初中數學(xué)知識點(diǎn)總結
總結是事后對某一階段的學(xué)習或工作情況作加以回顧檢查并分析評價(jià)的書(shū)面材料,它可以使我們更有效率,讓我們來(lái)為自己寫(xiě)一份總結吧?偨Y怎么寫(xiě)才不會(huì )流于形式呢?下面是小編幫大家整理的初中數學(xué)知識點(diǎn)總結,希望能夠幫助到大家。
初中數學(xué)知識點(diǎn)總結1
三角形兩邊:
定理三角形兩邊的和大于第三邊。
推論三角形兩邊的差小于第三邊。
三角形中位線(xiàn)定理:
三角形的中位線(xiàn)平行于第三邊,并且等于它的一半。
三角形的重心:
三角形的重心到頂點(diǎn)的距離是它到對邊中點(diǎn)距離的2倍。
在三角形中,連接一個(gè)頂點(diǎn)和它對邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn),三角形的三條中線(xiàn)交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。
與三角形有關(guān)的角:
1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無(wú)關(guān)。
2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。
3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內角;三角形三個(gè)外角和為360°。
全等三角形的性質(zhì)和判定:
全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會(huì )構成全等三角形。
。ㄟ呥呥叄,即三邊對應相等的兩個(gè)三角形全等。
。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個(gè)三角形全等。
。ń沁吔牵,即三角形的其中兩個(gè)角對應相等,且兩個(gè)角夾的的邊也對應相等的兩個(gè)三角形全等。
。ń墙沁叄,即三角形的其中兩個(gè)角對應相等,且對應相等的角所對應的邊也對應相等的兩個(gè)三角形全等。
。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。
等邊三角形的判定:
1、三邊相等的三角形是等邊三角形(定義)。
2、三個(gè)內角都相等的三角形是等邊三角形。
3、有一個(gè)角是60度的等腰三角形是等邊三角形。
4、有兩個(gè)角等于60度的三角形是等邊三角形。
初中數學(xué)知識點(diǎn)總結2
一、正數和負數
1、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時(shí),—a是負數;當a表示負數時(shí),—a是正數;當a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說(shuō)法是錯誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
、谡龜涤袝r(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長(cháng)與降低等等是相對相反量,它們計數:比原先多了的數,增加增長(cháng)了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3.0表示的意義
、0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
、0是正數和負數的分界線(xiàn),0既不是正數,也不是負數。
二、有理數
1、有理數的概念
、耪麛、0、負整數統稱(chēng)為整數(0和正整數統稱(chēng)為自然數)
、普謹岛拓摲謹到y稱(chēng)為分數
、钦麛,0,負整數,正分數,負分數都可以寫(xiě)成分數的形式,這樣的數稱(chēng)為有理數。
理解:只有能化成分數的數才是有理數。①π是無(wú)限不循環(huán)小數,不能寫(xiě)成分數形式,不是有理數。②有限小數和無(wú)限循環(huán)小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。
2、(1)凡能寫(xiě)成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負p
分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;
初中數學(xué)知識點(diǎn)總結3
定義
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
比值與比的概念
比值是一個(gè)具體的數字如:AB/EF=2
而比不是一個(gè)具體的數字如:AB/EF=2:1判定方法
證兩個(gè)相似三角形應該把表示對應頂點(diǎn)的字母寫(xiě)在對應的位置上。如果是文字語(yǔ)言的“△ABC與△DEF相似”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)可能沒(méi)有寫(xiě)在對應的位置上,而如果是符號語(yǔ)言的“△ABC∽△DEF”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)寫(xiě)在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線(xiàn)截其它兩邊所在的直線(xiàn),截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個(gè)引理的證明方法需要平行線(xiàn)與線(xiàn)段成比例的證明)
方法二
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似。
方法三
如果兩個(gè)三角形的兩組對應邊成比例,并且相應的夾角相等,
那么這兩個(gè)三角形相似
方法四
如果兩個(gè)三角形的三組對應邊成比例,那么這兩個(gè)三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形
三個(gè)基本型
Z型A型反A型
方法六
兩個(gè)直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個(gè)全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個(gè)等腰三角形
(兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)
3、兩個(gè)等邊三角形
(兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)
圖形的學(xué)習需要大家對于知識的詳細了解和滲透,而不是一帶而過(guò)。
初中數學(xué)知識點(diǎn)總結4
一次函數:
一次函數圖像與性質(zhì)是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
、贂(huì )畫(huà)一次函數的圖像,并掌握其性質(zhì)。
、跁(huì )根據已知條件,利用待定系數法確定一次函數的解析式。
、勰苡靡淮魏瘮到鉀Q實(shí)際問(wèn)題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
、僬_理解掌握一次函數的概念,圖像和性質(zhì)。
、谶\用數學(xué)結合的思想解與一次函數圖像有關(guān)的問(wèn)題。
、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。
、茏鲆恍┚C合題的訓練,提高分析問(wèn)題的能力。
函數性質(zhì):
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時(shí),b為函數在y軸上的點(diǎn),坐標為(0,b)。
3當b=0時(shí)(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個(gè)一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時(shí),兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時(shí),兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時(shí),兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時(shí),兩一次函數圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱(chēng)y是x的一次函數圖像性質(zhì)
作法與圖形:通過(guò)如下3個(gè)步驟:
。1)列表.
