【熱門(mén)】二次根式教案4篇
作為一名教職工,總歸要編寫(xiě)教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那么寫(xiě)教案需要注意哪些問(wèn)題呢?以下是小編整理的二次根式教案4篇,歡迎閱讀與收藏。
二次根式教案 篇1
一、內容解析
本節教材是在學(xué)生學(xué)習二次根式概念的基礎上,結合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀(guān)察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據算術(shù)平方根的意義,就具體數字進(jìn)行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標和目標解析
1.教學(xué)目標
。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;
。2)會(huì )運用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)了解代數式的概念.
2.目標解析
。1)學(xué)生能根據具體數字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì )用符號表述這一性質(zhì);
。2)學(xué)生能靈活運用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
。3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì )其共同特點(diǎn),得出代數式的概念.
三、教學(xué)問(wèn)題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運算的重要基礎.學(xué)生根據二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強的問(wèn)題.由于學(xué)生初次學(xué)習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點(diǎn)需要教師精心設計好每一道習題,讓學(xué)生在練習中進(jìn)一步掌握二次根式的性質(zhì),培養其靈活運用的能力.
本節課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運用.
四、教學(xué)過(guò)程設計
1.探究性質(zhì)1
問(wèn)題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導學(xué)生說(shuō)出每一個(gè)式子的含義.
【設計意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負數的算術(shù)平方根的平方.
問(wèn)題2 根據算術(shù)平方根的意義填空,并說(shuō)出得到結論的依據.
師生活動(dòng) 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結論的依據.
【設計意圖】學(xué)生通過(guò)計算或根據算術(shù)平方根的意義得出結論,為歸納二次根式的性質(zhì)1作鋪墊.
問(wèn)題3 從以上的結論中你能發(fā)現什么規律?你能用一個(gè)式子表示這個(gè)規律嗎?
師生活動(dòng):引導學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養學(xué)生抽象概括的能力.
例2 計算
。1)
。2)
師生活動(dòng):學(xué)生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì )靈活運用.
2.探究性質(zhì)2
問(wèn)題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導學(xué)生說(shuō)出每一個(gè)式子的含義.
【設計意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數的平方的算術(shù)平方根.
問(wèn)題5 根據算術(shù)平方根的意義填空,并說(shuō)出得到結論的依據.
師生活動(dòng) 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結論的依據.
【設計意圖】學(xué)生通過(guò)計算或根據算術(shù)平方根的意義得出結論,為歸納二次根式的性質(zhì)2作鋪墊.
問(wèn)題6 從以上的結論中你能發(fā)現什么規律?你能用一個(gè)式子表示這個(gè)規律嗎?
師生活動(dòng):引導學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養學(xué)生抽象概括的能力.
例3 計算
。1)
。2)
師生活動(dòng):學(xué)生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì )靈活運用.
3.歸納代數式的概念
問(wèn)題7 回顧我們學(xué)過(guò)的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得得出代數式的概念.
【設計意圖】學(xué)生通過(guò)觀(guān)察式子的共同特征,形成代數式的概念,培養學(xué)生的概括能力.
4.綜合運用
。1)算一算:
【設計意圖】設計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.
。2)想一想: 中, 的取值范圍是什么?當 ≥0時(shí), 等于多少?當 時(shí), 又等于多少?
【設計意圖】通過(guò)此問(wèn)題的設計,加深學(xué)生對 的理解,開(kāi)闊學(xué)生的視野,訓練學(xué)生的思維.
。3)談一談你對 與 的認識.
【設計意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
。3)請談?wù)劙l(fā)現二次根式性質(zhì)的思考過(guò)程?
。4)想一想,到現在為止,你學(xué)習了哪幾類(lèi)字母表示數得到的式子?說(shuō)說(shuō)你對代數式的認識.
6.布置作業(yè):教科書(shū)習題16.1第2,4題.
二次根式教案 篇2
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì )應用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì )運用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復習引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據:
2.引導學(xué)生觀(guān)察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數有什么不同?
化簡(jiǎn)前的被開(kāi)方數有分數,分式;化簡(jiǎn)后的被開(kāi)方數都是整數或整式,且被開(kāi)方數中開(kāi)得盡方的因數或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開(kāi)方數符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結學(xué)生回答的內容后,給出最簡(jiǎn)二次根式定義:
滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數的因數是整數,因式是整式;
(2)被開(kāi)方數中不含能開(kāi)得盡的因數或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數中每個(gè)因式的指數小于2;特別注意被開(kāi)方數應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結
把二次根式化成最簡(jiǎn)二次根式的根據是什么?應用了什么方法?
