97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高二數學(xué)知識點(diǎn)及公式總結

時(shí)間:2022-01-18 15:04:57 總結 我要投稿

高二數學(xué)知識點(diǎn)及公式總結(通用7篇)

  總結,對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究,做出帶有規律性的結論。下面是小編為大家收集的高二數學(xué)知識點(diǎn)及公式總結(通用7篇),歡迎閱讀,希望大家能夠喜歡。

高二數學(xué)知識點(diǎn)及公式總結(通用7篇)

  高二數學(xué)知識點(diǎn)及公式總結 篇1

  空間中的垂直問(wèn)題

  (1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

 、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

 、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬(xiàn)面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

  高二數學(xué)知識點(diǎn)及公式總結 篇2

  1.1柱、錐、臺、球的結構特征

  1.2空間幾何體的三視圖和直觀(guān)圖

  11三視圖:

  正視圖:從前往后

  側視圖:從左往右

  俯視圖:從上往下

  22畫(huà)三視圖的原則:

  長(cháng)對齊、高對齊、寬相等

  33直觀(guān)圖:斜二測畫(huà)法

  44斜二測畫(huà)法的步驟:

  (1).平行于坐標軸的線(xiàn)依然平行于坐標軸;

  (2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;

  (3).畫(huà)法要寫(xiě)好。

  5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺體的體積

  4球體的體積

  高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系

  2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無(wú)限延展的

  2平面的畫(huà)法及表示

  (1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。

  3三個(gè)公理:

  (1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內

  符號表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線(xiàn)是否在平面內

  (2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據。

  (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個(gè)平面是否相交的依據

  2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系

  1空間的兩條直線(xiàn)有如下三種關(guān)系:

  共面直線(xiàn)

  相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);

  平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);

  異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。

  2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  符號表示為:設a、b、c是三條直線(xiàn)

  a∥b

  c∥b

  強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

  公理4作用:判斷空間兩條直線(xiàn)平行的依據。

  3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補

  4注意點(diǎn):

 、賏與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;

 、趦蓷l異面直線(xiàn)所成的角θ∈(0,);

 、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;

 、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;

 、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。

  2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

  1、直線(xiàn)與平面有三種位置關(guān)系:

  (1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

  (2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

  (3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

  指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示

  aαa∩α=Aa∥α

  2.2.直線(xiàn)、平面平行的判定及其性質(zhì)

  2.2.1直線(xiàn)與平面平行的判定

  1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的`判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

  2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

  簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

  2.3直線(xiàn)、平面垂直的判定及其性質(zhì)

  2.3.1直線(xiàn)與平面垂直的判定

  1、定義

  如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;

  b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。

  2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。

  高二數學(xué)知識點(diǎn)及公式總結 篇3

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

  (2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。

  (3)以那些有明顯分層區分的變量作為分層變量。

  分層的比例問(wèn)題

  (1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。

  高二數學(xué)知識點(diǎn)及公式總結 篇4

  考點(diǎn)一:向量的概念、向量的基本定理

  【內容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。

  考點(diǎn)二:向量的運算

  【內容解讀】向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

  【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。

  考點(diǎn)三:定比分點(diǎn)

  【內容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。

  【命題規律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點(diǎn)四:向量與三角函數的綜合問(wèn)題

  【內容解讀】向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。

  【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。

  考點(diǎn)五:平面向量與函數問(wèn)題的交匯

  【內容解讀】平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。

  【命題規律】命題多以解答題為主,屬中檔題。

  考點(diǎn)六:平面向量在平面幾何中的應用

  【內容解讀】向量的坐標表示實(shí)際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決.

  【命題規律】命題多以解答題為主,屬中等偏難的試題。

  高二數學(xué)知識點(diǎn)及公式總結 篇5

  1、圓的定義

  平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

  (1)標準方程,圓心(a,b),半徑為r;

  (2)求圓方程的方法:

  一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  3、直線(xiàn)與圓的位置關(guān)系

  直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設直線(xiàn),圓,圓心到l的距離為,則有;;

  (2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

  (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  練習題:

  2.若圓(x-a)2+(y-b)2=r2過(guò)原點(diǎn),則()

  A.a2-b2=0B.a2+b2=r2

  C.a2+b2+r2=0D.a=0,b=0

  【解析】選B.因為圓過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,

  即(0-a)2+(0-b)2=r2,

  所以a2+b2=r2.

  高二數學(xué)知識點(diǎn)及公式總結 篇6

  一、直線(xiàn)與圓:

  1、直線(xiàn)的傾斜角 的范圍是

  在平面直角坐標系中,對于一條與 軸相交的直線(xiàn) ,如果把 軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn) 重合時(shí)所轉的最小正角記為, 就叫做直線(xiàn)的傾斜角。當直線(xiàn) 與 軸重合或平行時(shí),規定傾斜角為0;

  2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.

  過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=( y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。

  3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn) 斜率為 ,則直線(xiàn)方程為 ,

 、菩苯厥剑褐本(xiàn)在 軸上的截距為 和斜率,則直線(xiàn)方程為

  4、 , ,① ∥ , ; ② .

