初中數學(xué)知識點(diǎn)總結15篇[必備]
總結就是把一個(gè)時(shí)段的學(xué)習、工作或其完成情況進(jìn)行一次全面系統的總結,它有助于我們尋找工作和事物發(fā)展的規律,從而掌握并運用這些規律,因此,讓我們寫(xiě)一份總結吧。如何把總結做到重點(diǎn)突出呢?以下是小編整理的初中數學(xué)知識點(diǎn)總結,希望對大家有所幫助。
初中數學(xué)知識點(diǎn)總結1
銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對邊,即cscA=c/a。
三角函數關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的`集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。
13、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
14、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。
初中數學(xué)知識點(diǎn)總結2
動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:
1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的'關(guān)系,進(jìn)行分段,判斷函數圖象.
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.
總結反思:
本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵.
解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的
解答函數的圖象問(wèn)題一般遵循的步驟:
1、根據自變量的取值范圍對函數進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.
2、自變量變化函數值也變化的增減變化情況.
3、函數圖象的最低點(diǎn)和最高點(diǎn).
初中數學(xué)知識點(diǎn)總結3
1、初中數學(xué)知識點(diǎn)口訣
人說(shuō)幾何很困難,難點(diǎn)就在輔助線(xiàn)。
輔助線(xiàn),如何添?把握定理和概念。
還要刻苦加鉆研,找出規律憑經(jīng)驗。
圖中有角平分線(xiàn),可向兩邊作垂線(xiàn)。
角平分線(xiàn)平行線(xiàn),等腰三角形來(lái)添。
線(xiàn)段垂直平分線(xiàn),常向兩端把線(xiàn)連。
要證線(xiàn)段倍與半,延長(cháng)縮短可試驗。
三角形中兩中點(diǎn),連接則成中位線(xiàn)。
三角形中有中線(xiàn),延長(cháng)中線(xiàn)加一倍。
梯形里面作高線(xiàn),平移一腰試試看。
等積式子比例換,尋找相似很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線(xiàn),弦高公式是關(guān)鍵。
半徑與弦長(cháng)計算,弦心距來(lái)中間站。
圓上若有一切線(xiàn),切點(diǎn)圓心半徑連。
要想證明是切線(xiàn),半徑垂線(xiàn)仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
要想作個(gè)外接圓,各邊作出中垂線(xiàn)。
還要作個(gè)內切圓,內角平分線(xiàn)夢(mèng)園。
如果遇到相交圓,不要忘作公共弦。
若是添上連心線(xiàn),切點(diǎn)肯定在上面。
輔助線(xiàn),是虛線(xiàn),畫(huà)圖注意勿改變。
假如圖形較分散,對稱(chēng)旋轉去實(shí)驗。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。
解題還要多心眼,經(jīng)?偨Y方法顯。
切勿盲目亂添線(xiàn),方法靈活應多變。
分析綜合方法選,困難再多也會(huì )減。
虛心勤學(xué)加苦練,成績(jì)上升成直線(xiàn)。
2、初中數學(xué)知識點(diǎn)口訣
學(xué)習幾何體會(huì )深,成敗也許一線(xiàn)牽。
分散條件要集中,常要添加輔助線(xiàn)。
畏懼心理不要有,其次要把觀(guān)念變。
熟能生巧有規律,真知灼見(jiàn)靠實(shí)踐。
圖中已知有中線(xiàn),倍長(cháng)中線(xiàn)把線(xiàn)連。
旋轉構造全等形,等線(xiàn)段角可代換。
多條中線(xiàn)連中點(diǎn),便可得到中位線(xiàn)。
倘若知角平分線(xiàn),既可兩邊作垂線(xiàn)。
也可沿線(xiàn)去翻折,全等圖形立呈現。
角分線(xiàn)若加垂線(xiàn),等腰三角形可見(jiàn)。
角分線(xiàn)加平行線(xiàn),等線(xiàn)段角位置變。
已知線(xiàn)段中垂線(xiàn),連接兩端等線(xiàn)段。
輔助線(xiàn)必畫(huà)虛線(xiàn),便與原圖聯(lián)系看。
3、有理數的加法運算
同號兩數來(lái)相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】“大”減“小”是指絕對值的大小。
4、有理數的減法運算
減正等于加負,減負等于加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
5、合并同類(lèi)項
說(shuō)起合并同類(lèi)項,法則千萬(wàn)不能忘。
只求系數代數和,字母指數留原樣。
6、去、添括號法則
去括號或添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負號,去添括號都變號。
7、解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
8、平方差公式
兩數和乘兩數差,等于兩數平方差。
積化和差變兩項,完全平方不是它。
9、完全平方公式
二數和或差平方,展開(kāi)式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結,先減后加差平方。
10、完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
11、解一元一次方程
先去分母再括號,移項變號要記牢。
同類(lèi)各項去合并,系數化“1”還沒(méi)好。
求得未知須檢驗,回代值等才上算。
12、解一元一次方程
先去分母再括號,移項合并同類(lèi)項。
系數化1還沒(méi)好,準確無(wú)誤不白忙。
13、因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
14、因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
15、因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無(wú)望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】一提(提公因式)二套(套公式)
16、因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對癥下藥穩又準,連乘結果是基礎。
