教育基本原理和教育思想。實(shí)際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現教師的教學(xué)思想和教育基本原理。

  C.敘事性原則:案例報告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節,可以?shī)A敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個(gè)主題的幾節課的情景片段。

  D.學(xué)科性原則:數學(xué)案例報告一定要體現學(xué)科的特征,要有較深刻的理性思考,要反映數學(xué)的基本思想與方法,要符合課程標準,滿(mǎn)足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現。

  (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:

  A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據操作程序作一點(diǎn)“簡(jiǎn)評”,最后作“總評”。

  B.以案說(shuō)理:對教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節,尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(cháng)篇幅的理性思考。

  C.圖表展示法:用圖表進(jìn)行統計的形式體現撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數,投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數張圖表上用百分比或個(gè)(次)數進(jìn)行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。

  D.分析討論法:在撰寫(xiě)時(shí),應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫(xiě)者還必須對討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。

  3.優(yōu)秀案例的特征

  (1)時(shí)代性:一個(gè)好的案例描述的是現實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應該以關(guān)注今天所面臨的疑難問(wèn)題為著(zhù)眼點(diǎn),至少應該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應該與整個(gè)時(shí)代及教學(xué)背景相照應,這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對案例所涉及的人產(chǎn)生移情作用。

  (2)真實(shí)性:一個(gè)好的案例應該包括從案例所反映的對象那里引述的材料——案例寫(xiě)作必須持一種客觀(guān)的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對話(huà)、筆記、信函等,以增強案例的真實(shí)感和可讀性。重要的事實(shí)性材料應注明資料來(lái)源。

  (3)適用性:一個(gè)好的案例需要針對面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著(zhù)解決問(wèn)題的詳細過(guò)程,這應該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話(huà),那么最為適宜的方案,就應該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。

  (4)反思性:一個(gè)好的案例需要有對已經(jīng)做出的解決問(wèn)題的決策的評價(jià)——評價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_(kāi)頭或結尾寫(xiě)下案例作者對自己解決問(wèn)題策略的評論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。

  三、案例研究過(guò)程中需注意的問(wèn)題

  1.選材面過(guò)窄。從內容上看,多數案例是關(guān)于課堂教學(xué)甚至局限于一節課的研究,往往不能說(shuō)明問(wèn)題,或者在一節課中,也只會(huì )從簡(jiǎn)單的對話(huà)分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對教學(xué)情境的豐富性、復雜性和聯(lián)系性認識不夠。

  2.缺乏典型性。有的案例對教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對某一事件現象的分析、處理、詮釋?zhuān)_到舉一反三的效果,這樣的案例對他人沒(méi)什么借鑒作用。

  3.主題不明確。主要體現為:

  (1)主題渙散。有的案例象記流水帳,沒(méi)有根據需要進(jìn)行恰當的取舍,看不出作者要反映、探討什么問(wèn)題,缺乏指導性、創(chuàng )新性和參考性。

  (2)定題過(guò)于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學(xué)案例》、《“拋物線(xiàn)”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

  4.結構不合理。案例作為一種文體,有它自己的寫(xiě)作結構,只有優(yōu)化案例的結構,才能增強案例的可讀性和指導性。如寫(xiě)成一般的教學(xué)設計,一般包括“備課思路、教學(xué)目標、教學(xué)重點(diǎn)、教學(xué)方法、課前準備、教學(xué)內容、教學(xué)過(guò)程”等內容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評析少等等。沒(méi)有創(chuàng )新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。

  5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀(guān)點(diǎn),分析闡明的是另一種觀(guān)點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。

高中數學(xué)教案8

  教學(xué)目的:

 。1)使學(xué)生初步理解集合的概念,知道常用數集的概念及記法

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義

 。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

  教學(xué)重點(diǎn):集合的基本概念及表示方法

  教學(xué)難點(diǎn):運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

  授課類(lèi)型:新授課

  課時(shí)安排:1課時(shí)

  教 具:多媒體、實(shí)物投影儀

  內容分析:

  集合是中學(xué)數學(xué)的一個(gè)重要的基本概念 在小學(xué)數學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數中用到的有數集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習數學(xué)就離不開(kāi)對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習、工作中,也是認識問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認識學(xué)習本章的意義,也是本章學(xué)習的基礎把集合的初步知識與簡(jiǎn)易邏輯知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎 例如,下一章講函數的概念與性質(zhì),就離不開(kāi)集合與邏輯。