當被開(kāi)方數為整數或整式時(shí),把被開(kāi)方數進(jìn)行因數或因式分解,根據積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數或因式用它的算術(shù)平方根代替移到根號外面去。
當被開(kāi)方數是分數或分式時(shí),根據分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據分式的基本性質(zhì)把被開(kāi)方數的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
二次根式教案 篇3
教學(xué)目標
課標要求:學(xué)生要學(xué)會(huì )學(xué)習、自主學(xué)習,要為學(xué)生終生學(xué)習打下堅實(shí)的基礎,根據教學(xué)大綱和新課標的要求,根據教材內容和學(xué)生的特點(diǎn)我確定了本節課的教學(xué)目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀(guān)察、比較、總結二次根式的基本性質(zhì)的過(guò)程,發(fā)展學(xué)生的歸納概括能力。 3、通過(guò)對二次根式的概念和性質(zhì)的探究,提高數學(xué)探究能力和歸納表達能力。 4、學(xué)生經(jīng)歷觀(guān)察、比較、總結和應用等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,體驗發(fā)現的樂(lè )趣,并提高應用的意識。
教學(xué)重點(diǎn):二次根式的概念和基本性質(zhì)
教學(xué)難點(diǎn):二次根式的基本性質(zhì)的靈活運用
教法和學(xué)法
教學(xué)活動(dòng)的本質(zhì)是一種合作,一種交流。學(xué)生是數學(xué)學(xué)習的主人,教師是數學(xué)學(xué)習的組織者、引導者與合作者,本節課主要采用自主學(xué)習,合作探究,引領(lǐng)提升的方式展開(kāi)教學(xué)。依據學(xué)生的年齡特點(diǎn)和已有的知識基礎,本節課注重加強知識間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現由具體到抽象的認識過(guò)程。為了為后續學(xué)習打下堅實(shí)的基礎,例如在“銳角三角函數”一章中,會(huì )遇到很多實(shí)際問(wèn)題,在解決實(shí)際問(wèn)題的過(guò)程中,要遇到將二次根式化成最簡(jiǎn)二次根式等,本課適當加強練習,讓學(xué)生養成聯(lián)系和發(fā)展的觀(guān)點(diǎn)學(xué)習數學(xué)的習慣。
教學(xué)過(guò)程
活動(dòng)一:根據學(xué)生已有知識探究二次根式的概念 1.探究二次根式概念 由四個(gè)實(shí)際問(wèn)題(三個(gè)幾何問(wèn)題,一個(gè)物理問(wèn)題)入手,設置問(wèn)題情境,讓學(xué)生感受到研究二次根式來(lái)源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫(xiě)出的結果有什么特點(diǎn)? (1)要做一個(gè)兩條直角邊的長(cháng)分別為7cm和4cm的三角尺,斜邊的長(cháng)應為 cm
(2)面積為S的正方形的邊長(cháng)為
(3)要修建一個(gè)面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)
(4)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開(kāi)始落下時(shí)的高度h(單位:m)滿(mǎn)足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現所填結果都表示一個(gè)數的算術(shù)平方根,教師引導學(xué)生用一個(gè)式子表示這些有共同特點(diǎn)的式子。學(xué)生表示為,此時(shí)教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結出a這一條件。在此基礎上總結出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時(shí)下列各式有意義,通過(guò)4小題的訓練,讓學(xué)生體會(huì )二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉化的思想解決問(wèn)題,總結出解題規律:求未知數的取值范圍即轉化為①被開(kāi)方數大于等于0②分母不為0列不等式或不等式組解決問(wèn)題。
活動(dòng)二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類(lèi)討論探究出:(a)是一個(gè)非負數,此時(shí)歸納出二次根式的第一個(gè)性質(zhì):雙重非負性。培養學(xué)生的分類(lèi)討論和概括能力。例2:,則變式:,
活動(dòng)三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數和零入手來(lái)研究二次根式的第二個(gè)性質(zhì),首先讓學(xué)生通過(guò)探究活動(dòng)感受這條結論,然后再從算術(shù)平方根的意義出發(fā),結合具體例子對這條結論進(jìn)行分析,引導學(xué)生由具體到抽象,得出一般的結論,并發(fā)現開(kāi)平方運算與平方運算的關(guān)系,培養學(xué)生由特殊到一般的思維方式,提高歸納、總結的`能力。前兩題學(xué)生口述教師板書(shū),后面的兩題由學(xué)生板演引導學(xué)生分析(2)(4)實(shí)質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡(jiǎn)二次根式(簡(jiǎn)單的分母有理化)做好鋪墊。 例4:在實(shí)數范圍內分解因式
