高一數學(xué)知識點(diǎn)總結(優(yōu)秀15篇)
總結就是把一個(gè)時(shí)間段取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓進(jìn)行一次全面系統的總結的書(shū)面材料,它在我們的學(xué)習、工作中起到呈上啟下的作用,讓我們一起認真地寫(xiě)一份總結吧。但是總結有什么要求呢?下面是小編整理的高一數學(xué)知識點(diǎn)總結,歡迎大家分享。
高一數學(xué)知識點(diǎn)總結1
集合的分類(lèi):
1.有限集含有有限個(gè)元素的集合
2.無(wú)限集含有無(wú)限個(gè)元素的.集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意:有兩種可能
(1)A是B的一部分;
(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
、苋绻鸄?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一數學(xué)知識點(diǎn)總結2
空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類(lèi):
1共面:平行、相交
2異面:
異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。
異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。
兩異面直線(xiàn)所成的角:范圍為0°,90°esp.空間向量法
兩異面直線(xiàn)間距離:公垂線(xiàn)段有且只有一條esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):
1有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);2沒(méi)有公共點(diǎn)——平行或異面
直線(xiàn)和平面的位置關(guān)系:
直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行
、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)
、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)
直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。
空間向量法找平面的法向量
規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角,b、直線(xiàn)與平面平行或在平面內,所成的角為0°角
由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角
三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直
直線(xiàn)和平面垂直
直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。
直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。
直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)
直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jì)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
1側棱都相等,側面是平行四邊形
2兩個(gè)底面與平行于底面的截面是全等的多邊形
3過(guò)不相鄰的兩條側棱的截面對角面是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
1側棱交于一點(diǎn)。側面都是三角形
2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
1各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
3多個(gè)特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
兩個(gè)平面的位置關(guān)系
1兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
2兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線(xiàn)。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內有兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線(xiàn)平行。b、相交
二面角
1半平面:平面內的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
2二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的.圖形叫做二面角。二面角的取值范圍為[0°,180°]
3二面角的棱:這一條直線(xiàn)叫做二面角的棱。
4二面角的面:這兩個(gè)半平面叫做二面角的面。
5二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。
6直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平
二面角求法:直接法作出平面角、三垂線(xiàn)定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補關(guān)系。
高一數學(xué)知識點(diǎn)總結3
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質(zhì):
(1)側棱交于一點(diǎn)。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的.性質(zhì):
(1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數學(xué)知識點(diǎn)總結4
【(一)、映射、函數、反函數】
1、對應、映射、函數三個(gè)概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射.
2、對于函數的概念,應注意如下幾點(diǎn):
(1)掌握構成函數的三要素,會(huì )判斷兩個(gè)函數是否為同一函數.
(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數關(guān)系式,特別是會(huì )求分段函數的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(shù)(x)為內函數,f(u)為外函數.
3、求函數y=f(x)的反函數的一般步驟:
(1)確定原函數的值域,也就是反函數的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數的習慣表達式y=f-1(x),并注明定義域.
注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起.
、谑煜さ膽,求f-1(x0)的值,合理利用這個(gè)結論,可以避免求反函數的過(guò)程,從而簡(jiǎn)化運算.
【(二)、函數的解析式與定義域】
1、函數及其定義域是不可分割的整體,沒(méi)有定義域的函數是不存在的,因此,要正確地寫(xiě)出函數的解析式,必須是在求出變量間的對應法則的同時(shí),求出函數的定義域.求函數的定義域一般有三種類(lèi)型:
(1)有時(shí)一個(gè)函數來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結合實(shí)際意義考慮;
(2)已知一個(gè)函數的解析式求其定義域,只要使解析式有意義即可.如:
、俜质降姆帜覆坏脼榱;
、谂即畏礁谋婚_(kāi)方數不小于零;
、蹖岛瘮档恼鏀当仨毚笥诹;
、苤笖岛瘮岛蛯岛瘮档牡讛当仨毚笥诹闱也坏扔1;
、萑呛瘮抵械恼泻瘮祔=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等.
