- 請客教案 推薦度:
- 觀(guān)潮教案 推薦度:
- 《窮人》教案 推薦度:
- 《春酒》教案 推薦度:
- 鉛球教案 推薦度:
- 相關(guān)推薦
因式分解教案匯編六篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總歸要編寫(xiě)教案,教案是備課向課堂教學(xué)轉化的關(guān)節點(diǎn)。那么你有了解過(guò)教案嗎?下面是小編幫大家整理的因式分解教案6篇,歡迎閱讀,希望大家能夠喜歡。
因式分解教案 篇1
學(xué)習目標
1、學(xué)會(huì )用平方差公式進(jìn)行因式法分解
2、學(xué)會(huì )因式分解的而基本步驟.
學(xué)習重難點(diǎn)重點(diǎn):
用平方差公式進(jìn)行因式法分解.
難點(diǎn):
因式分解化簡(jiǎn)的過(guò)程
自學(xué)過(guò)程設計教學(xué)過(guò)程設計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡(jiǎn)便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫(xiě)出來(lái)。
____________________________________________________________________________________
Xkb1.com預習展示一:
1、下列多項式能否用平方差公式分解因式?
說(shuō)說(shuō)你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長(cháng)方形土地。同學(xué)們,你能幫助張老漢算出這塊長(cháng)方形土地的長(cháng)和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結果來(lái)設置密碼,當取x=9,y=9時(shí),可得一個(gè)六位數的密碼“018162”.你想知道這是怎么來(lái)的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫(xiě)出一個(gè)即可)
拓展提高:
若n為整數,則(2n+1)2-(2n-1)2能被8整除嗎?請說(shuō)明理由.
教后反思考察利用公式法因式分解的題目不會(huì )很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達到進(jìn)行因式分解的目的。
因式分解教案 篇2
教學(xué)目標:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應用;能利用平方差公式法解決實(shí)際問(wèn)題。
2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì )整式乘法與分解因式之間的聯(lián)系。
3、通過(guò)對公式的探究,深刻理解公式的應用,并會(huì )熟練應用公式解決問(wèn)題。
4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據公式自己取值設計問(wèn)題,并根據公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗,培養合作交流意識。
教學(xué)重點(diǎn):
應用平方差公式分解因式.
教學(xué)難點(diǎn):
靈活應用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過(guò)程:
一、復習準備 導入新課
1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?
、(x+2)(x-2)= ②
、
2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項式分解因式。
x2+2x
a2b-ab
3、根據乘法公式進(jìn)行計算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學(xué)習新知
(一) 猜一猜:你能將下面的多項式分解因式嗎?
。1)= (2)= (3)=
(二)想一想,議一議: 觀(guān)察下面的公式:
。剑╝+b)(a—b)(
這個(gè)公式左邊的多項式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個(gè)公式你能用語(yǔ)言來(lái)描述嗎? _______________________________________
(三)練一練:
1、下列多項式能否用平方差公式來(lái)分解因式?為什么?
、 ② ③ ④
2、你能把下列的數或式寫(xiě)成冪的形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
。ㄋ模┳鲆蛔觯
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
。ㄎ澹┰囈辉嚕
例4 下面的式子你能用什么方法來(lái)分解因式呢?請你試一試。
(1) x4- y4 (2) a3b- ab
。┫胍幌耄
某學(xué)校有一個(gè)邊長(cháng)為85米的正方形場(chǎng)地,現在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(cháng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?
因式分解教案 篇3
教學(xué)目標:
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當的方法進(jìn)行因式分解4、應用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗應用知識解決問(wèn)題的樂(lè )趣
教學(xué)重點(diǎn):靈活運用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運用恰當的因式分解的方法,拓展練習2、3
教學(xué)過(guò)程:
一、創(chuàng )設情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復雜的運算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識回顧
1、因式分解定義:把一個(gè)多項式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規律總結(教師講解):分解因式與整式乘法是互逆過(guò)程。
分解因式要注意以下幾點(diǎn):
。1)。分解的對象必須是多項式。
。2)。分解的結果一定是幾個(gè)整式的乘積的形式。
。3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話(huà):把一個(gè)長(cháng)方形折疊就可以得到一個(gè)正方形,F在請同學(xué)們拿出一個(gè)長(cháng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。
動(dòng)畫(huà)演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的.正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規,我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對角線(xiàn)之間的關(guān)系。請大家測量各邊的長(cháng)度、各角的大小、對角線(xiàn)的長(cháng)度以及對角線(xiàn)交點(diǎn)到各頂點(diǎn)的長(cháng)度。
[學(xué)生活動(dòng):各自測量。]
鼓勵學(xué)生將測量結果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結論,表述是要注意糾正其語(yǔ)言的規范性。
動(dòng)畫(huà)演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導學(xué)生進(jìn)行思考。
師:根據這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據矩形與菱形的定義類(lèi)似的給出正方形的定義。
學(xué)生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書(shū):
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
。3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識應用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數整除?
五、拓展應用
1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數,證明(2n+1)2—(2n—1)2是8的倍數。
五、課堂小結
今天你對因式分解又有哪些新的認識?
因式分解教案 篇4
教學(xué)目標
教學(xué)知識點(diǎn)
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過(guò)程中的相反關(guān)系。
潛力訓練要求。
透過(guò)觀(guān)察,發(fā)現分解因式與整式乘法的關(guān)系,培養學(xué)生觀(guān)察潛力和語(yǔ)言概括潛力。
情感與價(jià)值觀(guān)要求。
透過(guò)觀(guān)察,推導分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點(diǎn)
1、理解因式分解的好處。
2、識別分解因式與整式乘法的關(guān)系。
教學(xué)難點(diǎn)透過(guò)觀(guān)察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀(guān)察討論法
教學(xué)過(guò)程
Ⅰ、創(chuàng )設問(wèn)題情境,引入新課
導入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99×98×100
2、議一議
你能?chē)L試把a3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。
3、做一做
。1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
。2)根據上面的算式填空:
、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
、躽2-6y+9=()2。⑤a3-a=()()。
定義:把一個(gè)多項式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類(lèi)似的例子加以說(shuō)明嗎?
