初二數學(xué)必考知識點(diǎn)總結
在我們上學(xué)期間,是不是聽(tīng)到知識點(diǎn),就立刻清醒了?知識點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習我能掌握”的內容。為了幫助大家更高效的學(xué)習,下面是小編精心整理的初二數學(xué)必考知識點(diǎn)總結,歡迎大家分享。
初二數學(xué)必考知識點(diǎn)總結1
一.定義
1.一般地,如果一個(gè)正數x的平方等于a,即x2=a,那么這個(gè)正數x叫做a的算術(shù)平方根.a叫做被開(kāi)方數.
2.一般地,如果一個(gè)數的平方等于a,那么這個(gè)數叫做a的平方根或二次方根,求一個(gè)數a的平方根的運算,叫做開(kāi)平方.
3.一般地,如果一個(gè)數的立方等于a,那么這個(gè)數叫做a的立方根或三次方根.求一個(gè)數的立方根的運算,叫做開(kāi)立方.
4.任何一個(gè)有理數都可以寫(xiě)成有限小數或無(wú)限循環(huán)小數的形式.任何有限小數或無(wú)限循環(huán)小數也都是有理數.
5.無(wú)限不循環(huán)小數又叫無(wú)理數.
6.有理數和無(wú)理數統稱(chēng)實(shí)數.
7.數軸上的點(diǎn)與實(shí)數一一對應.平面直角坐標系中與有序實(shí)數對之間也是一一對應的.
二.重點(diǎn)
1.平方與開(kāi)平方互為逆運算.
2.正數的平方根有兩個(gè),它們互為相反數,其中正的平方根就是這個(gè)數的算術(shù)平方根.
3.當被開(kāi)方數的小數點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的小數點(diǎn)就向右移動(dòng)一位.
4.當被平方數小數點(diǎn)每向右移動(dòng)三位,它的立方根小數點(diǎn)向右移動(dòng)一位.
5.數a的相反數是-a[a為任意實(shí)數],一個(gè)正實(shí)數的絕對值是它本身,一個(gè)負實(shí)數的絕對值是它的相反數;0的絕對值是0.
三.注意
1.被開(kāi)方數一定是非負數.
2.0,1的算術(shù)平方根是它本身;0的平方根是0,負數沒(méi)有平方根;正數的立方根是正數,負數的立方根是負數,0的立方根是0.
3.帶根號的無(wú)理數的整數倍或幾分之幾仍是無(wú)理數;帶根號的數若開(kāi)之后是有理數則是有理數;任何一個(gè)有理數都能寫(xiě)成分數的形式.
以上就是數學(xué)網(wǎng)為大家提供的初二數學(xué)知識點(diǎn)總結:實(shí)數希望能對考生產(chǎn)生幫助,更多資料請咨詢(xún)數學(xué)網(wǎng)中考頻道。
初二數學(xué)必考知識點(diǎn)總結2
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;
(2)正比例函數圖像特征:一些過(guò)原點(diǎn)的直線(xiàn);
(3)圖像性質(zhì):
、佼攌>0時(shí),函數y=kx的圖像經(jīng)過(guò)第一、三象限,從左向右上升,即隨著(zhù)x的增大y也增大;②當k<0時(shí),函數y=kx的圖像經(jīng)過(guò)第二、四象限,從左向右下降,即隨著(zhù)x的增大y反而減小;
(4)求正比例函數的解析式:已知一個(gè)非原點(diǎn)即可;
(5)畫(huà)正比例函數圖像:經(jīng)過(guò)原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;
(7)正比例函數是一種特殊的一次函數;(因為當b=0時(shí),y=kx+b即為y=kx)
(8)一次函數圖像特征:一些直線(xiàn);
(9)性質(zhì):
、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(cháng)度而得;(當b>0,向上平移;當b<0,向下平移)
、诋攌>0時(shí),直線(xiàn)y=kx+b由左至右上升,即y隨著(zhù)x的增大而增大;
、郛攌<0時(shí),直線(xiàn)y=kx+b由左至右下降,即y隨著(zhù)x的增大而減小;
、墚攂>0時(shí),直線(xiàn)y=kx+b與y軸正半軸有交點(diǎn)為(0,b);
、莓攂<0時(shí),直線(xiàn)y=kx+b與y軸負半軸有交點(diǎn)為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫(huà)一次函數的圖像:已知兩點(diǎn);
初二數學(xué)必考知識點(diǎn)總結3
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;
(4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;
(5)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初二數學(xué)必考知識點(diǎn)總結4
一、軸對稱(chēng)圖形
1.把一個(gè)圖形沿著(zhù)一條直線(xiàn)折疊,如果直線(xiàn)兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對稱(chēng)圖形。這條直線(xiàn)就是它的對稱(chēng)軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(xiàn)(成軸)對稱(chēng)。