  本節首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子。

  這節課主要學(xué)習全章的引言和集合的基本概念 學(xué)習引言是引發(fā)學(xué)生的學(xué)習興趣,使學(xué)生認識學(xué)習本章的意義 本節課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對概念有一個(gè)初步認識 教科書(shū)給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集 ”這句話(huà),只是對集合概念的描述性說(shuō)明。

  教學(xué)過(guò)程:

  一、復習引入:

  1、簡(jiǎn)介數集的發(fā)展,復習最大公約數和最小公倍數,質(zhì)數與和數;

  2、教材中的章頭引言;

  3、集合論的創(chuàng )始人——康托爾(德國數學(xué)家)(見(jiàn)附錄);

  4.“物以類(lèi)聚”,“人以群分”;

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問(wèn)題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P(guān)概念:

  由一些數、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對象的全體形成一個(gè)集合,或者說(shuō),某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。集合中的每個(gè)對象叫做這個(gè)集合的元素。

  定義:一般地,某些指定的對象集在一起就成為一個(gè)集合.

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡(jiǎn)稱(chēng)集)

 。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

  2、常用數集及記法

 。1)非負整數集(自然數集):全體非負整數的集合 記作N,

 。2)正整數集:非負整數集內排除0的集 記作N*或N+

 。3)整數集:全體整數的集合 記作Z ,

 。4)有理數集:全體有理數的集合 記作Q ,

 。5)實(shí)數集:全體實(shí)數的集合 記作R

  注:(1)自然數集與非負整數集是相同的,也就是說(shuō),自然數集包括數0

 。2)非負整數集內排除0的集 記作N*或N+ Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標準給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒(méi)有重復

 。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序寫(xiě)出)

  5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_(kāi)口方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě)

  三、練習題:

  1、教材P5練習1、2

  2、下列各組對象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數 (不確定)

 。2)好心的人 (不確定)

 。3)1,2,2,3,4,5.(有重復)

  3、設a,b是非零實(shí)數,那么 可能取的值組成集合的元素是_—2,0,2__

  4、由實(shí)數x,-x,|x|, 所組成的集合,最多含( A )

 。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

  5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數,求證:

 。1) 當x∈N時(shí), x∈G;

 。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整數,

  ∴ = 不一定屬于集合G

  四、小結:本節課學(xué)習了以下內容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

  3、常用數集的定義及記法

高中數學(xué)教案9

  【課題名稱(chēng)】

  《等差數列》的導入

  【授課年級】

  高中二年級

  【教學(xué)重點(diǎn)】

  理解等差數列的概念,能夠運用等差數列的定義判斷一個(gè)數列是否為等差數列。

  【教學(xué)難點(diǎn)】

  等差數列的性質(zhì)、等差數列“等差”特點(diǎn)的理解,

  【教具準備】多媒體課件、投影儀

  【三維目標】

  ㈠知識目標:

  了解公差的概念,明確一個(gè)等差數列的限定條件,能根據定義判斷一個(gè)等差數列是否是一個(gè)等差數列;

  ㈡能力目標:

  通過(guò)尋找等差數列的共同特征,培養學(xué)生的觀(guān)察力以及歸納推理的能力;

  ㈢情感目標:

  通過(guò)對等差數列概念的歸納概括,培養學(xué)生的觀(guān)察、分析資料的能力。

  【教學(xué)過(guò)程】

  導入新課

  師:上兩節課我們已經(jīng)學(xué)習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點(diǎn)。下面我們觀(guān)察以下的幾個(gè)數列的例子:

  (1)我們經(jīng)常這樣數數,從0開(kāi)始,每個(gè)5個(gè)數可以得到數列:0,5,10,15,20,()

  (2)2000年,在澳大利亞悉尼舉行的奧運會(huì )上,女子舉重被正式列為比賽項目,該項目工設置了7個(gè)級別,其中較輕的4個(gè)級別體重組成的數列(單位:kg)為48,53,58,63,()試問(wèn)第五個(gè)級別體重多少?

  (3)為了保證優(yōu)質(zhì)魚(yú)類(lèi)有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚(yú)。如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個(gè)數列:18,15.5,13,10.5,8,(),則第六個(gè)數應為多少?