應注意,一個(gè)函數的解析式由幾部分組成時(shí),定義域為各部分有意義的自變量取值的公共部分(即交集).
(3)已知一個(gè)函數的定義域,求另一個(gè)函數的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿(mǎn)足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.
2、求函數的解析式一般有四種情況
(1)根據某實(shí)際問(wèn)題需建立一種函數關(guān)系時(shí),必須引入合適的變量,根據數學(xué)的有關(guān)知識尋求函數的解析式.
(2)有時(shí)題設給出函數特征,求函數的解析式,可采用待定系數法.比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可.
(3)若題設給出復合函數f[g(x)]的表達式時(shí),可用換元法求函數f(x)的表達式,這時(shí)必須求出g(x)的值域,這相當于求函數的定義域.
(4)若已知f(x)滿(mǎn)足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
【(三)、函數的值域與最值】
1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱(chēng)觀(guān)察法,對于結構較為簡(jiǎn)單的函數,可由函數的`解析式應用不等式的性質(zhì),直接觀(guān)察得出函數的值域.
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡(jiǎn)單函數再求值域,若函數解析式中含有根式,當根式里一次式時(shí)用代數換元,當根式里是二次式時(shí),用三角換元.
(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得.
(4)配方法:對于二次函數或二次函數有關(guān)的函數的值域問(wèn)題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過(guò)應注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個(gè)定義域的子集上)的單調性,可采用單調性法求出函數的值域.
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.
2、求函數的最值與值域的區別和聯(lián)系
求函數最值的常用方法和求函數值域的方法基本上是相同的,事實(shí)上,如果在函數的值域中存在一個(gè)最小(大)數,這個(gè)數就是函數的最小(大)值.因此求函數的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.
如函數的值域是(0,16],值是16,無(wú)最小值.再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無(wú)值和最小值,只有在改變函數定義域后,如x>0時(shí),函數的最小值為2.可見(jiàn)定義域對函數的值域或最值的影響.
3、函數的最值在實(shí)際問(wèn)題中的應用
函數的最值的應用主要體現在用函數知識求解實(shí)際問(wèn)題上,從文字表述上常常表現為“工程造價(jià)最低”,“利潤”或“面積(體積)(最小)”等諸多現實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值.
【(四)、函數的奇偶性】
1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數).
正確理解奇函數和偶函數的定義,要注意兩點(diǎn):(1)定義域在數軸上關(guān)于原點(diǎn)對稱(chēng)是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數定義域上的整體性質(zhì)).
2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時(shí)需要將函數化簡(jiǎn)或應用定義的等價(jià)形式:
注意如下結論的運用:
(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類(lèi)似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數的復合函數的奇偶性通常是偶函數;
(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。
3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結論
(1)一個(gè)函數為奇函數的充要條件是它的圖象關(guān)于原點(diǎn)對稱(chēng);一個(gè)函數為偶函數的充要條件是它的圖象關(guān)于y軸對稱(chēng).
(2)如要函數的定義域關(guān)于原點(diǎn)對稱(chēng)且函數值恒為零,那么它既是奇函數又是偶函數.
(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱(chēng)區間上的單調性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則F(x)=f(x)+f(-x)是偶函數,G(x)=f(x)-f(-x)是奇函數.
(6)奇偶性的推廣
函數y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線(xiàn)x=a對稱(chēng),即y=f(a+x)為偶函數.函數y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對稱(chēng)圖形,即y=f(a+x)為奇函數。
【(五)、函數的單調性】
1、單調函數
對于函數f(x)定義在某區間[a,b]上任意兩點(diǎn)x1,x2,當x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱(chēng)f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱(chēng)為單調函數.
對于函數單調性的定義的理解,要注意以下三點(diǎn):
(1)單調性是與“區間”緊密相關(guān)的概念.一個(gè)函數在不同的區間上可以有不同的單調性.
(2)單調性是函數在某一區間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.
(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內.
(4)注意定義的兩種等價(jià)形式:
設x1、x2∈[a,b],那么:
、僭赱a、b]上是增函數;
在[a、b]上是減函數.