2.把一個(gè)圖形沿著(zhù)某一條直線(xiàn)折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線(xiàn)對稱(chēng)。這條直線(xiàn)叫做對稱(chēng)軸。折疊后重合的點(diǎn)是對應點(diǎn),叫做對稱(chēng)點(diǎn)
3、軸對稱(chēng)圖形和軸對稱(chēng)的區別與聯(lián)系
4.軸對稱(chēng)與軸對稱(chēng)圖形的性質(zhì)
、訇P(guān)于某直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形。
、谌绻麅蓚(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),那么對稱(chēng)軸是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
、圯S對稱(chēng)圖形的對稱(chēng)軸,是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
、苋绻麅蓚(gè)圖形的對應點(diǎn)連線(xiàn)被同條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)。
、輧蓚(gè)圖形關(guān)于某條直線(xiàn)成軸對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上。
二、線(xiàn)段的垂直平分線(xiàn)
1.定義:經(jīng)過(guò)線(xiàn)段中點(diǎn)并且垂直于這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn),也叫中垂線(xiàn)。
2.性質(zhì):線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等
3.判定:與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線(xiàn)段的垂直平分線(xiàn)上
三、用坐標表示軸對稱(chēng)小結:
1.在平面直角坐標系中
、訇P(guān)于x軸對稱(chēng)的點(diǎn)橫坐標相等,縱坐標互為相反數;
、陉P(guān)于y軸對稱(chēng)的點(diǎn)橫坐標互為相反數,縱坐標相等;
、坳P(guān)于原點(diǎn)對稱(chēng)的點(diǎn)橫坐標和縱坐標互為相反數;
、芘cX軸或Y軸平行的直線(xiàn)的兩個(gè)點(diǎn)橫(縱)坐標的關(guān)系;
、蓐P(guān)于與直線(xiàn)X=C或Y=C對稱(chēng)的坐標
點(diǎn)(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標為_(kāi)(x,-y)_____.
點(diǎn)(x,y)關(guān)于y軸對稱(chēng)的點(diǎn)的坐標為_(kāi)__(-x,y)___.
2.三角形三條邊的垂直平分線(xiàn)相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
四、(等腰三角形)知識點(diǎn)回顧
1.等腰三角形的性質(zhì)
、.等腰三角形的兩個(gè)底角相等。(等邊對等角)
、.等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合。(三線(xiàn)合一)
理解:已知等腰三角形的一線(xiàn)就可以推知另兩線(xiàn)。
2、等腰三角形的判定:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點(diǎn)回顧
1.等邊三角形的性質(zhì):
等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600。
2、等邊三角形的判定:
、偃齻(gè)角都相等的三角形是等邊三角形。
、谟幸粋(gè)角是600的等腰三角形是等邊三角形。
3.在直角三角形中,如果一個(gè)銳角等于300,那么它所對的直角邊等于斜邊的一半。
初二數學(xué)必考知識點(diǎn)總結5
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項式分解因式。這種分解因式的`方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語(yǔ)言:兩個(gè)數的平方差,等于這兩個(gè)數的和與這兩個(gè)數的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項如果有公因式應先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說(shuō),兩個(gè)數的平方和,加上(或者減去)這兩個(gè)數的積的2倍,等于這兩個(gè)數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
、夙棓担喝
、谟袃身検莾蓚(gè)數的的平方和,這兩項的符號相同。
、塾幸豁検沁@兩個(gè)數的積的兩倍。
(3)當多項式中有公因式時(shí),應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)??(a+b).