  (4)10072,10144,10216,(),10360

  請同學(xué)們回答以上的四個(gè)問(wèn)題

  生:第一個(gè)數列的第6項為25,第二個(gè)數列的第5個(gè)數為68,第三個(gè)數列的第6個(gè)數為5.5,第四個(gè)數列的第4個(gè)數為10288。

  師:我來(lái)問(wèn)一下,你是依據什么得到了這幾個(gè)數的呢?請以第二個(gè)數列為例說(shuō)明一下。

  生:第二個(gè)數列的后一項總比前一項多5,依據這個(gè)規律我就得到了這個(gè)數列的第5個(gè)數為68.

  師:說(shuō)的很好!同學(xué)們再仔細地觀(guān)察一下以上的四個(gè)數列,看看以上的四個(gè)數列是否有什么共同特征?請注意,是共同特征。

  生1:相鄰的兩項的差都等于同一個(gè)常數。

  師:很好!那作差是否有順序?是否可以顛倒?

  生2:作差的順序是后項減去前項,不能顛倒!

  師:正如生1的總結,這四個(gè)數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個(gè)常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

  推進(jìn)新課

  等差數列的定義:一般地,如果一個(gè)數列從第2項起,每一項與它的前一項的差都等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應該注意公差d一定是由后項減前項。

  師:有哪個(gè)同學(xué)知道定義中的關(guān)鍵字是什么?

  生2:“從第二項起”和“同一個(gè)常數”

高中數學(xué)教案10

  [學(xué)習目標]

 。1)會(huì )用坐標法及距離公式證明Cα+β;

 。2)會(huì )用替代法、誘導公式、同角三角函數關(guān)系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉化;

 。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

  [學(xué)習重點(diǎn)]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習難點(diǎn)]

  余弦和角公式的推導

  [知識結構]

  1、兩角和的余弦公式是三角函數一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數定義及平面內兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(證明過(guò)程見(jiàn)課本)

  2、通過(guò)下面各組數的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當α、β中有一個(gè)是的整數倍時(shí),應首選誘導公式進(jìn)行變形。注意兩角和與差的三角函數是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數學(xué)教案11

  教學(xué)目標

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個(gè)整體,知道映射的特殊之處在于必須是多對一和一對一的對應;

 。2)能準確使用數學(xué)符號表示映射, 把握映射與一一映射的區別;

 。3)會(huì )求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過(guò)程中,培養學(xué)生的觀(guān)察,比較和歸納的能力.

  3.通過(guò)映射概念的學(xué)習,逐步提高學(xué)生對知識的探究能力.

  教學(xué)建議

  教材分析

 。1)知識結構

  映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區別與聯(lián)系.

 。2)重點(diǎn),難點(diǎn)分析

  本節的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認識.

 、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對應的基礎上發(fā)展而來(lái).教學(xué)中應特別強調對應集合 B中的唯一這點(diǎn)要求的理解;

  映射是學(xué)生在初中所學(xué)的對應的基礎上學(xué)習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿(mǎn)足一對一和多對一的對應就能體現出“任一對唯一”.

 、诙灰挥成溆衷谟成涞幕A上增加新的要求,決定了它在學(xué)習中是比較困難的.

  教法建議

 。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認真觀(guān)察,比較,再引導學(xué)生發(fā)現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認識從感性認識到理性認識.

 。2)在剛開(kāi)始學(xué)習映射時(shí),為了能讓學(xué)生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀(guān)的認識映射,而后再選擇用抽象的數學(xué)符號表示映射,比如:

 。3)對于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀(guān)察,教師引導學(xué)生發(fā)現映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

 。4)關(guān)于求象和原象的問(wèn)題,應在計算的過(guò)程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數解)加深對映射的認識.

 。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀(guān)察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計算,最后進(jìn)行小結,教師要起到點(diǎn)撥和深化的作用.

  教學(xué)設計方案

  2.1映射

  教學(xué)目標(1)了解映射的概念,象與原象及一一映射的概念.

  (2)在概念形成過(guò)程中,培養學(xué)生的觀(guān)察,分析對比,歸納的能力.

  (3)通過(guò)映射概念的學(xué)習,逐步提高學(xué)生的探究能力.

  教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認識.

  教學(xué)用具:實(shí)物投影儀

  教學(xué)方法:?jiǎn)l(fā)討論式

  教學(xué)過(guò)程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數的定義并研究了幾類(lèi)簡(jiǎn)單的常見(jiàn)函數.在高中,將利用前面集合有關(guān)知識,利用映射的觀(guān)點(diǎn)給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

  二、新課

  在前一章集合的初步知識中,我們學(xué)習了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jì)蓚(gè)集合的元素與元素之間的對應關(guān)系.這要先從我們熟悉的對應說(shuō)起(用投影儀打出一些對應關(guān)系,共6個(gè))

  我們今天要研究的是一類(lèi)特殊的對應,特殊在什么地方呢?