、谠赱a、b]上是增函數.
在[a、b]上是減函數.
需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線(xiàn)的斜率都大于(或小于)零.
(5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說(shuō)明單調性使得自變量間的不等關(guān)系和函數值之間的不等關(guān)系可以“正逆互推”.
5、復合函數y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡(jiǎn)稱(chēng)“同增、異減”.
在研究函數的單調性時(shí),常需要先將函數化簡(jiǎn),轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過(guò)程.
6、證明函數的單調性的方法
(1)依定義進(jìn)行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論.
(2)設函數y=f(x)在某區間內可導.
如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數.
【(六)、函數的圖象】
函數的圖象是函數的直觀(guān)體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問(wèn)題的意識.
求作圖象的函數表達式
與f(x)的關(guān)系
由f(x)的圖象需經(jīng)過(guò)的變換
y=f(x)±b(b>0)
沿y軸向平移b個(gè)單位
y=f(x±a)(a>0)
沿x軸向平移a個(gè)單位
y=-f(x)
作關(guān)于x軸的對稱(chēng)圖形
y=f(|x|)
右不動(dòng)、左右關(guān)于y軸對稱(chēng)
y=|f(x)|
上不動(dòng)、下沿x軸翻折
y=f-1(x)
作關(guān)于直線(xiàn)y=x的對稱(chēng)圖形
y=f(ax)(a>0)
橫坐標縮短到原來(lái)的,縱坐標不變
y=af(x)
縱坐標伸長(cháng)到原來(lái)的|a|倍,橫坐標不變
y=f(-x)
作關(guān)于y軸對稱(chēng)的圖形
【例】定義在實(shí)數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
、偾笞C:f(0)=1;
、谇笞C:y=f(x)是偶函數;
、廴舸嬖诔礳,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問(wèn)函數f(x)是不是周期函數,如果是,找出它的一個(gè)周期;如果不是,請說(shuō)明理由.
思路分析:我們把沒(méi)有給出解析式的函數稱(chēng)之為抽象函數,解決這類(lèi)問(wèn)題一般采用賦值法.
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.
、诹顇=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說(shuō)明f(x)為偶函數.
、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
兩邊應用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函數,2c就是它的一個(gè)周期.
高一數學(xué)知識點(diǎn)總結5
一、集合(jihe)有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋
記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類(lèi):
1.有限集含有有限個(gè)元素的集合
2.無(wú)限集含有無(wú)限個(gè)元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的`任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
、苋绻鸄?B同時(shí)B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.
4、全集與補集
(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
二、函數的有關(guān)概念
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:○2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;○3函數的定義域、值域要寫(xiě)成集合或區間的形式.
定義域補充
能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零
(6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
2.構成函數的三要素:定義域、對應關(guān)系和值域
再注意:
(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)
(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。相同函數的判斷方法:
、俦磉_式相同;
、诙x域一致(兩點(diǎn)必須同時(shí)具備)
高一數學(xué)知識點(diǎn)總結6
考點(diǎn)要求:
1、幾何體的展開(kāi)圖、幾何體的三視圖仍是高考的熱點(diǎn)。
2、三視圖和其他的知識點(diǎn)結合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢。
3、重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結構特征的題型。
4、要熟悉一些典型的幾何體模型,如三棱柱、長(cháng)(正)方體、三棱錐等幾何體的三視圖。
知識結構:
1、多面體的結構特征
。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。
。2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2、旋轉體的結構特征
。1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到。
。2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到。
。3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。
。4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3、空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。
三視圖的.長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。
4、空間幾何體的直觀(guān)圖
空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:
。1)畫(huà)幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。
。2)畫(huà)幾何體的高
在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。
高一數學(xué)知識點(diǎn)總結7
1.函數的單調性(局部性質(zhì))
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1
如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的
(3)函數單調區間與單調性的判定方法
(A)定義法:
a.任取x1,x2D,且x1
b.作差f(x1)-f(x2);
c.變形(通常是因式分解和配方);
d.定號(即判斷差f(x1)-f(x2)的正負);
e.下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:同增異減
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.