。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線(xiàn)即可。
正比例函數y=kx(k≠0)的圖象是過(guò)坐標原點(diǎn)的一條直線(xiàn),一般。0,0)和(1,k)兩點(diǎn)。(3)連線(xiàn),可以作出一次函數的圖象一條直線(xiàn)。因此,作一次函數的圖象只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
性質(zhì):
。1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。
。2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過(guò)原點(diǎn)。
函數不是數,它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
k,b與函數圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當k>0時(shí),直線(xiàn)必通過(guò)第一、三象限,y隨x的增大而增大;當k0,b>0,這時(shí)此函數的圖象經(jīng)過(guò)第一、二、三象限;當k>0,b
初中數學(xué)知識點(diǎn)總結5
圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
推理過(guò)程
根據旋轉的性質(zhì),將∠aob繞圓心o旋轉到∠aob的位置時(shí),顯然∠aob=∠aob,射線(xiàn)oa與oa重合,ob與ob重合,而同圓的半徑相等,oa=oa,ob=ob,從而點(diǎn)a與a重合,b與b重合。
因此,弧ab與弧ab重合,ab與ab重合。即
弧ab=弧ab,ab=ab。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對應的其余各組量也相等。
圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會(huì )出現在關(guān)于圓的證明題中。
初中數學(xué)知識點(diǎn)總結6
一.圓的定義
1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。
2.平面上一條線(xiàn)段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點(diǎn)為圓心。
2.定義2中繞的那一端的端點(diǎn)為圓心。
3.圓任意兩條對稱(chēng)軸的交點(diǎn)為圓心。
4.垂直于圓內任意一條弦且兩個(gè)端點(diǎn)在圓上的線(xiàn)段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
5.直徑:通過(guò)圓心,并且兩端都在圓上的線(xiàn)段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點(diǎn)的線(xiàn)段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無(wú)數條。圓是軸對稱(chēng)圖形,每條直徑所在的直線(xiàn)是圓的對稱(chēng)軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的基本性質(zhì)
1.圓的對稱(chēng)性
(1)圓是軸對稱(chēng)圖形,它的對稱(chēng)軸是直徑所在的直線(xiàn)。
(2)圓是中心對稱(chēng)圖形,它的對稱(chēng)中心是圓心。
(3)圓是旋轉對稱(chēng)圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線(xiàn)間的兩條弧相等。
(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線(xiàn)段的中垂線(xiàn)上。
(2)不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線(xiàn)的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角三角形的外心就是斜邊的中點(diǎn)。)
6.直線(xiàn)與圓的位置關(guān)系。d表示圓心到直線(xiàn)的距離,r表示圓的半徑。
直線(xiàn)與圓有兩個(gè)交點(diǎn),直線(xiàn)與圓相交;直線(xiàn)與圓只有一個(gè)交點(diǎn),直線(xiàn)與圓相切;直線(xiàn)與圓沒(méi)有交點(diǎn),直線(xiàn)與圓相離。
四.圓和圓
1.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。
2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。
3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。
4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內部,叫做兩個(gè)圓的內切。
5.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內部時(shí),叫做這兩個(gè)圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結各等分點(diǎn)所得的多邊形是這個(gè)圓的內接正多邊形。
(2)這個(gè)圓是這個(gè)正多邊形的外接圓。
初中數學(xué)知識點(diǎn)總結7
動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:
1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.