  提問(wèn)1:在這些對應中有哪些是讓A中元素就對應B中唯一一個(gè)元素?

  讓學(xué)生仔細觀(guān)察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細說(shuō)明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

  提問(wèn)2:能用自己的語(yǔ)言描述一下這幾個(gè)對應的共性嗎?

  經(jīng)過(guò)師生共同推敲,將映射的定義引出.(主體內容由學(xué)生完成,教師做必要的補充)

高中數學(xué)教案12

  三維目標:

  1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

  2、過(guò)程與方法:

  (1)能夠從現實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題;

  (2)在解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣的方法從總體中抽取樣本。

  3、情感態(tài)度與價(jià)值觀(guān):通過(guò)對現實(shí)生活和其他學(xué)科中統計問(wèn)題的提出,體會(huì )數學(xué)知識與現實(shí)世界及各學(xué)科知識之間的聯(lián)系,認識數學(xué)的重要性。

  4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關(guān)知識從總體中抽取樣本。

  教學(xué)方法:

  講練結合法

  教學(xué)用具:

  多媒體

  課時(shí)安排:

  1課時(shí)

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進(jìn)行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?

  二、探究新知

  1、統計的有關(guān)概念:總體:在統計學(xué)中,所有考察對象的全體叫做總體、個(gè)體:每一個(gè)考察的對象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、

  2、簡(jiǎn)單隨機抽樣的概念一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機樣本。

  下列抽樣的方式是否屬于簡(jiǎn)單隨機抽樣?為什么?

  (1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。

  (2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗后,再把它放回箱子。

  (3)從8臺電腦中,不放回地隨機抽取2臺進(jìn)行質(zhì)量檢查(假設8臺電腦已編好號,對編號隨機抽取)

  3、常用的簡(jiǎn)單隨機抽樣方法有:

  (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號,把號碼寫(xiě)在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本。

  思考?你認為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當總體中的個(gè)體數很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學(xué)出來(lái)做游戲,請設計一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機會(huì )相等。

  分析:可以把57位同學(xué)的學(xué)號分別寫(xiě)在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個(gè)抽出8張紙片,再選出紙片上的學(xué)號對應的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號;第二步:準備N(xiāo)個(gè)號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個(gè)號簽,不放回地連續取n次;第三步:將取出的n個(gè)號簽上的號碼所對應的n個(gè)個(gè)體作為樣本。

  (2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產(chǎn)生的隨機數進(jìn)行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現從800袋牛奶中抽取60袋進(jìn)行檢驗,利用隨機數表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號,可以編為000,001,799。

  第二步,在隨機數表中任選一個(gè)數,例如選出第8行第7列的數7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數7開(kāi)始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個(gè)三位數785,由于785<799,說(shuō)明號碼785在總體內,將它取出;

  繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。

  三、課堂練習

  四、課堂小結

  1、簡(jiǎn)單隨機抽樣的概念一般地,設一個(gè)總體的個(gè)體數為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱(chēng)這樣的抽樣為簡(jiǎn)單隨機抽樣。

  2、簡(jiǎn)單隨機抽樣的方法:抽簽法隨機數表法

  五、課后作業(yè)

  P57練習1、2

  六、板書(shū)設計

  1、統計的有關(guān)概念

  2、簡(jiǎn)單隨機抽樣的概念

  3、常用的簡(jiǎn)單隨機抽樣方法有:(1)抽簽法(2)隨機數表法

  4、課堂練習

高中數學(xué)教案13

  教學(xué)目標

 。1)掌握直線(xiàn)方程的一般形式,掌握直線(xiàn)方程幾種形式之間的互化.

 。2)理解直線(xiàn)與二元一次方程的關(guān)系及其證明

 。3)培養學(xué)生抽象概括能力、分類(lèi)討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀(guān)點(diǎn).

  教學(xué)重點(diǎn)、難點(diǎn):直線(xiàn)方程的一般式.直線(xiàn)與二元一次方程 ( 、 不同時(shí)為0)的對應關(guān)系及其證明.