17、二次三項式的.因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
18、比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時(shí)交換內外項,便要稱(chēng)其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
19、解比例
外項積等內項積,列出方程并解之。
20、求比值
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會(huì )變通。
21、正比例與反比例
商定變量成正比,積定變量成反比。
22、正比例與反比例
變化過(guò)程商一定,兩個(gè)變量成正比。
變化過(guò)程積一定,兩個(gè)變量成反比。
23、判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
24、判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
25、比例中項
成比例的四項中,外項相同會(huì )遇到。
有時(shí)內項會(huì )相同,比例中項少不了。
比例中項很重要,多種場(chǎng)合會(huì )碰到。
成比例的四項中,外項相同有不少。
有時(shí)內項會(huì )相同,比例中項出現了。
同數平方等異積,比例中項無(wú)處逃。
26、根式與無(wú)理式
表示方根代數式,都可稱(chēng)其為根式。
根式異于無(wú)理式,被開(kāi)方式無(wú)限制。
被開(kāi)方式有字母,才能稱(chēng)為無(wú)理式。
無(wú)理式都是根式,區分它們有標志。
被開(kāi)方式有字母,又可稱(chēng)為無(wú)理式。
27、求定義域
求定義域有講究,四項原則須留意。
負數不能開(kāi)平方,分母為零無(wú)意義。
指是分數底正數,數零沒(méi)有零次冪。
限制條件不唯一,滿(mǎn)足多個(gè)不等式。
求定義域要過(guò)關(guān),四項原則須注意。
負數不能開(kāi)平方,分母為零無(wú)意義。
分數指數底正數,數零沒(méi)有零次冪。
限制條件不唯一,不等式組求解集。
28、解一元一次不等式
先去分母再括號,移項合并同類(lèi)項。
系數化“1”有講究,同乘除負要變向。
先去分母再括號,移項別忘要變號。
同類(lèi)各項去合并,系數化“1”注意了。
同乘除正無(wú)防礙,同乘除負也變號。
29、解一元一次不等式組
大于頭來(lái)小于尾,大小不一中間找。
大大小小沒(méi)有解,四種情況全來(lái)了。
同向取兩邊,異向取中間。
中間無(wú)元素,無(wú)解便出現。
幼兒園小鬼當家,(同小相對取較。
敬老院以老為榮,(同大就要取較大)
軍營(yíng)里沒(méi)老沒(méi)少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
30、解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線(xiàn)橫軸有交點(diǎn)。
A正開(kāi)口它向上,大于零則取兩邊。
代數式若小于零,解集交點(diǎn)數之間。
方程若無(wú)實(shí)數根,口上大零解為全。
小于零將沒(méi)有解,開(kāi)口向下正相反。
31、用平方差公式因式分解
異號兩個(gè)平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
32、用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
33、用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其后,使其成為最簡(jiǎn)比。
確定參數abc,計算方程判別式。
判別式值與零比,有無(wú)實(shí)根便得知。
有實(shí)根可套公式,沒(méi)有實(shí)根要告之。
34、用常規配方法解一元二次方程
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒(méi)問(wèn)題。
左邊分解右合并,直接開(kāi)方去解題。
該種解法叫配方,解方程時(shí)多練習。
35、用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恒等式。
完全平方等常數,間接配方顯優(yōu)勢。
【注】恒等式
36、解一元二次方程
方程沒(méi)有一次項,直接開(kāi)方最理想。
如果缺少常數項,因式分解沒(méi)商量。
。、c相等都為零,等根是零不要忘。
。、c同時(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方。
37、正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數都要有。
正比例函數是否,辨別需分兩步走。
一量表示另一量,有沒(méi)有。
若有再去看取值,全體實(shí)數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數都要有。
38、正比例函數的圖象與性質(zhì)
正比函數圖直線(xiàn),經(jīng)過(guò)和原點(diǎn)。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
39、一次函數
一次函數圖直線(xiàn),經(jīng)過(guò)點(diǎn)。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來(lái)越低很明顯。
K稱(chēng)斜率b截距,截距為零變正函。
40、反比例函數
反比函數雙曲線(xiàn),經(jīng)過(guò)點(diǎn)。
K正一三負二四,兩軸是它漸近線(xiàn)。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
41、二次函數
二次方程零換y,二次函數便出現。
全體實(shí)數定義域,圖像叫做拋物線(xiàn)。
拋物線(xiàn)有對稱(chēng)軸,兩邊單調正相反。
A定開(kāi)口及大小,線(xiàn)軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。
如果要畫(huà)拋物線(xiàn),平移也可去描點(diǎn),提取配方定頂點(diǎn),兩條途徑再挑選。
列表描點(diǎn)后連線(xiàn),平移規律記心間。
左加右減括號內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線(xiàn),定義域全體實(shí)數。
A定開(kāi)口及大小,開(kāi)口向上是正數。
絕對值大開(kāi)口小,開(kāi)口向下A負數。
拋物線(xiàn)有對稱(chēng)軸,增減特性可看圖。
線(xiàn)軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標最值出。
如果要畫(huà)拋物線(xiàn),描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線(xiàn),三點(diǎn)大致定全圖。
若要平移也不難,先畫(huà)基礎拋物線(xiàn),頂點(diǎn)移到新位置,開(kāi)口大小隨基礎。
【注】基礎拋物線(xiàn)
42、直線(xiàn)、射線(xiàn)與線(xiàn)段