總結反思:
本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵.
解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的
解答函數的圖象問(wèn)題一般遵循的步驟:
1、根據自變量的取值范圍對函數進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.
2、自變量變化函數值也變化的增減變化情況.
3、函數圖象的最低點(diǎn)和最高點(diǎn).
初中數學(xué)知識點(diǎn)總結8
銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對邊,即cscA=c/a。
三角函數關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。
13、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
14、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。
初中數學(xué)知識點(diǎn)總結9
初中數學(xué)數軸知識點(diǎn)
、偻ǔS靡粭l直線(xiàn)上的點(diǎn)表示數,這條直線(xiàn)叫數軸。
、跀递S三要素:原點(diǎn)、正方向、單位長(cháng)度。
、蹟递S上的點(diǎn)和有理數的關(guān)系:所有的有理數都可以用數軸上的點(diǎn)表示出來(lái),但數軸上的點(diǎn),不都是表示有理數。
、苤挥蟹柌煌膬蓚(gè)數叫做互為相反數(和為零)。(例:2的相反數是-2,如:2+(-2)=0;0的相反數是0)
、輸递S上表示數a的點(diǎn)與原點(diǎn)的距離叫做數a的絕對值,記作|a|。從幾何意義上講,數的絕對值是兩點(diǎn)間的距離(無(wú)方向性,有兩個(gè)點(diǎn))。
、迶递S上兩點(diǎn)間的距離=|M?N|
、拚龜档慕^對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。
、邇蓚(gè)負數,絕對值大的反而小。
、鄚a|≥0(即非負性);絕對值等于一個(gè)正數的值有兩個(gè)(兩個(gè)互為相反數)如:|a|=5,a=5或a=-5
初中的數學(xué)知識點(diǎn)
(一)整式
1.整式:整式為單項式和多項式的統稱(chēng)。
2.整式加減
整式的加減運算時(shí),如果遇到括號先去掉括號,再合并同類(lèi)項。
(1)去括號:幾個(gè)整式相加減,如果有括號就先去括號,然后再合并同類(lèi)項。
如果括號外的因數是正數,去括號后原括號內的符號與原來(lái)相同。
如果括號外的因數是負數,去括號后原括號內的符號與原來(lái)相反。
(2)合并同類(lèi)項:
合并同類(lèi)項后,所得項的系數是合并前各項系數的和,且字母部分不變。
3.單項式:由數或字母的積組成的代數式叫做單項式,單獨的一個(gè)數或一個(gè)字母也叫做單項式。
4.多項式:由若干個(gè)單項式相加組成的代數式叫做多項式。
5.同底數冪是指底數相同的冪。
6.同底數冪的乘法:同底數冪相乘,底數不變,指數相加
7.冪的乘方法則:冪的乘方,底數不變,指數相乘。
8.積的乘方:積的乘方,先把積中的每一個(gè)因數分別乘方,再把所得的冪相乘。
9.單項式與單項式相乘
單項式與單項式相乘,把它們的系數、同底數冪分別相乘,對于只在一個(gè)單項式里含有的字母,則連同它的指數作為積的一個(gè)因式。
10.單項式與多項式相乘
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
11.多項式與多項式相乘
多項式與多項式相乘,先用一個(gè)多項式的每一項乘另一個(gè)多項式的每一項,再把所得的積相加。
12.同底數冪的除法:同底數冪相除,底數不變,指數相減。
13.單項式除以單項式:?jiǎn)雾検较喑,把系數、同底數冪分別相除后,作為商的因式;對于只在被除式中含有的字母,則連同它的指數一起作為商的一個(gè)因式。
14.多項式除以單項式:多項式除以單項式,先把多項式的每一項分別除以這個(gè)單項式,再把所得的商相加。
(二)相交線(xiàn)與平行線(xiàn)
(1)相交線(xiàn)
在同一平面內,兩條直線(xiàn)的位置關(guān)系有相交和平行兩種。如果兩條直線(xiàn)只有一個(gè)公共點(diǎn)時(shí),稱(chēng)這兩條直線(xiàn)相交。
(2)垂線(xiàn)
當兩條直線(xiàn)相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),即兩條直線(xiàn)互相垂直,其中一條直線(xiàn)叫做另一直線(xiàn)的垂線(xiàn),交點(diǎn)叫垂足。
(3)同位角