  教學(xué)用具:計算機

  教學(xué)方法:?jiǎn)l(fā)引導法,討論法

  教學(xué)過(guò)程

  下面給出教學(xué)實(shí)施過(guò)程設計的簡(jiǎn)要思路:

  教學(xué)設計思路

 。ㄒ唬┮氲脑O計

  前邊學(xué)習了如何根據所給條件求出直線(xiàn)方程的方法,看下面問(wèn)題:

  問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線(xiàn)的方程,并觀(guān)察方程屬于哪一類(lèi),為什么?

  答:直線(xiàn)方程是 ,屬于二元一次方程,因為未知數有兩個(gè),它們的最高次數為一次.

  肯定學(xué)生回答,并糾正學(xué)生中不規范的表述.再看一個(gè)問(wèn)題:

  問(wèn):求出過(guò)點(diǎn) , 的直線(xiàn)的方程,并觀(guān)察方程屬于哪一類(lèi),為什么?

  答:直線(xiàn)方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個(gè),它們的最高次數為一次.

  肯定學(xué)生回答后強調“也是二元一次方程,都是因為未知數有兩個(gè),它們的最高次數為一次”.

  啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.

  學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導,使學(xué)生的認識統一到如下問(wèn)題:

  【問(wèn)題1】“任意直線(xiàn)的方程都是二元一次方程嗎?”

 。ǘ┍竟澲黧w內容教學(xué)的設計

  這是本節課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

  學(xué)生或獨立研究,或合作研究,教師巡視指導.

  經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:

  按斜率是否存在,任意直線(xiàn) 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時(shí),直線(xiàn) 的截距 也一定存在,直線(xiàn) 的方程可表示為 ,它是二元一次方程.

  當 不存在時(shí),直線(xiàn) 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學(xué)生有的認為是有的認為不是,此時(shí)教師引導學(xué)生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線(xiàn) 上點(diǎn)的坐標形式,與其它直線(xiàn)上點(diǎn)的坐標形式?jīng)]有任何區別,根據直線(xiàn)方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的關(guān)于 、 的二元一次方程.

  至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線(xiàn)方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準確地說(shuō)應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學(xué)們注意:這樣表達起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達?

  學(xué)生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的形如 (其中 、 不同時(shí)為0)的二元一次方程.

  啟發(fā):任何一條直線(xiàn)都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

  【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn)嗎?

  不難看出上邊的結論只是直線(xiàn)與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價(jià)不同思路,達成共識:

  回顧上邊解決問(wèn)題的思路,發(fā)現原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數 是否為0恰好對應斜率 是否存在,即

 。1)當 時(shí),方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線(xiàn).

 。2)當 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線(xiàn).

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn).

  為方便,我們把 (其中 、 不同時(shí)為0)稱(chēng)作直線(xiàn)方程的一般式是合理的.

  【動(dòng)畫(huà)演示】

  演示“直線(xiàn)各參數”文件,體會(huì )任何二元一次方程都表示一條直線(xiàn).

  至此,我們的第二個(gè)問(wèn)題也圓滿(mǎn)解決,而且我們還發(fā)現上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線(xiàn)與二元一次方程的對應關(guān)系,同時(shí),直線(xiàn)方程的一般形式是對直線(xiàn)特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì )到了特殊與一般的轉化關(guān)系.

 。ㄈ┚毩曥柟、總結提高、板書(shū)和作業(yè)等環(huán)節的設計

  略

高中數學(xué)教案14

  1. 幽默風(fēng)趣的你,平時(shí)在班里話(huà)語(yǔ)不多,也不張揚,但是,你在無(wú)意中的表現仍然贏(yíng)得了很好的人際關(guān)系,學(xué)習上你認真刻苦,也能及時(shí)的完成作業(yè),但是我覺(jué)得你總是沒(méi)把全部的心思用在學(xué)習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關(guān)注學(xué)習成績(jì)對你才是更有意義的事!

  2. 身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)習上你勤奮刻苦,尤其在英語(yǔ)的學(xué)習上,顯示出了你的語(yǔ)言天賦,我覺(jué)得,假如你能把這份自信和興趣用到其他的學(xué)科學(xué)習中,也一定會(huì )收獲很多的!加油吧!