下面我們一齊來(lái)總結一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的聯(lián)系和區別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習
P40隨堂練習
Ⅳ、課時(shí)小結
本節課學(xué)習了因式分解的好處,即把一個(gè)多項式化成幾個(gè)整式的積的形式;還學(xué)習了整式乘法與分解因式的關(guān)系是相反方向的變形。
因式分解教案 篇5
教學(xué)目標
1、 會(huì )運用因式分解進(jìn)行簡(jiǎn)單的多項式除法。
2、 會(huì )運用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項式除法和解方程兩方面的應用。
教學(xué)難點(diǎn):
應用因式分解解方程涉及較多的推理過(guò)程。
三、教學(xué)過(guò)程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動(dòng),講授新課
1、運用因式分解進(jìn)行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個(gè)小問(wèn)題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內練習
合作學(xué)習
想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號內應填入怎樣的數或代數式子才能夠滿(mǎn)足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0 ,則有下面的結論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運用上面的結論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數的方程的解也叫做根,當方程的根多于一個(gè)時(shí),常用帶足標的字母表示,比如:x1 ,x2
等練習:課本P162課內練習2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結:運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著(zhù)繼續解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識,總結收獲因式分解的兩種應用:
。1)運用因式分解進(jìn)行多項式除法
。2)運用因式分解解簡(jiǎn)單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
因式分解教案 篇6
課型 復習課 教法 講練結合
教學(xué)目標(知識、能力、教育)
1.了解分解因式的意義,會(huì )用提公因式法、 平方差公式和完全平方公式(直接用公式不超過(guò)兩次)分解因式(指數是正整數).
2.通過(guò)乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀(guān)察、歸納、類(lèi)比、概括等能力,發(fā)展有條理的思考及語(yǔ)言表達能力
教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式
教學(xué)難點(diǎn) 根據題目的形式和特征 恰當選擇方法進(jìn)行分解,以提高綜合解題能力。
教學(xué)媒體 學(xué)案
教學(xué)過(guò)程
一:【 課前預習】
(一):【知識梳理】
1.分解因式:把一個(gè)多項式化成 的形式,這種變形叫做把這個(gè)多項式分解因式.
2.分解困式的方法:
、盘峁珗F式法:如果一個(gè)多項式的各項含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.
、七\用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團式,然后再考慮是否能用公式法 分解.
(2)在用公式時(shí),若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進(jìn)行適當的分組,然后分解因式。
4.分解因式時(shí)常見(jiàn)的思維誤區:
提公因式時(shí),其公因式應找字母指數最低的,而不是以首項為準.若有一項被全部提出,括號內的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續分解等
(二):【課前練習】
1.下列各組多項式中沒(méi)有公因式的是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯誤的是( )
3. 列多項式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時(shí),無(wú)論有幾項,首先考慮提取公因式。提公因式時(shí),不僅注意數,也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。
、诋斈稠椡耆岢龊,該項應為1
、圩⒁ ,
、芊纸饨Y果(1)不帶中括號;(2)數字因數在前,字母因數在后;單項式在前,多項式在后;(3)相同因式寫(xiě)成冪的形式;(4 )分解結果應在指定范圍內不能再分解為止;若無(wú)指定范圍,一般在有理數范圍內分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對于二次三項齊次式,將其中一個(gè)字母看作末知數,另一個(gè)字母視為常數。首先考慮提公因式后,由余下因式的項數為3項,可考慮完全平方式或十字相乘法繼續分解;如果項數為2,可考慮平方差、立方差、立方和公式。(3)題無(wú)公因式,項數為2項,可考慮平方差公式先分解開(kāi),再由項數考慮選擇方法繼續分解。
3. 計算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數。
(2)分解后,便有規可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對于四項或四項以上的多項式的因式分解,一般采用分組分解法,
5. (1)在實(shí)數范圍內分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿(mǎn)足 ,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結構看出,應構造出三個(gè)完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓練】
1. 若 是一個(gè)完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項式 因式分解的結果是( )
A. B. C. D.
3. 如果二次三項式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個(gè)整數整除,則這兩個(gè)數是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿(mǎn)足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀(guān)察下列等式:
想一想,等式左邊各項冪的底數與右邊冪的底數有何關(guān) 系?猜一猜可引出什么規律?用等式將其規律表示出來(lái): 。
10. 已知 是△ABC的三邊,且滿(mǎn)足 ,試判斷△ABC的形狀。閱讀下面解題過(guò)程:
解:由 得:
、
、
即 ③
△ABC為Rt△。 ④
試問(wèn):以上解題過(guò)程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結論應為 。
四:【課后小結】
布置作業(yè) 地綱
【因式分解教案匯編六篇】相關(guān)文章:
有關(guān)因式分解教案三篇01-15
《因式分解的簡(jiǎn)單應用》導學(xué)案PPT課件教案05-13
因式分解同步的練習題05-27
初中因式分解同步練習題05-26
關(guān)于因式分解課后練習題05-27
因式分解同步練習題以及答案05-27
整式的乘除與因式分解測試卷07-26
因式分解同步練習題目及答案05-27
整式的乘除與因式分解練習題整合05-27
初中因式分解同步練習題目及答案05-26