兩條直線(xiàn)a,b被第三條直線(xiàn)c所截(或說(shuō)a,b相交c),在截線(xiàn)c的同旁,被截兩直線(xiàn)a,b的同一側的角,我們把這樣的兩個(gè)角稱(chēng)為同位角。
(4)內錯角
兩條直線(xiàn)被第三條直線(xiàn)所截,兩個(gè)角分別在截線(xiàn)的兩側,且?jiàn)A在兩條被截直線(xiàn)之間,具有這樣位置關(guān)系的一對角叫做內錯角。
(5)同旁?xún)冉?/p>
兩條直線(xiàn)被第三條直線(xiàn)所截,在截線(xiàn)同旁,且在被截線(xiàn)之內的兩角,叫做同旁?xún)冉恰?/p>
(6)平行線(xiàn)
幾何中,在同一平面內,永不相交(也永不重合)的兩條直線(xiàn)叫做平行線(xiàn)。
平行線(xiàn)的性質(zhì):①兩直線(xiàn)平行,同位角相等;②兩直線(xiàn)平行,內錯角相等;③兩直線(xiàn)平行,同旁?xún)冉腔パa。
(7)平移
平移,是指在同一平面內,將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線(xiàn)方向做相同距離的移動(dòng),這樣的圖形運動(dòng)叫做圖形的平移運動(dòng),簡(jiǎn)稱(chēng)平移。
(三)概率
1.一般地,在大量重復試驗中,如果事件A發(fā)生的頻率n/m會(huì )穩定在某個(gè)常數p附近,那么這個(gè)常數p就叫做事件A的概率。
2.隨機事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。
3.互斥事件:不可能同時(shí)發(fā)生的兩個(gè)事件叫做互斥事件。
4.對立事件:即必有一個(gè)發(fā)生的互斥事件叫做對立事件。
5.必然事件:那些無(wú)需通過(guò)實(shí)驗就能夠預先確定它們在每一次實(shí)驗中都一定會(huì )發(fā)生的事件稱(chēng)為必然事件。
6.不可能事件:那些在每一次實(shí)驗中都一定不會(huì )發(fā)生的事件稱(chēng)為不可能事件。
初中數學(xué)知識點(diǎn)總結
1.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類(lèi)項……系數化為1 ……(檢驗方程的解).
4.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問(wèn)題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關(guān)系填入代數式,得到方程.
(2)畫(huà)圖分析法: …………多用于“行程問(wèn)題”
利用圖形分析數學(xué)問(wèn)題是數形結合思想在數學(xué)中的體現,仔細讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據,最后利用量與量之間的關(guān)系(可把未知數看做已知量),填入有關(guān)的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問(wèn)題:距離=速度·時(shí)間;
(2)工程問(wèn)題:工作量=工效·工時(shí);
(3)比率問(wèn)題:部分=全體·比率;
(4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤=售價(jià)-成本,;
(6)周長(cháng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(cháng)方形=2(a+b),S長(cháng)方形=ab,C正方形=4a,
S正方形=a2,S環(huán)形=π(R2-r2),V長(cháng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h.
初中數學(xué)知識點(diǎn)總結10
角的種類(lèi):角的大小與邊的長(cháng)短沒(méi)有關(guān)系;角的大小決定于角的兩條邊張開(kāi)的程度,張開(kāi)的越大,角就越大,相反,張開(kāi)的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時(shí)針?lè )较蛐D而成的角叫做負角。
正角:逆時(shí)針旋轉的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線(xiàn)相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(cháng)線(xiàn),這樣的兩個(gè)角叫做互為對頂角。兩條直線(xiàn)相交,構成兩對對頂角;閷斀堑膬蓚(gè)角相等。
還有許多種角的關(guān)系,如內錯角,同位角,同旁?xún)冉?三線(xiàn)八角中,主要用來(lái)判斷平行)!