這種利用分組來(lái)分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項式的項分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項式就可以用分組分解法來(lái)分解因式.
(六)提公因式法
1.在運用提取公因式法把一個(gè)多項式因式分解時(shí),首先觀(guān)察多項式的結構特點(diǎn),確定多項式的公因式.當多項式各項的公因式是一個(gè)多項式時(shí),可以用設輔助元的方法把它轉化為單項式,也可以把這個(gè)多項式因式看作一個(gè)整體,直接提取公因式;當多項式各項的公因式是隱含的時(shí)候,要把多項式進(jìn)行適當的變形,或改變符號,直到可確定多項式的公因式.
2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數項分解成兩個(gè)因數的積,且這兩個(gè)因數的代數和等于
一次項的系數.
2.將常數項分解成滿(mǎn)足要求的兩個(gè)因數積的多次嘗試,一般步驟:
、倭谐龀淀椃纸獬蓛蓚(gè)因數的積各種可能情況;
、趪L試其中的哪兩個(gè)因數的和恰好等于一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時(shí)就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個(gè)分式的符號,然后再按-1的偶次方為正、奇次方為負來(lái)處理.當然,簡(jiǎn)單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統一起來(lái).
2.通分和約分都是依據分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.
3.一般地,通分結果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項式,為進(jìn)一步運算作準備.
4.通分的依據:分式的基本性質(zhì).
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母.
6.類(lèi)比分數的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減.
9.作為最后結果,如果是分式則應該是最簡(jiǎn)分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等于b,求這個(gè)數。用x表示這個(gè)數,根據題意,可得方程ax=b(a≠0)
在這個(gè)方程中,x是未知數,a和b是用字母表示的已知數。對x來(lái)說(shuō),字母a是x的系數,b是常數項。這個(gè)方程就是一個(gè)含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學(xué)過(guò)的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零。
10.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號.
11.對于整式和分式之間的加減運算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.
12.異分母分式的加減運算,首先觀(guān)察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運算簡(jiǎn)化.
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項配成一個(gè)或幾個(gè)多項式正整數次冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學(xué)中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎,它作為數學(xué)的一個(gè)有力工具、一種數學(xué)方法在代數、幾何、三角等的解題中起著(zhù)重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學(xué)中一個(gè)非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱(chēng)為元,所謂換元法,就是在一個(gè)比較復雜的數學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數的和與積,求這兩個(gè)數等簡(jiǎn)單應用外,還可以求根的對稱(chēng)函數,計論二次方程根的符號,解對稱(chēng)方程組,以及解一些有關(guān)二次曲線(xiàn)的問(wèn)題等,都有非常廣泛的應用。
5、待定系數法
在解數學(xué)問(wèn)題時(shí),若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關(guān)于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關(guān)系,從而解答數學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解題時(shí),我們常常會(huì )采用這樣的方法,通過(guò)對條件和結論的分析,構造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數、一個(gè)等價(jià)命題等,架起一座連接條件和結論的橋梁,從而使問(wèn)題得以解決,這種解題的數學(xué)方法,我們稱(chēng)為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學(xué)知識互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結論相反的假設,然后,從這個(gè)假設出發(fā),經(jīng)過(guò)正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒(méi)有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
【初二數學(xué)必考知識點(diǎn)總結】相關(guān)文章:
初二必考議論文作文04-19
數學(xué)高二知識點(diǎn)總結04-22
高考數學(xué)知識點(diǎn)總結09-03
小升初100個(gè)語(yǔ)文課外必考知識點(diǎn)03-23
初二數學(xué)教師教學(xué)總結12-31
初二數學(xué)上冊期末總結09-15