直線(xiàn)射線(xiàn)與線(xiàn)段,形狀相似有關(guān)聯(lián)。
直線(xiàn)長(cháng)短不確定,可向兩方無(wú)限延。
射線(xiàn)僅有一端點(diǎn),反向延長(cháng)成直線(xiàn)。
線(xiàn)段定長(cháng)兩端點(diǎn),雙向延伸變直線(xiàn)。
兩點(diǎn)定線(xiàn)是共性,組成圖形最常見(jiàn)。
43、角
一點(diǎn)出發(fā)兩射線(xiàn),組成圖形叫做角。
共線(xiàn)反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補角。
一點(diǎn)出發(fā)兩射線(xiàn),組成圖形叫做角。
平角反向且共線(xiàn),平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補角和平角。
44、證等積或比例線(xiàn)段
等積或比例線(xiàn)段,多種途徑可以證。
證等積要改等比,對照圖形看特征。
共點(diǎn)共線(xiàn)線(xiàn)相交,平行截比把題證。
三點(diǎn)定型十分像,想法來(lái)把相似證。
圖形明顯不相似,等線(xiàn)段比替換證。
換后結論能成立,原來(lái)命題即得證。
實(shí)在不行用面積,射影角分線(xiàn)也成。
只要學(xué)習肯登攀,手腦并用無(wú)不勝。
45、解無(wú)理方程
一無(wú)一有各一邊,兩無(wú)也要放兩邊。
乘方根號無(wú)蹤跡,方程可解無(wú)負擔。
兩無(wú)一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
46、解分式方程
先約后乘公分母,整式方程轉化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗根,原留增舍別含糊。
47、列方程解應用題
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫(huà)圖造方程,解方程時(shí)守章法。
檢驗準且合題意,問(wèn)求同一才作答。
48、兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面任意兩個(gè)點(diǎn),橫縱標差先求值。
差方相加開(kāi)平方,距離公式要牢記。
49、矩形的判定
任意一個(gè)四邊形,三個(gè)直角成矩形;
對角線(xiàn)等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;
兩對角線(xiàn)若相等,理所當然為矩形。
50、菱形的判定
任意一個(gè)四邊形,四邊相等成菱形;
四邊形的對角線(xiàn),垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線(xiàn)若垂直,順理成章為菱形。
初中數學(xué)知識點(diǎn)總結4
平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的`構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解定義:
把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
、劢Y果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r(shí)取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
初中數學(xué)知識點(diǎn)總結5
1、深刻理解概念,概念是數學(xué)的基石,學(xué)習概念不僅要知其然,還要知其所以然。
2、對于每個(gè)定義、定理必須在牢記其內容的基礎上知道是怎樣得來(lái)的,又是運用到何處的。
3、多看一些例題,不能只看皮毛,不看內涵。
4、要把想和看結合起來(lái),各難度層次的例題都照顧到。
5、看例題要循序漸進(jìn),這同后面的“做練習”一樣,但看比做有一個(gè)顯著(zhù)的`好處,例題有現成的解答,思路清晰,只需循著(zhù)思路走,就會(huì )得出結論,所以可以看一些技巧性較強、難度較大的例題。
初中數學(xué)知識點(diǎn)總結6
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4、圓是定點(diǎn)的.距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12、①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含dr)
初中數學(xué)知識點(diǎn)總結7
1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
21、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
27、圓的外切四邊形的兩組對邊的.和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上35、①兩圓外離dR+r②兩圓外切d=R+r
、蹆蓤A相交R-rdR+r(Rr)④兩圓內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)
36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
39、正n邊形的每個(gè)內角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)42、正三角形面積√3a/4a表示邊長(cháng)
43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(cháng)計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
初中數學(xué)知識點(diǎn)總結8
初中數學(xué)總復習,是對初中三年來(lái)所學(xué)數學(xué)知識的回顧,鞏固提高,查漏補缺,它不是對知識的簡(jiǎn)單重復,而是引導學(xué)生對所學(xué)知識進(jìn)行系統歸納和升華,并用已學(xué)的知識解決新問(wèn)題。進(jìn)一步加深對數學(xué)概念的理解,弄清各部分知識的內在聯(lián)系,熟練掌握重要的數學(xué)方法和數學(xué)思想,從而達到開(kāi)發(fā)智力、培養能力的目的因此,初中數學(xué)總復習是非常重要的,復習的好壞將決定學(xué)生成績(jì)的好壞、決定學(xué)生掌握知識的牢固程度。一直以來(lái),如何有效提高復習效率,是廣大教師多年來(lái)探求的重要課題之一。筆者從1999年以來(lái),一直擔任初中數學(xué)的教學(xué)任務(wù),所教班級的數學(xué)中考考試成績(jì)一直名列前茅。下面筆者根據對初中數學(xué)總復習的實(shí)踐,總結出的一套較為實(shí)用的復習方法。
一、復習基礎知識階段
在初中數學(xué)復習中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數學(xué)知識的前后相連、縱橫交錯、融會(huì )貫通的知識結構。在第一階段中,一般按初中數學(xué)知識體系把初中數學(xué)知識分成九個(gè)單元,即:“數與式”“方程和不等式(組)”“函數及其圖像”“統計與概率”“圖形初步認識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復習。每個(gè)單元按下面步驟進(jìn)行。