該怎么提高數學(xué)課堂學(xué)習效率
課堂學(xué)習是學(xué)習過(guò)程中最基本,最重要的環(huán)節,要堅持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡(jiǎn)單扼要的方法記下聽(tīng)課的要點(diǎn),思維方法,以備復習、消化、再思考,但要以聽(tīng)課為主,記錄為輔;
耳到:專(zhuān)心聽(tīng)講,聽(tīng)老師如何講課,如何分析、如何歸納總結.另外,還要聽(tīng)同學(xué)們的解答,看是否對自己有所啟發(fā),特別要注意聽(tīng)自己預習未看懂的問(wèn)題;
口到:主動(dòng)與老師、同學(xué)們進(jìn)行合作、探究,敢于提出問(wèn)題,并發(fā)表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實(shí)驗、板書(shū)內容,二看老師要求看的課本內容,把書(shū)上知識與老師課堂講的知識聯(lián)系起來(lái);
心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動(dòng)積極.關(guān)鍵是理解并能融匯貫通,靈活使用.對于老師講的新概念,應抓住關(guān)鍵字眼,變換角度去理解.
初中數學(xué)知識點(diǎn)總結11
一、實(shí)數
1.平方根性質(zhì):
。1)一個(gè)正數有兩個(gè)平方根,它們互為相反數;
。2)零的平方根是零;
。3)負數沒(méi)有平方根。
2.算術(shù)平方根性質(zhì):
。1)一個(gè)正數的正的平方根叫做它的算術(shù)平方根;
。2)零的算術(shù)平方根是零;
。3)負數沒(méi)有算術(shù)平方根。
3.立方根性質(zhì):
。1)正數的立方根是正數;
。2)零的立方根是零;
。3)負數的立方根是負數。
4.實(shí)數的性質(zhì):
。1)零是唯一沒(méi)有平方根的數;
。2)正數和負數可以沒(méi)有算術(shù)平方根;
。3)任何實(shí)數的立方根只有唯一的一個(gè);
。4)正數的立方根與它本身和零同類(lèi)。
二、整式的運算
1.整式范圍:
。1)整式可以化為分數或整數;
。2)整式可以化為負數或非負數;
。3)整式可以化為奇數或偶數;
。4)整式可以化簡(jiǎn)為分數指數冪。
2.單項式:
。1)單項式的系數是數字因數;
。2)一個(gè)單項式中所有字母的指數的和叫做單項式的次數。
3.多項式:
。1)多項式的每一項都是一個(gè)單項式;
。2)一個(gè)多項式的項數與多項式中含有幾個(gè)單項式有關(guān)。
4.同底數冪的乘法:
。1)同底數冪相乘,底數不變,指數相加;
。2)同底數冪相除,底數不變,指數相減。
5.冪的乘方:
冪的乘方,底數不變,指數相乘。
6.積的乘方:
。1)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;
。2)1的乘方等于1。
7.同底數冪的除法:
。1)同底數冪相除,底數不變,指數相減;
。2)0的任何正整數次冪都是0。
8.分式:
。1)分式是整式的一種,在整式中區別于整式,分式的分母中必須含有字母;
。2)分式的值等于分子除以分母。
9.分式的運算:
。1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;
。2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
。3)分式的加減:異分母分式的加減運算,為了使不同分母的分數直接相加減不便,因此常把不同分母的分數分別化成與原來(lái)的分母相同的分母后再相加減。
三、方程與方程組
1.方程:
。1)含有未知數的等式叫方程;
。2)使方程左右兩邊相等的未知數的值,叫做方程的解;
。3)求方程的解的過(guò)程叫做解方程。
2.方程的解:
。1)能使方程左右兩邊相等的未知數的值;
。2)一個(gè)數(它不一定是數,也可以是符號和運算)是某一等式(含有未知數的等式)的解,那么這個(gè)數就叫做該等式的解。
3.一元一次方程:
。1)只有一個(gè)未知數;
。2)未知數的最高次數為1;
。3)整式方程。
4.方程的解法:
。1)去分母:在方程兩端同乘各分母的最小公倍數;
。2)去括號:去括號要變號;
。3)移項:把含有未知數的項移到等號的一邊,其他項移到另一邊;
。4)合并同類(lèi)項:化未知數為已知數;
。5)系數化成1:在方程兩端同除以未知數的系數。
5.列方程解應用題
初中數學(xué)知識點(diǎn)總結12
第一章 有理數
一、有理數的分類(lèi)
(1)按正負分,分為正有理數、零、負有理數;
(2)按整數和分數分,分為整數和分數;
二、有關(guān)概念
(1)相反數:代數意義和幾何意義相結合,(2)絕對值:
(3)倒數
(4)數軸
三、有理數大小的比較
主要分為利用數軸比較和利用絕對值比較
四、有理數的運算
(1)運算法則
、偌臃ǚ▌t
、跍p法法則
、鄢朔ǚ▌t
、艹ǚ▌t
、莩朔椒▌t
(2)運算律
、 交換律:a、加法交換律 a+b=b+a
b、乘法交換律 a×b=b×a
、 結合律:a、加法結合律 a+b+c=(a+b)+c
b、乘法結合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科學(xué)記數法的概念
六、近似數的概念
示例:
例1 某食品包裝袋上標有“凈含量386克 4克”,則這包食品的合格凈含量范圍是( )克——390克。
根據正數、負數的意義可知,這包食品的合格凈含量范圍是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a與-2互為相反數,那么a等于( )