活動(dòng)四:探究二次根式的性質(zhì)3 3.探究 在活動(dòng)三的基礎上出示課本第4頁(yè)的探究: 引導學(xué)生比較活動(dòng)三與活動(dòng)四探究中兩組題目的不同之處,活動(dòng)三中的題目是對非負數先進(jìn)行開(kāi)平方運算,再進(jìn)行平方運算;而活動(dòng)四中的題目正好相反,是先進(jìn)行平方運算,再進(jìn)行開(kāi)平方運算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個(gè)性質(zhì)。培養學(xué)生觀(guān)察、對比的能力和意識。 此時(shí)引導學(xué)生談一談對()2和的聯(lián)系和區別 相同點(diǎn):①都有平方和開(kāi)平方運算 ②運算結果都是非負數 ③僅當a時(shí),()2= 不同點(diǎn):①從形式和運算順序看:()2先開(kāi)方后平方,先平方后開(kāi)方 ②從a的取值范圍看:()2(a),(a為任意數) ③從運算結果看:()2=a(a),(a為任意數
二次根式教案 篇4
教材分析:
本節內容出自九年級數學(xué)上冊第二十一章第三節的第一課時(shí),本節在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎上,來(lái)學(xué)習二次根式的加減運算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節重點(diǎn)是二次根式的加減運算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數學(xué)解決實(shí)際問(wèn)題的意識和能力。另外,通過(guò)本小節學(xué)習為后面學(xué)生熟練進(jìn)行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
學(xué)生分析:
本節課的內容是知識的延續和創(chuàng )新,學(xué)生積極主動(dòng)的投入討論、交流、建構中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識和創(chuàng )新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標,少部分學(xué)生有困難,基礎差、自學(xué)能力差,因此要提供賞識性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當的精神激勵,克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習任務(wù)。
設計理念:
新課程有效課堂教學(xué)明確倡導,學(xué)生是學(xué)習的主人,在學(xué)生自學(xué)文本的基礎上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導新的學(xué)習觀(guān),讓他們完成二次根式加減知識研究。教師從過(guò)去知識的傳授者轉變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習活動(dòng)的設計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設置開(kāi)放的、面向實(shí)際的、富有挑戰性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養分析、歸納、總結的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養成良好的學(xué)習習慣,掌握學(xué)習策略,并根據活動(dòng)中示范和指導培養學(xué)生大膽闡述并討論觀(guān)點(diǎn),說(shuō)明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習。
教學(xué)目標知識與技能目標:
會(huì )化簡(jiǎn)二次根式,了解同類(lèi)二次根式的概念,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運算解決生活的實(shí)際問(wèn)題。
過(guò)程與方法目標:
通過(guò)類(lèi)比整式加減法運算體驗二次根式加減法運算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。
情感態(tài)度與價(jià)值觀(guān):
通過(guò)對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數學(xué)學(xué)習的過(guò)程中來(lái),使他們體驗到成功的樂(lè )趣.
重點(diǎn)、難點(diǎn):重點(diǎn):
合并被開(kāi)放數相同的同類(lèi)二次根式,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法。
難點(diǎn):
二次根式加減法的實(shí)際應用。
關(guān)鍵問(wèn)題 :
了解同類(lèi)二次根式的概念,合并同類(lèi)二次根式,會(huì )進(jìn)行二次根式的加減法。
教學(xué)方法:.
1. 引導發(fā)現法:在教師的啟發(fā)引導下,鼓勵學(xué)生積極參與,與實(shí)際問(wèn)題相結合,采用“問(wèn)題—探索—發(fā)現”的研究模式,讓學(xué)生自主探索,合作學(xué)習,歸納結論,掌握規律。
2. 類(lèi)比法:由實(shí)際問(wèn)題導入二次根式加減運算;類(lèi)比合并同類(lèi)項合并同類(lèi)二次根式。
3.嘗試訓練法:通過(guò)學(xué)生嘗試,教師針對個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導,實(shí)現全優(yōu)的教育效果。
【二次根式教案】相關(guān)文章:
二次根式的教案10-19
關(guān)于二次根式教案08-27
《二次根式的運算》的教案06-20
《二次根式的運算》的教案09-07
【精選】二次根式教案3篇08-13
二次根式教案4篇07-21
【精選】二次根式教案4篇07-02
二次根式教案九篇02-06
關(guān)于二次根式教案4篇05-18
【熱門(mén)】二次根式教案四篇10-28