1、疏理知識結構
首先,引導學(xué)生把本單元的知識用文字、圖表等方式編織知識網(wǎng)絡(luò ),用簡(jiǎn)表式的結構表示本單元的知識結構;其次,引導學(xué)生回顧基礎知識;最后,以基本習題的形式再現知識的.內容,即通過(guò)一些判斷題、填空題、選擇題、簡(jiǎn)單計算題的訓練達到鞏固基礎知識的目的
2、訓練基本技能和解題技巧
在理順知識結構的基礎上,把每個(gè)單元按知識點(diǎn)分成若干課時(shí),然后按知識點(diǎn)精選例題和練習題,引導學(xué)生進(jìn)行多方練習,多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎知識和解題技巧。
精選的例題和練習題最好從課本上尋找,因為中考的命題原則是:“源于教材,高于教材!彼x例題、練習題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓練。
每課時(shí)的教學(xué)可按“理順知識――嘗試做例題――講解例題――練習――變式練習――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識”階段力求簡(jiǎn)單明了地揭示本節課所要復習的知識點(diǎn),領(lǐng)會(huì )概念、定理、公理和數學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。
3、單元測試
在上述復習的基礎上,復習完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導學(xué)生系統地梳理教材、構建知識結構,歸納和總結各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結本單元的常用結論、解題方法、一題多解、一題多變?yōu)橹。對學(xué)生進(jìn)行測試,以了解學(xué)生掌握知識的情況,及時(shí)查漏補缺。
測試題應以教學(xué)大綱、考標、教材為依據,要求內容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過(guò)測試,全面衡量復習效果,一般來(lái)說(shuō),測試題可從以下幾個(gè)方面精選題目:(1)全面體現本單元的基礎知識的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運用本單元知識的綜合題。
上面三方面試題的比例為6∶3∶1測試完后,教師進(jìn)行講評,對學(xué)生未弄懂的知識點(diǎn)及時(shí)進(jìn)行補救。
二、綜合訓練,加強重點(diǎn)知識階段
在完成第一階段的基礎上,根據初中數學(xué)知識的重點(diǎn),選擇一些較為典型的綜合題,引導學(xué)生合作探索和研究,以培養學(xué)生綜合運用知識來(lái)分析問(wèn)題和解決問(wèn)題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。
綜合題,一般來(lái)說(shuō)有代數綜合題、幾何綜合題、代數和幾何相結合的綜合題。代數綜合題的重點(diǎn)應是二次方程和二次函數;幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數與幾何相結合的綜合題則是方程、函數與圖像相結合的題。
對于綜合題的訓練,一般采用“嘗試練習――分析――講解――歸納解題方法與技巧――練習”的方式進(jìn)行。對重點(diǎn)問(wèn)題進(jìn)行一題多解、一題多變的訓練。
三、綜合測試,查漏補缺階段
為了進(jìn)一步鞏固數學(xué)知識,全面考查復習效果,提高學(xué)生的心理素質(zhì),在第二階段復習結束時(shí),可進(jìn)行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現初中數學(xué)知識和方法,既要有考查雙基的基礎題,又要有考查學(xué)生能力的綜合題。有的知識還要與高中知識銜接并拓展。
考完一套,及時(shí)講評,與學(xué)生一起分析,共同探討,列出知識清單使得每個(gè)學(xué)生經(jīng)歷知識收集、整理的過(guò)程,把書(shū)學(xué)“薄”,有效地回顧了一章書(shū)所學(xué)的知識。
初中數學(xué)知識點(diǎn)總結9
一、在創(chuàng )新中培養學(xué)生的歸納意?R
在初中數學(xué)教學(xué)中,重點(diǎn)是對學(xué)生的創(chuàng )新精神和實(shí)踐能力的培養,體現出現代素質(zhì)教育。學(xué)生創(chuàng )新能力的培養在學(xué)習中占據非常重要的作用,在創(chuàng )新中學(xué)生可以鞏固自身所學(xué)的知識,使數學(xué)知識在自己的頭腦中根深蒂固,各類(lèi)知識點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養。歸納意識的培養,可以減輕學(xué)生的學(xué)習負擔,提升學(xué)生對知識的理解能力。
初中生在學(xué)習數學(xué)的環(huán)節中,常常會(huì )接觸到大量的圖像,在數學(xué)學(xué)習中,老師應該鼓勵學(xué)生大膽創(chuàng )新,在創(chuàng )新環(huán)節中完成對知識點(diǎn)的歸納。數學(xué)學(xué)習并不死板,不僅僅學(xué)習教科書(shū)上的知識,還應該學(xué)習書(shū)本以外的知識,從而創(chuàng )新自己的思維。例如在進(jìn)行函數的學(xué)習中,老師可以讓學(xué)生繪制函數圖像,對函數進(jìn)行分類(lèi)討論,從而掌握遞增函數和遞減函數的定義,在分類(lèi)討論后,學(xué)生結合圖像進(jìn)行歸納。在數學(xué)教學(xué)中,老師不僅僅要重視書(shū)本上的邏輯內容,而且在把握邏輯內容的`基礎上,將圖像和數學(xué)知識有機結合起來(lái),使學(xué)生可以大膽創(chuàng )新。
很多學(xué)生在數學(xué)學(xué)習中存在困難,認為數學(xué)的學(xué)習就是解答大量的難題,他們在大量的題海戰術(shù)后不善于歸納,導致數學(xué)學(xué)習的效率不高。
二、在交流中歸納知識點(diǎn)
在數學(xué)學(xué)習中,如果學(xué)生只是自己探究,那么在學(xué)習中不會(huì )得到靈感。數學(xué)學(xué)習不僅僅要求學(xué)生具有認真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養成歸納的意識。溝通和交流不僅僅在語(yǔ)言的學(xué)習中發(fā)揮非常重要的作用,而且在數學(xué)學(xué)習中同樣非常重要。學(xué)生在解答數學(xué)問(wèn)題中,常常會(huì )遇到一些問(wèn)題,學(xué)生自己探究會(huì )陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實(shí)在初中數學(xué)教學(xué)中培養學(xué)生的歸納意識,老師可以將班級內的學(xué)生分成幾個(gè)不同的小組,組內的同學(xué)可以通過(guò)合作的方式,對知識點(diǎn)進(jìn)行歸納,在數學(xué)的學(xué)習中更加變通,將數學(xué)這門(mén)學(xué)科應用到生活中。
