97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

實(shí)用文檔>數學(xué)等比數列的教案

數學(xué)等比數列的教案

時(shí)間:2024-09-22 07:17:35

數學(xué)等比數列的教案

數學(xué)等比數列的教案

數學(xué)等比數列的教案

  教學(xué)目標

  1.掌握等比數列前 項和公式,并能運用公式解決簡(jiǎn)單的問(wèn)題.

 。1)理解公式的推導過(guò)程,體會(huì )轉化的思想;

 。2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;

  2.通過(guò)公式的靈活運用,進(jìn)一步滲透方程的思想、分類(lèi)討論的思想、等價(jià)轉化的思想.

  3.通過(guò)公式推導的教學(xué),對學(xué)生進(jìn)行思維的嚴謹性的訓練,培養他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識結構

  先用錯位相減法推出等比數列前項和公式,而后運用公式解決一些問(wèn)題,并將通項公式與前項和公式結合解決問(wèn)題,還要用錯位相減法求一些數列的前項和.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數列前項和公式的推導與應用.公式的推導中蘊含了豐富的數學(xué)思想、方法(如分類(lèi)討論思想,錯位相減法等),這些思想方法在其他數列求和問(wèn)題中多有涉及,所以對等比數列前項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法. 等比數列前項和公式是分情況討論的,在運用中要特別注意和兩種情況.

  教學(xué)建議

 。1)本節內容分為兩課時(shí),一節為等比數列前項和公式的推導與應用,一節為通項公式與前項和公式的綜合運用,另外應補充一節數列求和問(wèn)題.

 。2)等比數列前項和公式的推導是重點(diǎn)內容,引導學(xué)生觀(guān)察實(shí)例,發(fā)現規律,歸納/Article/Index.html>總結,證明結論.

 。3)等比數列前項和公式的推導的其他方法可以給出,提高學(xué)生學(xué)習的興趣.

 。4)編擬例題時(shí)要全面,不要忽略的情況.

 。5)通項公式與前項和公式的綜合運用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數方程難度大.

 。6)補充可以化為等差數列、等比數列的數列求和問(wèn)題.

  教學(xué)設計示例

  課題:等比數列前項和的公式

  教學(xué)目標

 。1)通過(guò)教學(xué)使學(xué)生掌握等比數列前項和公式的推導過(guò)程,并能初步運用這一方法求一些數列的前項和.

 。2)通過(guò)公式的推導過(guò)程,培養學(xué)生猜想、分析、綜合能力,提高學(xué)生的數學(xué)素質(zhì).

 。3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀(guān)點(diǎn),培養學(xué)生嚴謹的學(xué)習態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導及運用,難點(diǎn)是公式推導的思路.

  教學(xué)用具

  幻燈片,/Soft/Index.html>課件,電腦.

  教學(xué)方法

  引導發(fā)現法.

  教學(xué)過(guò)程

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題:(幻燈片)

  二、新課講解:

  記,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

 。ò鍟(shū))即, ①, ②②-①得即.

  由此對于一般的等比數列,其前項和,如何化簡(jiǎn)?

 。ò鍟(shū))等比數列前項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比,即

 。ò鍟(shū))③兩端同乘以,得④,

 、郏艿芒,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意的取值)

  當時(shí),由③可得(不必導出④,但當時(shí)設想不到)

  當時(shí),由⑤得.

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如的數列的和,其中為等差數列,為等比數列.

 。ò鍟(shū))例題:求和:.

  設,其中為等差數列,為等比數列,公比為,利用錯位相減法求和.

  解:,

  兩端同乘以,得,兩式相減得

  于是.

  說(shuō)明:錯位相減法實(shí)際上是把一個(gè)數列求和問(wèn)題轉化為等比數列求和的問(wèn)題.

  公式其它應用問(wèn)題注意對公比的分類(lèi)討論即可.

  三、小結:

  1.等比數列前項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前項和.

  四、作業(yè):略.

  五、板書(shū)設計

  等比數列前項和公式 例題

  數學(xué)教案-等比數列的前n項和一文由中國教案站搜集整理,版權歸作者所有,轉載請注明出處!

【數學(xué)等比數列的教案】相關(guān)文章:

等比數列的前n項和教學(xué)設計03-03

數學(xué)單項式教案10-25

數學(xué)教案:圓的認識02-12

數學(xué)因真實(shí)而精彩教案03-20

認識球體數學(xué)教案03-20

蘇教版數學(xué)分數的教案03-20

高三數學(xué)的復習教案03-19

數學(xué)活動(dòng)教案之看看數數03-20

數學(xué)教案模版之數軸03-20

讓數學(xué)生活化的教案03-19

用戶(hù)協(xié)議