8.函數的奇偶性(整體性質(zhì))
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數
一般地,對于函數f(x)的定義域內的.任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).
利用定義判斷函數奇偶性的步驟:
a.首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);
b.確定f(-x)與f(x)的關(guān)系;
c.作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意:函數定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.若對稱(chēng),(1)再根據定義判定;(2)由f(-x)f(x)=0或f(x)/f(-x)=1來(lái)判定;(3)利用定理,或借助函數的圖象判定.
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1)湊配法
2)待定系數法
3)換元法
4)消參法
10.函數最大(小)值(定義見(jiàn)課本p36頁(yè))
a.利用二次函數的性質(zhì)(配方法)求函數的最大(小)值
b.利用圖象求函數的最大(小)值
c.利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
高一數學(xué)知識點(diǎn)總結8
函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域。(2)。應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
函數圖象知識歸納:
。1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象。
C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(xiàn)(或直線(xiàn)),也可能是由與任意平行與Y軸的直線(xiàn)最多只有一個(gè)交點(diǎn)的若干條曲線(xiàn)或離散點(diǎn)組成。
。2)畫(huà)法
A、描點(diǎn)法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點(diǎn)P(x,y),最后用平滑的曲線(xiàn)將這些點(diǎn)連接起來(lái)。
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱(chēng)變換
。3)作用:
1、直觀(guān)的看出函數的性質(zhì);
2、利用數形結合的方法分析解題的思路。提高解題的速度。
3、發(fā)現解題中的錯誤。
2、快去了解區間的概念
。1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;
。2)無(wú)窮區間;
。3)區間的數軸表示。
什么叫做映射
一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB”
給定一個(gè)集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說(shuō)明:函數是一種特殊的映射,映射是一種特殊的對應:
、偌螦、B及對應法則f是確定的;
、趯▌t有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關(guān)系一般是不同的;
、蹖τ谟成鋐:A→B來(lái)說(shuō),則應滿(mǎn)足:
。á瘢┘螦中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;
。á颍┘螦中不同的元素,在集合B中對應的象可以是同一個(gè);
。á螅┎灰蠹螧中的每一個(gè)元素在集合A中都有原象。
常用的函數表示法及各自的優(yōu)點(diǎn):
函數圖象既可以是連續的曲線(xiàn),也可以是直線(xiàn)、折線(xiàn)、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數圖象的依據;2解析法:必須注明函數的定義域;3圖象法:描點(diǎn)法作圖要注意:確定函數的定義域;化簡(jiǎn)函數的解析式;觀(guān)察函數的特征;4列表法:選取的自變量要有代表性,應能反映定義域的特征。
注意。航馕龇ǎ罕阌谒愠龊瘮抵。列表法:便于查出函數值。圖象法:便于量出函數值
補充一:分段函數(參見(jiàn)課本P24—25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時(shí)必須把自變量代入相應的表達式。分段函數的解析式不能寫(xiě)成幾個(gè)不同的方程,而就寫(xiě)函數值幾種不同的表達式并用一個(gè)左大括號括起來(lái),并分別注明各部分的自變量的取值情況。
。1)分段函數是一個(gè)函數,不要把它誤認為是幾個(gè)函數;
。2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集。
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱(chēng)為f、g的復合函數。
例如:y=2sinXy=2cos(X2+1)
函數單調性
。1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1
如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1
注意:
1、函數的單調性是在定義域內的'某個(gè)區間上的性質(zhì),是函數的局部性質(zhì);
2、必須是對于區間D內的任意兩個(gè)自變量x1,x2;當x1
。2)圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的
。3)。函數單調區間與單調性的判定方法
。ˋ)定義法:
任取x1,x2∈D,且x1
。˙)圖象法(從圖象上看升降)
。–)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律如下:
函數
單調性
u=g(x)
增
增
減
減
y=f(u)
增
減
增
減
y=f[g(x)]
增
減
減
增
注意:
1、函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集。
2、還記得我們在選修里學(xué)習簡(jiǎn)單易行的導數法判定單調性嗎?