例如,在進(jìn)行二次函數的學(xué)習中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對知識點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結論,如果函數有兩個(gè)解,那么函數與數軸會(huì )有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數與數軸只有一個(gè)交點(diǎn),如果方程沒(méi)有解,那么函數與數軸沒(méi)有交點(diǎn)。學(xué)生通過(guò)分組討論的方式得到結論,通過(guò)歸納,學(xué)生對二次函數知識點(diǎn)的印象非常深刻。
三、學(xué)會(huì )正確歸納
在數學(xué)學(xué)習中,歸納思想非常重要,數學(xué)這門(mén)學(xué)科的知識非常細碎,是一門(mén)系統性很強的學(xué)科。數學(xué)知識錯綜復雜,很多學(xué)生在學(xué)習數學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數學(xué)成績(jì)。初中生的思維還不是特別完善,在進(jìn)行數學(xué)學(xué)習環(huán)節中,對知識點(diǎn)進(jìn)行合理的歸納,是每位老師應該采取的方法。如果學(xué)生不懂得歸納,那么在數學(xué)考試中,學(xué)生會(huì )將知識點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學(xué)生總結。
例如,在學(xué)習圓和直線(xiàn)這部分內容中,老師都會(huì )將重點(diǎn)內容,圓和圓的位置關(guān)系,直線(xiàn)和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書(shū)目和資料,總結一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點(diǎn)進(jìn)行總結,從而加深對這部分知識的理解。歸納思想在數學(xué)學(xué)習中應用非常多,在進(jìn)行初中數學(xué)教學(xué)環(huán)節中,學(xué)生應該花更多的時(shí)間進(jìn)行歸納。
在進(jìn)行初中數學(xué)的學(xué)習中,學(xué)生歸納意識的養成可以完善學(xué)生的數學(xué)思維,學(xué)生學(xué)會(huì )歸納,在學(xué)習中就會(huì )如魚(yú)得水,在考試中取得好成績(jì)。
四、在反思中完成知識點(diǎn)的歸納
初中數學(xué)知識點(diǎn)總結10
課題
3.5正比例函數、反比例函數、一次函數和二次函數
教學(xué)目標
1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)2、會(huì )用待定系數法確定函數的解析式
教學(xué)重點(diǎn)
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)
教學(xué)難點(diǎn)
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)
教學(xué)方法
講練結合法
教學(xué)過(guò)程
。↖)知識要點(diǎn)(見(jiàn)下表:)
第三章第29頁(yè)函數名稱(chēng)解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線(xiàn)雙曲線(xiàn),x軸、y軸是它的漸近線(xiàn)與直線(xiàn)ykx平行且過(guò)點(diǎn)(0,b)的直線(xiàn)拋物線(xiàn)定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數,在,-單調性k0時(shí),在,0,k0時(shí)為增函數0,上為減函數k0時(shí),為增函數b上為減函數2ak0時(shí)為減函數k0時(shí),在,0,k0時(shí),為減函數0,上為增函數ba0時(shí),在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時(shí)奇函數b=0時(shí)偶函數a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax
第三章第30頁(yè)b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱(chēng)軸x,頂點(diǎn)(,)
2a2a4a2拋物線(xiàn)與x軸交點(diǎn)坐標(m,0),(n,0)(II)例題講解
例1、求滿(mǎn)足下列條件的二次函數的解析式:(1)拋物線(xiàn)過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線(xiàn)的'頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)
。3)拋物線(xiàn)對稱(chēng)軸是x2,它在x軸上截出的線(xiàn)段AB長(cháng)為2且拋物線(xiàn)過(guò)點(diǎn)(1,7)。2,
解:(1)設yax2bxc(a0),將A、B、C三點(diǎn)坐標分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點(diǎn)坐標代入,即a(31)253,得
a2,故y2(x1)252x24x3
。3)∵拋物線(xiàn)對稱(chēng)軸為x2;
∴拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)A、B應關(guān)于x2對稱(chēng);∴由題設條件可得兩個(gè)交點(diǎn)坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1
∴所求二次函數為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數的圖像過(guò)點(diǎn)(0,8),(1,(4,0)
。1)求函數圖像的頂點(diǎn)坐標、對稱(chēng)軸、最值及單調區間(2)當x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值
113x1(x)2,知函數的圖像開(kāi)口向上,對稱(chēng)軸為x
224111]上是增函數!嘁李}設條件可得f(x)在[1,]上是減函數,在[,22131]時(shí),函數取得最小值,且ymin∴當x[1,24131又∵11
初中數學(xué)知識點(diǎn)總結11
基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理xxx兩邊的和大于第三邊
16、推論xxx兩邊的差小于第三邊
17、xxx內角和定理xxx三個(gè)內角的和等于180°
18、推論1直角xxx的兩個(gè)銳角互余
19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)xxx全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)xxx全等