  3. 你能?chē)栏褡袷匦R,上課認真聽(tīng)講,作業(yè)完成認真,樂(lè )于助人,愿意幫助同學(xué),大掃除時(shí)你不怕苦,不怕累,但是英語(yǔ)方面還不夠給力,所以,如果再投入一點(diǎn),定會(huì )取得更好的結果,而且你還是一個(gè)愿意動(dòng)腦筋的好學(xué)生,如果繼續保持下去定會(huì )取得驕人的成績(jì)!

  4. 你是個(gè)懂禮貌明事理的孩子,你能?chē)栏褡袷匕嗉壖o律,熱愛(ài)集體,對待學(xué)習態(tài)度端正,上課能夠專(zhuān)心聽(tīng)講,課下能夠認真完成作業(yè)。你的學(xué)習方法有待改進(jìn),若能做到學(xué)習時(shí)心無(wú)旁騖就好了,掌握知識也不夠牢固,思維能力要進(jìn)一步培養和提高,平時(shí)善于多動(dòng)筆認真作好筆記,多開(kāi)動(dòng)腦筋,相信你一定能在下學(xué)期更得更大的進(jìn)步! 你學(xué)習認真刻苦,也能善于思考,更十分活潑,并能?chē)栏褡袷匕嗉壓退奚峒o律,上課你能認真聽(tīng)講,做作業(yè)時(shí)你十分專(zhuān)注,常常愿意花功夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認真做作業(yè)的同時(shí),將速度提上去,我相信你會(huì )做得更好。要多講究學(xué)習方法,不能靠熬夜來(lái)完成學(xué)習任務(wù),提高學(xué)習效率,老師相信你一定能通過(guò)自己的努力取得更好的成績(jì)!

  5. 雖然你個(gè)頭小,但每次你領(lǐng)讀時(shí)的那股認真勁兒,令老師暗暗稱(chēng)贊。你尊敬老師,和同學(xué)能和睦相處。甜美可愛(ài)的你,經(jīng)過(guò)不斷的努力,你會(huì )更出色的!

  6. 你是個(gè)活潑可愛(ài)的孩子,課堂上,你非常投入地學(xué)習著(zhù),朗讀課文時(shí)數你最有感情。中午你還主動(dòng)給老師捶背,真是個(gè)會(huì )關(guān)心人的孩子,老師謝謝你。你十分喜愛(ài)讀課外書(shū),不過(guò)課上可不能偷看啊!愿書(shū)成為你的好朋友。

  7. 學(xué)習中你能?chē)栏褚笞约,這是你永不落敗的秘訣。老師希望你能借助良好的學(xué)習方法,抓緊一切時(shí)間,笑在最后的一定是你!

  8. 許麗君——你思想上進(jìn),踏實(shí)穩重,誠實(shí)謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽(yù)簿里有你的功勞。但學(xué)習的主動(dòng)精神不夠,競爭意識不強,也很少看到你向老師請教,成績(jì)進(jìn)步不明顯。請相信:世上沒(méi)有比腳更長(cháng)的路,也沒(méi)有比心更高的山!望今后大膽進(jìn)取,多思多問(wèn),發(fā)揮你的聰明才智,進(jìn)一步激發(fā)活力,提高學(xué)習效率,持之以恒,美好的明天屬于你!

  9. 每天你都背著(zhù)書(shū)包高高興興地來(lái)上學(xué),學(xué)到了不少的知識,可惜只能記住很少的一部分。希望你改進(jìn)學(xué)習方法,提高學(xué)習效率,在下學(xué)期有更大的進(jìn)步!

  10. 你言語(yǔ)不多,但待人誠懇、禮貌,作風(fēng)踏實(shí),品學(xué)兼優(yōu),熱愛(ài)班級,關(guān)愛(ài)同學(xué),勤奮好學(xué),思維敏捷,成績(jì)優(yōu)秀。愿你扎實(shí)各科基礎,堅持不懈,!一定能考上重點(diǎn)! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高中數學(xué)教案15

  教學(xué)目標

  (1)了解算法的含義,體會(huì )算法思想。

  (2)會(huì )用自然語(yǔ)言和數學(xué)語(yǔ)言描述簡(jiǎn)單具體問(wèn)題的算法;

  (3)學(xué)習有條理地、清晰地表達解決問(wèn)題的步驟,培養邏輯思維能力與表達能力。

  教學(xué)重難點(diǎn)

  重點(diǎn):算法的含義、解二元一次方程組的算法設計。

  難點(diǎn):把自然語(yǔ)言轉化為算法語(yǔ)言。

  情境導入

  電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對他來(lái)說(shuō)也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀(guān)察、等待目標出現(用望遠鏡或瞄準鏡);