A、-2 B、2 C、- D、
根據相反數的特點(diǎn),即“絕對值相等,符號相反”,可知-2的相反數為2.故正確答案為B。
(2)-5的絕對值是( )
A、5 B、-5 C、 D、-
有絕對值的概念可知,表示-5的點(diǎn)到原點(diǎn)的距離為5,故-5的絕對值為5。
(3)- 的倒數是( )
A、 B、 C、- D、-
根據倒數的定義知- 的倒數為1÷(- )=-
例3 比較大。- 與-
這是兩個(gè)負數比較大小,應先比較它們的絕對值的大小。
= = , = = 。
例4 計算:
有理數加減乘除混合運算順序:先乘除,后加減,有括號應先算括號里的。
例5 我國第六次全國人口普查數據顯示,居住在城鎮的人口總數達到665 575 306人,將665 575 306用科學(xué)記數法表示(精確到百萬(wàn)位)約為( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故選C
C
例6用四舍五入法,按括號里的要求對下列各數取近似值。
(1)0.069 99(精確到千分位)
(2)826 750(精確到千位)
(3)28 736(精確到千位)
精確到個(gè)位以下的數,用四舍五入或科學(xué)記數法取近似數都可以;精確到個(gè)位以上的數,應用科學(xué)記數法取近似數,對于較大的數,應該用科學(xué)記數法或表示時(shí)在后面加一個(gè)表示數位的漢字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示為82.7萬(wàn)
(3)28 736≈2.9×10 或表示為2.9萬(wàn)
第二章 整式的加減
一、整式
1、單項式:有數字或字母的積組成的代數式叫做單項式。單獨的一個(gè)數或一個(gè)字母也是單
項式。如: ab, m , -x
單項式的系數是指單項式中的數字因數;單項式的次數是指單項式中所有字母的指數和。
2、多項式:幾個(gè)單項式的和叫做多項式。在多項式中,每個(gè)單項式叫做多項式的項。在多項式中,不含字母的項叫做常數項。多項式中次數最高的項的次數,就是這個(gè)多項式的次數。多項式的次數是n次,有m個(gè)單項式,我們就把這個(gè)多項式稱(chēng)為n次m項式。
3、整式:?jiǎn)雾検胶投囗検浇y稱(chēng)為整式。
二、整式的加減
1、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項叫做同類(lèi)項。所有的常數項都是同類(lèi)項。
2、合并同類(lèi)項:把多項式中的同類(lèi)項合并成一項,叫做合并同類(lèi)項。
3、去括號法則:括號前面是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變;括號前面是“—”,把括號和它前面的“—”號去掉后,原括號里各項的符號都要改變。
4、添括號法則:添括號后,括號前面是“+”,括號內各項的符號都不改變;添括號后,括號前面是“—”,括號內各項的符號都要改變。
5、整式的加減運算法則:幾個(gè)整式相加減,通常用括號把每一個(gè)整式括起來(lái),再用加、減號連接,然后去括號,合并同類(lèi)項。
※ 正式加減的一般步驟:
(1)如果有括號,那么先去括號;
(2)如果有同類(lèi)項,那么先去括號;
(3)易錯音難點(diǎn):
a、確定單項式的系數時(shí),應先把單項式寫(xiě)成數字因數與字母因數的積的形式,再確定。 b、多項式的項應包括它前面的符號,多項式的次數是多項式中次數最高項的次數,而不是所有項的次數之和。
c、判斷兩項是否為同類(lèi)項時(shí),不僅要看兩項所含字母是否相同,還要看相同字母的指數是否相同,與所含字母的順序無(wú)關(guān)。
d、合并同類(lèi)項時(shí),只是系數相加減,所得結果作為系數,字母及字母的指數保持不變。 e、去括號時(shí),如果括號前面是“—”,那么括號里各項都應變號;如果括號前有數字因數,那么應把數字因數乘到括號里,再去括號。
f、整式相加減時(shí)應加括號,把整式括起來(lái),再加減。
初中數學(xué)知識點(diǎn)總結13
一次函數的圖象與性質(zhì)的口訣:
一次函數是直線(xiàn),圖象經(jīng)過(guò)三象限;
正比例函數更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線(xiàn);
兩個(gè)系數k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;
k為負來(lái)左下展,變化規律正相反;
k的絕對值越大,線(xiàn)離橫軸就越遠。
一次函數的解題方法
理解一次函數和其它知識的聯(lián)系
一次函數和代數式以及方程有著(zhù)密不可分的聯(lián)系。如一次函數和正比例函數仍然是函數,同時(shí),等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區別。首先,一次函數和正比例函數都只能存在兩個(gè)變量,而代數式可以是多個(gè)變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。
掌握一次函數的解析式的特征
一次函數解析式的結構特征:kx+b是關(guān)于x的一次二項式,其中常數b可以是任意實(shí)數,一次項系數k必須是非零數,k≠0,因為當k = 0時(shí),y = b(b是常數),由于沒(méi)有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。