函數的奇偶性
。1)偶函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(—x)=f(x),那么f(x)就叫做偶函數。
。2)奇函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(—x)=—f(x),那么f(x)就叫做奇函數。
注意:
1、函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);函數可能沒(méi)有奇偶性,也可能既是奇函數又是偶函數。
2、由函數的奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則—x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng))。
。3)具有奇偶性的函數的圖象的特征
偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng)。
總結:利用定義判斷函數奇偶性的格式步驟:
1、首先確定函數的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱(chēng);
2、確定f(—x)與f(x)的關(guān)系;
3、作出相應結論:若f(—x)=f(x)或f(—x)—f(x)=0,則f(x)是偶函數;若f(—x)=—f(x)或f(—x)+f(x)=0,則f(x)是奇函數。
高一數學(xué)知識點(diǎn)總結9
一:函數及其表示
知識點(diǎn)詳解文檔包含函數的概念、映射、函數關(guān)系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等
1. 函數與映射的區別:
2. 求函數定義域
常見(jiàn)的用解析式表示的函數f(x)的定義域可以歸納如下:
、佼攆(x)為整式時(shí),函數的定義域為R.
、诋攆(x)為分式時(shí),函數的定義域為使分式分母不為零的實(shí)數集合。
、郛攆(x)為偶次根式時(shí),函數的定義域是使被開(kāi)方數不小于0的實(shí)數集合。
、墚攆(x)為對數式時(shí),函數的定義域是使真數為正、底數為正且不為1的實(shí)數集合。
、萑绻鹒(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合,即求各部分有意義的實(shí)數集合的交集。
、迯秃虾瘮档亩x域是復合的各基本的函數定義域的交集。
、邔τ谟蓪(shí)際問(wèn)題的背景確定的函數,其定義域除上述外,還要受實(shí)際問(wèn)題的制約。
3. 求函數值域
(1)、觀(guān)察法:通過(guò)對函數定義域、性質(zhì)的觀(guān)察,結合函數的解析式,求得函數的值域;
(2)、配方法;如果一個(gè)函數是二次函數或者經(jīng)過(guò)換元可以寫(xiě)成二次函數的形式,那么將這個(gè)函數的右邊配方,通過(guò)自變量的范圍可以求出該函數的值域;
(3)、判別式法:
(4)、數形結合法;通過(guò)觀(guān)察函數的圖象,運用數形結合的方法得到函數的值域;
(5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進(jìn)而求出值域;
(6)、利用函數的'單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點(diǎn)的函數值來(lái)求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;
(8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;
(9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。
高一數學(xué)知識點(diǎn)總結10
高一數學(xué)必修一知識點(diǎn)
指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
高一上冊數學(xué)必修一知識點(diǎn)梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(cháng),S=6a2,V=a3
4、長(cháng)方體a-長(cháng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)
人教版高一數學(xué)必修一知識點(diǎn)梳理
1、柱、錐、臺、球的結構特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的`一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
高一數學(xué)知識點(diǎn)總結11
第一章:解三角形
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.
3、三角形面積公式:SC
4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222
5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.
6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.
第二章:數列
1、數列:按照一定順序排列著(zhù)的一列數.
2、數列的項:數列中的每一個(gè)數.
3、有窮數列:項數有限的數列.
4、無(wú)窮數列:項數無(wú)限的數列.
5、遞增數列:從第2項起,每一項都不小于它的前一項的數列.
6、遞減數列:從第2項起,每一項都不大于它的前一項的數列.
7、常數列:各項相等的數列.
8、擺動(dòng)數列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數列.
9、數列的通項公式:表示數列an的第n項與序號n之間的關(guān)系的公式.
10、數列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關(guān)系的公式.
11、如果一個(gè)數列從第2項起,每一項與它的前一項的差等于同一個(gè)常數,則這個(gè)數列稱(chēng)為等差數列,這個(gè)常數稱(chēng)為等差數列的公差.