24、推論(AAS)有兩角和其中一角的.對邊對應相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角xxx全等
27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對等角)
31、推論1等腰xxx頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰xxx的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°
34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35、推論1三個(gè)角都相等的xxx是等邊xxx
36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線(xiàn)等于斜邊上的一半
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果xxx的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°
初中數學(xué)知識點(diǎn)總結12
一、一次函數圖象y=kx+b
一次函數的圖象可以由k、b的正負來(lái)決定:
k大于零是一撇(由左下至右上,增函數)
k小于零是一捺(由右上至左下,減函數)
b等于零必過(guò)原點(diǎn);
b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)
b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)
其圖象經(jīng)過(guò)(0,b)和(—b/k,0)這兩點(diǎn)(兩點(diǎn)就可以決定一條直線(xiàn)),且(0,b)在y軸上,(—b/k,0)在x軸上。
b的數值就是一次函數在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的解集
1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類(lèi)項、系數化為1。
2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類(lèi)型所反映的規律,寫(xiě)出不等式組的解集:不等式組解集的確定方法,若a
A的解集是解集小小的取小
B的解集是解集大大的取大
C的解集是解集大小的小大的取中間
D的解集是空集解集大大的小小的無(wú)解
另需注意等于的問(wèn)題。
三、零的描述
1、零既不是正數也不是負數,是介于正數和負數之間的數。零是自然數,是整數,是偶數。
A、零是表示具有相反意義的量的基準數。
B、零是判定正、負數的界限。
C、在一切非負數中有一個(gè)最小值是0;在一切非正數中有一個(gè)最大值是0。
2、零的運算性質(zhì)
A、乘方:零的正整數次冪都是零。
B、除法:零除以任何不等于零的數都得零;零不能作除數;0沒(méi)有倒數。
C、乘法:零乘以任何數都得零。ab=0a、b中至少有一個(gè)是0。
D、加法a、b互為相反數a+b=0
E、減法(比較大小用)a—b=0a=b;a—b0ab;a—b0a
3、在近似數中,當0作為有效數字時(shí),它表示不同的精確度,不能省略。
四、因式分解分解方法
首先提取公因式,然后依次用公式,十字相乘,分組分解法,若都不行,再拆項添項試一試。必須進(jìn)行到每一個(gè)多項式因式不能再分解為止
1、提公因式法
首先觀(guān)察多項式的結構特點(diǎn),確定多項式的公因式。當多項式各項的公因式是一個(gè)多項式時(shí),可以用設輔助元的方法把它轉化為單項式,也可以把這個(gè)多項式因式看作一個(gè)整體,直接提取公因式;當多項式各項的'公因式是隱含的時(shí)候,要把多項式進(jìn)行適當的變形,或改變符號,直到可確定多項式的公因式。
2、公式
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2,還立方差和及其他公式
3、十字相乘
運用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解。
將常數項分解成滿(mǎn)足要求的兩個(gè)因數積的多次嘗試,一般步驟:
、倭谐龀淀椃纸獬蓛蓚(gè)因數的積各種可能情況;
、趪L試其中的哪兩個(gè)因數的和恰好等于一次項系數。
4、分組分解法
多項式am+an+bm+bn,這四項中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
再提公因式(m+n)
a(m+n)+b(m+n)
=(m+n)?(a+b)。
可見(jiàn)如把一個(gè)多項式的項分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項式就可以用分組分解法來(lái)分解因式。
初中數學(xué)知識點(diǎn)總結13
第一章 豐富的圖形世界
1、幾何圖形
從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。
2、點(diǎn)、線(xiàn)、面、體
(1)幾何圖形的組成
點(diǎn):線(xiàn)和線(xiàn)相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。
線(xiàn):面和面相交的地方是線(xiàn),分為直線(xiàn)和曲線(xiàn)。
面:包圍著(zhù)體的是面,分為平面和曲面。
體:幾何體也簡(jiǎn)稱(chēng)體。
(2)點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長(cháng)方體、正方體)、五棱柱、……
正有理數 整數
有理數 零 有理數
負有理數 分數
2、相反數:只有符號不同的兩個(gè)數叫做互為相反數,零的相反數是零
3、數軸:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸(畫(huà)數軸時(shí),三要素缺一不可)。任何一個(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒(méi)有倒數。
5、絕對值:在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0;橄喾磾档膬蓚(gè)數的絕對值相等。
6、有理數比較大。赫龜荡笥0,負數小于0,正數大于負數;數軸上的兩個(gè)點(diǎn)所表示的數,右邊的總比左邊的大;兩個(gè)負數,絕對值大的反而小。
7、有理數的運算:
(1)五種運算:加、減、乘、除、乘方
多個(gè)數相乘,積的符號由負因數的個(gè)數決定,當負因數有奇數個(gè)時(shí),積的符號為負;當負因數有偶數個(gè)時(shí),積的符號為正。只要有一個(gè)數為零,積就為零。
有理數加法法則:
同號兩數相加,取相同的符號,并把絕對值相加。
異號兩數相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
一個(gè)數同0相加,仍得這個(gè)數。
互為相反數的兩個(gè)數相加和為0。
有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數!