應用一次函數解決實(shí)際問(wèn)題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數;
3、在實(shí)際問(wèn)題中,一般存在著(zhù)三種量,如距離、時(shí)間、速度等等,在這三種量中,當且僅當其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數;
4、求一次函數與正比例函數的關(guān)系式,一般采取待定系數法。
數形結合
方程,不等式,不等式組,方程組我們都可以用一次函數的觀(guān)點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線(xiàn)上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線(xiàn)來(lái)認識,直線(xiàn)交點(diǎn)的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線(xiàn),方程組的解就是直線(xiàn)的交點(diǎn),結合圖形可以認識兩直線(xiàn)的位置關(guān)系也可以把握交點(diǎn)個(gè)數。
如果一個(gè)交點(diǎn)時(shí)候兩條直線(xiàn)的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數平移的問(wèn)題可以化歸為對應點(diǎn)平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。
數學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。
3、換元法
替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。
5、待定系數法
在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。
初中數學(xué)知識點(diǎn)總結14
一、初中數學(xué)基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個(gè)未知數,并且未知數的次數是1的二元一次方程。
4.二元一次方程組:由兩個(gè)二元一次方程組成的方程組。
5.一元二次方程:含有一個(gè)未知數,并且未知數的最高次數是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當a是正數時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)不相等的實(shí)數根;當a是負數時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程沒(méi)有實(shí)數根;當a是零時(shí),如果一元二次方程左右兩邊相等時(shí),那么這個(gè)一元二次方程有兩個(gè)相等的實(shí)數根。
9.函數:在某變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,那么稱(chēng)y是x的函數,x叫做自變量。
10.一次函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,那么稱(chēng)y是x的一次函數。
11.正比例函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,并且這個(gè)數值在比例上成正比,那么稱(chēng)y是x的比例函數。
12.反比例函數:在某個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對于x在某一范圍內的每一個(gè)確定的值,y都有唯一的值與它對應,并且這個(gè)數值在比例上成反比,那么稱(chēng)y是x的反比例函數。
13.平行四邊形:在同一個(gè)平面內兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個(gè)內角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個(gè)平面內由不在同一條直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
19.中線(xiàn):連接一個(gè)頂點(diǎn)和它對邊的中點(diǎn)的線(xiàn)段叫做中線(xiàn)。
20.高線(xiàn):從三角形的一個(gè)頂點(diǎn)向它的對邊作垂線(xiàn),垂足與頂點(diǎn)之間的線(xiàn)段叫做高線(xiàn)。
21.角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與它的對邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線(xiàn)段叫做角平分線(xiàn)。
22.中位線(xiàn):連接三角形兩邊中點(diǎn)的線(xiàn)段叫做中位線(xiàn)。
23.軸對稱(chēng)圖形:一條物體沿一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形。
24.直接開(kāi)平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開(kāi)平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個(gè)平方的形式,再用直接開(kāi)平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個(gè)一次因式的積等于0的一元二次方程,然后將各個(gè)因式分解,得到一元一次方程,再用直接開(kāi)方法求解一元一次方程的方法。