  第二步:瞄準目標;

  第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;

  第四步:根據第三步的結果修正彈著(zhù)點(diǎn);

  第五步:開(kāi)槍;

  第六步:迅速轉移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數學(xué)上我們叫算法。

  課堂探究

  預習提升

  1、定義:算法可以理解為由基本運算及規定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類(lèi)問(wèn)題。

  2、描述方式

  自然語(yǔ)言、數學(xué)語(yǔ)言、形式語(yǔ)言(算法語(yǔ)言)、框圖。

  3、算法的要求

  (1)寫(xiě)出的算法,必須能解決一類(lèi)問(wèn)題,且能重復使用;

  (2)算法過(guò)程要能一步一步執行,每一步執行的操作,必須確切,不能含混不清,而且經(jīng)過(guò)有限步后能得出結果。

  4、算法的特征

  (1)有限性:一個(gè)算法應包括有限的操作步驟,能在執行有窮的操作步驟之后結束。

  (2)確定性:算法的計算規則及相應的計算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內完成的基本操作,并能得到確定的結果。

  (4)順序性:算法從初始步驟開(kāi)始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續,且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續。

  (5)不唯一性:解決同一問(wèn)題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

 、僦矘(shù)需要運苗、挖坑、栽苗、澆水這些步驟;

 、诎错樞蜻M(jìn)行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動(dòng)車(chē)到濟南,再從濟南乘飛機到倫敦觀(guān)看奧運會(huì )開(kāi)幕式;

 、3x>x+1;

 、萸笏心鼙3整除的正數,即3,6,9,12。

  能稱(chēng)為算法的個(gè)數為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無(wú)窮的,與算法的有限性矛盾。

  【答案】B

  [規律總結]

  1、正確理解算法的概念及其特點(diǎn)是解決問(wèn)題的關(guān)鍵、

  2、針對判斷語(yǔ)句是否是算法的問(wèn)題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問(wèn)題、

  【變式訓練】下列對算法的理解不正確的是________

 、僖粋(gè)算法應包含有限的步驟,而不能是無(wú)限的

 、谒惴ǹ梢岳斫鉃橛苫具\算及規定的運算順序構成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤斢行У貓绦,并得到確定的結果

 、芤粋(gè)問(wèn)題只能設計出一個(gè)算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;

  由對于同一個(gè)問(wèn)題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個(gè)算法。

  [思路分析]解線(xiàn)性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒(méi)有本質(zhì)的差別,為了適用于解一般的線(xiàn)性方程組,以便于在計算機上實(shí)現,我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過(guò)回代方程求出方程組的解)解線(xiàn)性方程組、

  [規范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規律總結]1、本題用了2種方法求解,對于問(wèn)題的求解過(guò)程,我們既要強調對“通法、通解”的理解,又要強調對所學(xué)知識的靈活運用。

  2、設計算法時(shí),經(jīng)常遇到解方程(組)的問(wèn)題,一般是按照數學(xué)上解方程(組)的方法進(jìn)行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據求解步驟設計算法步驟。

  【變式訓練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問(wèn)題的算法設計

  例3、設計一個(gè)算法,對任意3個(gè)整數a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數

  [規范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規律總結]求最小(大)數就是從中篩選出最小(大)的一個(gè),篩選過(guò)程中的每一步都是比較兩個(gè)數的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數中篩選出滿(mǎn)足要求的一個(gè)。

  【變式訓練】在下列數字序列中,寫(xiě)出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個(gè)數m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執行;

  4、繼續將序列中的其他數賦給m,重復第2步,直到搜索到89。

  命題方向4非數值性問(wèn)題的算法

  例4、一個(gè)人帶三只狼和三只羚羊過(guò)河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒(méi)有人在的時(shí)候,如果狼的數量不少于羚羊的數量,狼就會(huì )吃掉羚羊。

  (1)設計安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

【高中數學(xué)教案】相關(guān)文章:

高中數學(xué)教案12-29

高中數學(xué)教案07-11

高中數學(xué)教案07-20

高中數學(xué)教案模板11-18

高中數學(xué)教案范文07-20

高中數學(xué)教案【熱門(mén)】12-31

高中數學(xué)教案【精】12-31

【精】高中數學(xué)教案12-29

【熱】高中數學(xué)教案12-29

【薦】高中數學(xué)教案12-29