有理數乘法法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數與0相乘,積仍為0。
有理數除法法則:
兩個(gè)有理數相除,同號得正,異號得負,并把絕對值相除。
0除以任何非0的數都得0。
注意:0不能作除數。
有理數的乘方:求n個(gè)相同因數a的積的運算叫做乘方。
正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)有理數的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
(3)運算律
加法交換律 加法結合律
乘法交換律 乘法結合律
乘法對加法的分配律
8、科學(xué)記數法
一般地,一個(gè)大于10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學(xué)記數法。(n=整數位數-1)
第三章 整式及其加減
1、代數式
用運算符號(加、減、乘、除、乘方、開(kāi)方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個(gè)數或一個(gè)字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括號;
、诖鷶凳街胁缓小=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
、鄞鷶凳街械淖帜杆硎镜臄当仨氁惯@個(gè)代數式有意義,是實(shí)際問(wèn)題的要符合實(shí)際問(wèn)題的意義。
※代數式的書(shū)寫(xiě)格式:
、俅鷶凳街谐霈F乘號,通常省略不寫(xiě),如vt;
、跀底峙c字母相乘時(shí),數字應寫(xiě)在字母前面,如4a;
、蹘Х謹蹬c字母相乘時(shí),應先把帶分數化成假分數,如應寫(xiě)作;
、軘底峙c數字相乘,一般仍用“×”號,即“×”號不省略;
、菰诖鷶凳街谐霈F除法運算時(shí),一般寫(xiě)成分數的形式,如4÷(a-4)應寫(xiě)作;注意:分數線(xiàn)具有“÷”號和括號的雙重作用。
、拊诒硎竞(或)差的代數式后有單位名稱(chēng)的,則必須把代數式括起來(lái),再將單位名稱(chēng)寫(xiě)在式子的后面,如平方米。
2、整式:?jiǎn)雾検胶投囗検浇y稱(chēng)為整式。
、賳雾検剑憾际菙底趾妥帜赋朔e的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個(gè)單項式的次數;數字因數叫做這個(gè)單項式的系數。
注意:1.單獨的一個(gè)數或一個(gè)字母也是單項式;2.單獨一個(gè)非零數的次數是0;3.當單項式的系數為1或-1時(shí),這個(gè)“1”應省略不寫(xiě),如-ab的系數是-1,a3b的系數是1。
、诙囗検剑簬讉(gè)單項式的和叫做多項式。多項式中,每個(gè)單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。
3、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項叫做同類(lèi)項。
注意:①同類(lèi)項有兩個(gè)條件:a.所含字母相同;b.相同字母的指數也相同。
、谕(lèi)項與系數無(wú)關(guān),與字母的排列順序無(wú)關(guān);
、蹘讉(gè)常數項也是同類(lèi)項。
4、合并同類(lèi)項法則:把同類(lèi)項的系數相加,字母和字母的指數不變。
5、去括號法則
、俑鶕ダㄌ柗▌t去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。
、诟鶕峙渎扇ダㄌ枺
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類(lèi)項。
第四章 基本平面圖形
2、直線(xiàn)的性質(zhì)
(1)直線(xiàn)公理:經(jīng)過(guò)兩個(gè)點(diǎn)有且只有一條直線(xiàn)。(兩點(diǎn)確定一條直線(xiàn)。)
(2)過(guò)一點(diǎn)的直線(xiàn)有無(wú)數條。
(3)直線(xiàn)是是向兩方面無(wú)限延伸的',無(wú)端點(diǎn),不可度量,不能比較大小。
3、線(xiàn)段的性質(zhì)
(1)線(xiàn)段公理:兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。(兩點(diǎn)之間線(xiàn)段最短。)
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
(3)線(xiàn)段的大小關(guān)系和它們的長(cháng)度的大小關(guān)系是一致的。
4、線(xiàn)段的中點(diǎn):
點(diǎn)M把線(xiàn)段AB分成相等的兩條相等的線(xiàn)段AM與BM,點(diǎn)M叫做線(xiàn)段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角,兩條射線(xiàn)的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線(xiàn)叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉而成的。
6、角的表示
角的表示方法有以下四種:
、儆脭底直硎締为毜慕,如∠1,∠2,∠3等。
、谟眯(xiě)的希臘字母表示單獨的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋(gè)大寫(xiě)英文字母表示一個(gè)獨立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。
、苡萌齻(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。
注意:用三個(gè)大寫(xiě)字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側。
7、角的度量
角的度量有如下規定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線(xiàn)
從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
9、角的性質(zhì)
(1)角的大小與邊的長(cháng)短無(wú)關(guān),只與構成角的兩條射線(xiàn)的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時(shí),所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線(xiàn)上的線(xiàn)段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線(xiàn)段叫做多邊形的對角線(xiàn)。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(huà)(n-3)條對角線(xiàn),把這個(gè)n邊形分割成(n-2)個(gè)三角形。
12、圓:平面上,一條線(xiàn)段繞著(zhù)一個(gè)端點(diǎn)旋轉一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱(chēng)為圓心,線(xiàn)段OA的長(cháng)稱(chēng)為半徑的長(cháng)(通常簡(jiǎn)稱(chēng)為半徑)。
圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質(zhì)
(1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數式,所得結果仍是等式。
(2)等式的兩邊同時(shí)乘以同一個(gè)數((或除以同一個(gè)不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個(gè)未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類(lèi)項(5)將未知數的系數化為1
第六章 數據的收集與整理
1、普查與抽樣調查
為了特定目的對全部考察對象進(jìn)行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個(gè)被考察對象稱(chēng)為個(gè)體。
從總體中抽取部分個(gè)體進(jìn)行調查,這種調查稱(chēng)為抽樣調查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。
2、扇形統計圖
扇形統計圖:利用圓與扇形來(lái)表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個(gè)扇形所占的百分比之和為1)
圓心角度數=360°×該項所占的百分比。(各個(gè)部分的圓心角度數之和為360°)