二、初中數學(xué)基本運算
1.整式:?jiǎn)雾検胶投囗検降慕y稱(chēng)。
2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個(gè)數字或字母也叫做單項式。
3.多項式:幾個(gè)單項式的和叫做多項式。每個(gè)單項式叫做多項式的項。其中不含字母的項叫做常數
初中數學(xué)知識點(diǎn)總結15
一、數與代數
1.有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
2.實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:如果一個(gè)數的平方等于a,那么這個(gè)數就叫做a的平方根(或二次方跟);一個(gè)數有兩個(gè)平方根,他們互為相反數;零的平方根是零;負數沒(méi)有平方根。
算術(shù)平方根:正數的正的平方根和零的平方根統稱(chēng)為主根,用符號“√a”表示,a為“被開(kāi)方數”。
立方根:如果一個(gè)數的立方等于a,那么這個(gè)數就叫做a的立方根(或a的三次方根);一個(gè)正數的立方根是正數、零的立方根是零、負數的立方根是負數;
二、方程
1.代數式:?jiǎn)为氁粋(gè)數字或一個(gè)字母也是代數式。
2.一元一次方程:含有一個(gè)未知數,并且未知數的次數是1,并且含有一個(gè)未知數,并且未知數的次數是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一個(gè)未知數,并且未知數的次數是2的所有整式方程是一元二次方程。
4.二元一次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的次數是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有兩個(gè)未知數,并且含有一個(gè)未知數的次數是2的所有整式方程叫二元二次方程。
三、三角形
1.幾何圖形:學(xué)過(guò)的立體圖形有圓柱、圓錐和球以及長(cháng)方體、正方體、棱柱、棱錐、棱臺。
2.圖形的三視圖:俯視圖、主視圖、左視圖。
3.三角形的穩定性。
4.三角形的分類(lèi):銳角三角形、直角三角形、鈍角三角形。
5.三角形的內角和定理:三角形三個(gè)內角的和等于180度。
6.解直角三角形:解直角三角形需要運用勾股定理及銳角三角函數的定義。銳角三角函數的定義:在直角三角形中,一銳角的正切等于銳角A對邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對邊的比值;一銳角的正弦等于銳角A的對邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。
7.全等三角形:全等三角形的對應邊相等;全等三角形的對應角相等。
8.等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱(chēng):等邊對等角)以及等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高相互重合。(簡(jiǎn)稱(chēng):三線(xiàn)合一)
9.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(簡(jiǎn)稱(chēng):等角對等邊)
10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個(gè)角都相等的三角形是等邊三角形。
11.相似的三角形:相似三角形的對應邊成比例;對應角相等。
12.反證法:在證明一個(gè)命題的論證中,假設命題的結論不成立,從這個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出與定義、公理或已經(jīng)證明過(guò)的命題或已經(jīng)掌握的事實(shí)相矛盾,從而使這個(gè)假設成為一個(gè)不成立的命題,這種推證方法叫做反證法。證明兩條線(xiàn)段相等時(shí)常常用反證法。
四、四邊形
1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對角線(xiàn)的交點(diǎn)。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對角線(xiàn)的交點(diǎn)。
3.梯形問(wèn)題
初中數學(xué)知識點(diǎn)總結16
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0
若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無(wú)解
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
、谶\用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
、凼窒喑朔
2、銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結03-07
初中數學(xué)知識點(diǎn)總結10-24
初中數學(xué)知識點(diǎn)總結06-12