  直線(xiàn) 與直線(xiàn) 的位置關(guān)系:

  (1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=0

  5、點(diǎn) 到直線(xiàn) 的距離公式 ;

  兩條平行線(xiàn) 與 的距離是

  6、圓的標準方程: .⑵圓的一般方程:

  注意能將標準方程化為一般方程

  7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).

  8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題.① 相離 ② 相切 ③ 相交

  9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形) 直線(xiàn)與圓相交所得弦長(cháng)

  二、圓錐曲線(xiàn)方程:

  1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c; a2=b2+c2 ;

  2、雙曲線(xiàn):①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn) 或 c2=a2+b2

  3、拋物線(xiàn) :①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向; ②定義:PF=d焦點(diǎn)F( ,0),準線(xiàn)x=- ;③焦半徑 ; 焦點(diǎn)弦=x1+x2+p;

  4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:

  5、注意解析幾何與向量結合問(wèn)題:1、 , . (1) ;(2) .

  2、數量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數量abcosθ叫做a與b的數量積,記作a·b,即

  3、模的計算:a= . 算?梢韵人阆蛄康钠椒

  4、向量的運算過(guò)程中完全平方公式等照樣適用:

  三、直線(xiàn)、平面、簡(jiǎn)單幾何體:

  1、學(xué)會(huì )三視圖的分析:

  2、斜二測畫(huà)法應注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸 o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135° ); (2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半.(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.

  3、表(側)面積與體積公式:

 、胖w:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h

 、棋F體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:

 、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

 、惹蝮w:①表面積:S= ;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

  (1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行 線(xiàn)面平行。

  (2)平面與平面平行:①線(xiàn)面平行面面平行。

  (3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直 線(xiàn)面垂直 面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

 、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;

 、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

  四、導數:

  1、導數的定義: 在點(diǎn) 處的導數記作 .

  2. 導數的幾何物理意義:曲線(xiàn) 在點(diǎn) 處切線(xiàn)的斜率

 、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。

  3.常見(jiàn)函數的導數公式: ① ;② ;③ ;

  4.導數的四則運算法則:

  5.導數的應用:

  (1)利用導數判斷函數的單調性:設函數 在某個(gè)區間內可導,如果 ,那么 為增函數;如果 ,那么為減函數;

  注意:如果已知 為減函數求字母取值范圍,那么不等式 恒成立。

  (2)求極值的步驟:

 、偾髮 ;

 、谇蠓匠 的根;

 、哿斜恚簷z驗 在方程 根的左右的符號,如果左正右負,那么函數 在這個(gè)根處取得極大值;如果左負右正,那么函數 在這個(gè)根處取得極小值;

  (3)求可導函數最大值與最小值的步驟:

  ?求 的根; ?把根與區間端點(diǎn)函數值比較,最大的為最大值,最小的是最小值。

  五、常用邏輯用語(yǔ):

  1、四種命題:

 、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

  注:

  1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉化。

  2、注意命題的否定與否命題的區別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、邏輯聯(lián)結詞:

 、徘(and) :命題形式 p q; p q p q p q p

 、苹(or):命題形式 p q; 真 真 真 真 假

 、欠(not):命題形式 p . 真 假 假 真 假

  假 真 假 真 真

  假 假 假 假 真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

  “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

  “非命題”的真假特點(diǎn)是“一真一假”

  4、充要條件

  由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

  5、全稱(chēng)命題與特稱(chēng)命題:

  短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號表示。含有全體量詞的命題,叫做全稱(chēng)命題。

  短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號 表示,含有存在量詞的命題,叫做存在性命題。

  全稱(chēng)命題p: ; 全稱(chēng)命題p的否定 p:。

  特稱(chēng)命題p: ; 特稱(chēng)命題p的否定 p:

  高二數學(xué)知識點(diǎn)及公式總結 篇7

  1、向量的加法

  向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數乘向量

  實(shí)數λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當λ>0時(shí),λa與a同方向;

  當λ<0時(shí),λa與a反方向;

  當λ=0時(shí),λa=0,方向任意。

  當a=0時(shí),對于任意實(shí)數λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(cháng)或壓縮。

  當∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(cháng)為原來(lái)的∣λ∣倍;

  當∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數與向量的乘法滿(mǎn)足下面的運算律

  結合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.

  數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數乘向量的消去律:① 如果實(shí)數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數量積(內積、點(diǎn)積)是一個(gè)數量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

  向量的數量積的坐標表示:a·b=x·x'+y·y'。

  向量的數量積的運算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

【高二數學(xué)知識點(diǎn)及公式總結(通用7篇)】相關(guān)文章:

高二化學(xué)知識點(diǎn)總結01-06

高二化學(xué)知識點(diǎn)總結01-14

高二物理知識點(diǎn)總結05-04

高二數學(xué)數學(xué)期中試卷分析及反思08-08

物質(zhì)的量公式及介紹10-12

高考數學(xué)知識點(diǎn)總結05-18

高二化學(xué)選修三知識點(diǎn)總結01-07

高二物理重要的知識點(diǎn)總結01-06

高二生物知識點(diǎn)總結05-08

高二英語(yǔ)作文結尾萬(wàn)能公式08-16