3、頻數直方圖
頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進(jìn)行了分組畫(huà)在橫軸上,縱軸表示各組數據的頻數。
4、各種統計圖的特點(diǎn)
條形統計圖:能清楚地表示出每個(gè)項目的具體數目。
折線(xiàn)統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。
初中數學(xué)知識點(diǎn)總結14
本章內容通過(guò)讓學(xué)生經(jīng)歷觀(guān)察、操作等過(guò)程了解旋轉的概念,探索旋轉的性質(zhì),進(jìn)一步發(fā)展空間觀(guān)察,培養幾何思維和審美意識,在實(shí)際問(wèn)題中體驗數學(xué)的快樂(lè ),激發(fā)對學(xué)習學(xué)習。
一.知識框架
二.知識概念
1.旋轉:在平面內,將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉動(dòng)一個(gè)角度,這樣的運動(dòng)叫做圖形的旋轉。這個(gè)定點(diǎn)叫做旋轉中心,轉動(dòng)的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點(diǎn)在平面上繞著(zhù)某個(gè)固定點(diǎn)旋轉固定角度的位置移動(dòng),其中對應點(diǎn)到旋轉中心的`距離相等,對應線(xiàn)段的長(cháng)度、對應角的大小相等,旋轉前后圖形的大小和形狀沒(méi)有改變。)
2.旋轉對稱(chēng)中心:把一個(gè)圖形繞著(zhù)一個(gè)定點(diǎn)旋轉一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉對稱(chēng)圖形,這個(gè)定點(diǎn)叫做旋轉對稱(chēng)中心,旋轉的角度叫做旋轉角(旋轉角小于0°,大于360°)。
3.中心對稱(chēng)和中心對稱(chēng)圖形是兩個(gè)不同而又緊密聯(lián)系的概念.區別是:中心對稱(chēng)是指兩個(gè)全等圖形之間的相互位置關(guān)系,這兩個(gè)圖形關(guān)于一點(diǎn)對稱(chēng),這個(gè)點(diǎn)是對稱(chēng)中心,兩個(gè)圖形關(guān)于點(diǎn)的對稱(chēng)也叫做中心對稱(chēng).成中心對稱(chēng)的兩個(gè)圖形中,其中一個(gè)上所有點(diǎn)關(guān)于對稱(chēng)中心的對稱(chēng)點(diǎn)都在另一個(gè)圖形上,反之,另一個(gè)圖形上所有點(diǎn)的對稱(chēng)點(diǎn),又都在這個(gè)圖形上;而中心對稱(chēng)圖形是指一個(gè)圖形本身成中心對稱(chēng).中心對稱(chēng)圖形上所有點(diǎn)關(guān)于對稱(chēng)中心的對稱(chēng)點(diǎn)都在這個(gè)圖形本身上.如果將中心對稱(chēng)的兩個(gè)圖形看成一個(gè)整體(一個(gè)圖形),那么這個(gè)圖形就是中心對稱(chēng)圖形;一個(gè)中心對稱(chēng)圖形,如果把對稱(chēng)的部分看成是兩個(gè)圖形,那么它們又是關(guān)于中心對稱(chēng).
4.中心對稱(chēng)圖形與中心對稱(chēng):
中心對稱(chēng)圖形:如果把一個(gè)圖形繞著(zhù)某一點(diǎn)旋轉180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對稱(chēng)圖形。
中心對稱(chēng):如果把一個(gè)圖形繞著(zhù)某一點(diǎn)旋轉180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對稱(chēng)。
5.把一個(gè)圖形繞著(zhù)某一點(diǎn)旋轉180°,如果它能與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱(chēng)或中心對稱(chēng)(centralsymmetry),這個(gè)點(diǎn)叫做對稱(chēng)中心,這兩個(gè)圖形的對應點(diǎn)叫做關(guān)于中心的對稱(chēng)點(diǎn)。
6.中心對稱(chēng)的性質(zhì):
關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等形。
關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分。關(guān)于中心對稱(chēng)的兩個(gè)圖形,對應線(xiàn)段平行(或者在同一直線(xiàn)上)且相等。
初中數學(xué)知識點(diǎn)總結15
一、數與代數
1.有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
2.實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:如果一個(gè)數的平方等于a,那么這個(gè)數就叫做a的平方根(或二次方跟);一個(gè)數有兩個(gè)平方根,他們互為相反數;零的平方根是零;負數沒(méi)有平方根。
算術(shù)平方根:正數的正的平方根和零的平方根統稱(chēng)為主根,用符號“√a”表示,a為“被開(kāi)方數”。
立方根:如果一個(gè)數的立方等于a,那么這個(gè)數就叫做a的立方根(或a的三次方根);一個(gè)正數的立方根是正數、零的立方根是零、負數的立方根是負數;
二、方程
1.代數式:?jiǎn)为氁粋(gè)數字或一個(gè)字母也是代數式。
2.一元一次方程:含有一個(gè)未知數,并且未知數的次數是1,并且含有一個(gè)未知數,并且未知數的次數是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一個(gè)未知數,并且未知數的次數是2的所有整式方程是一元二次方程。
4.二元一次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的'次數是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的次數是2的所有整式方程叫二元二次方程。
三、三角形
1.幾何圖形:學(xué)過(guò)的立體圖形有圓柱、圓錐和球以及長(cháng)方體、正方體、棱柱、棱錐、棱臺。
2.圖形的三視圖:俯視圖、主視圖、左視圖。
3.三角形的穩定性。
4.三角形的分類(lèi):銳角三角形、直角三角形、鈍角三角形。
5.三角形的內角和定理:三角形三個(gè)內角的和等于180度。
6.解直角三角形:解直角三角形需要運用勾股定理及銳角三角函數的定義。銳角三角函數的定義:在直角三角形中,一銳角的正切等于銳角A對邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對邊的比值;一銳角的正弦等于銳角A的對邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。
7.全等三角形:全等三角形的對應邊相等;全等三角形的對應角相等。
8.等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱(chēng):等邊對等角)以及等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高相互重合。(簡(jiǎn)稱(chēng):三線(xiàn)合一)
9.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(簡(jiǎn)稱(chēng):等角對等邊)
10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個(gè)角都相等的三角形是等邊三角形。
11.相似的三角形:相似三角形的對應邊成比例;對應角相等。
12.反證法:在證明一個(gè)命題的論證中,假設命題的結論不成立,從這個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出與定義、公理或已經(jīng)證明過(guò)的命題或已經(jīng)掌握的事實(shí)相矛盾,從而使這個(gè)假設成為一個(gè)不成立的命題,這種推證方法叫做反證法。證明兩條線(xiàn)段相等時(shí)常常用反證法。
四、四邊形
1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對角線(xiàn)的交點(diǎn)。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對角線(xiàn)的交點(diǎn)。
3.梯形問(wèn)題
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結03-04
初中數學(xué)知識點(diǎn)總結03-07
初中數學(xué)知識點(diǎn)總結10-24