12、由三個(gè)數a,,b組成的等差數列可以看成最簡(jiǎn)單的等差數列,則稱(chēng)為a與b的等差中項.若bac2,則稱(chēng)b為a與c的等差中項.
13、若等差數列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;
14、若an是等差數列,且mnpq(m、n、p、q),則amanapaq;若an是等差數列,且2npq(n、p、q),則2anapaq;下角標成等差數列的項仍是等差數列;連續m項和構成的數列成等差數列。
15、等差數列的前n項和的公式:①Snna1an2;②Snna1nn12d.
16、等差數列的前n項和的性質(zhì):①若項數為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).
17、如果一個(gè)數列從第2項起,每一項與它的前一項的比等于同一個(gè)常數,則這個(gè)數列稱(chēng)為等比數列,這個(gè)常數稱(chēng)為等比數列的公比.
18、在a與b中間插入一個(gè)數G,使a,G,b成等比數列,則G稱(chēng)為a與b的等比中項.若G2ab,則稱(chēng)G為a與b的等比中項.
19、若等比數列an的首項是a1,公比是q,則ana1q.
20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.
21、若an是等比數列,且mnpq(m、n、p、q),則amanapaq;若an是等比數列,且2npq(n、p、q),則anapaq;下角標成等差數列的項仍是等比數列;連續m2項和構成的數列成等比數列。
22、等比數列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時(shí),Sna11qa11qq,即常數項與q項系數互為相反數。
23、等比數列的前n項和的性質(zhì):①若項數為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數列.
24、an與Sn的關(guān)系:anSnSn1S1n2n1
一些方法:
一、求通項公式的方法:
1、由數列的前幾項求通項公式:待定系數法
、偃粝噜弮身椣鄿p后為同一個(gè)常數設為anknb,列兩個(gè)方程求解;
、谌粝噜弮身椣鄿p兩次后為同一個(gè)常數設為anan2bnc,列三個(gè)方程求解;③若相鄰兩項相減后相除后為同一個(gè)常數設為anaq
2、由遞推公式求通項公式:
、偃艋(jiǎn)后為an1and形式,可用等差數列的通項公式代入求解;②若化簡(jiǎn)后為an1anf(n),形式,可用疊加法求解;
、廴艋(jiǎn)后為an1anq形式,可用等比數列的通項公式代入求解;
、苋艋(jiǎn)后為an1kanb形式,則可化為(an1x)k(anx),從而新數列{anx}是等比數列,用等比數列求解{anx}的通項公式,再反過(guò)來(lái)求原來(lái)那個(gè)。(其中x是用待定系數法來(lái)求得)3、由求和公式求通項公式:
、賏1S1②anSnSn1③檢驗a1是否滿(mǎn)足an,若滿(mǎn)足則為an,不滿(mǎn)足用分段函數寫(xiě)。
4、其他
。1)anan1fn形式,fn便于求和,方法:迭加;
例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數,列兩個(gè)方程求解;
n4n1(2)anan12anan1形式,同除以anan1,構造倒數為等差數列;
anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數列。anan1(3)anqan1m形式,q1,方法:構造:anxqan1x為等比數列;
例如:an2an12,通過(guò)待定系數法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構造:anxnyqan1xn1y為等比數列;(5)anqan1p形式,同除p,轉化為上面的幾種情況進(jìn)行構造;因為anqan1pn,則anpnqan1ppn11,若qp1轉化為(1)的方法,若不為1,轉化為(3)的方法
二、等差數列的求和最值問(wèn)題:(二次函數的配方法;通項公式求臨界項法)
、偃簪谌鬭k0,則Sn有最大值,當n=k時(shí)取到的最大值k滿(mǎn)足d0a0k1a10a10ak0,則Sn有最小值,當n=k時(shí)取到的最大值k滿(mǎn)足d0a0k1
三、數列求和的方法:
、侬B加法:倒序相加,具備等差數列的相關(guān)特點(diǎn)的,倒序之后和為定值;
、阱e位相減法:適用于通項公式為等差的一次函數乘以等比的數列形式,如:an2n13;n③分式時(shí)拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個(gè)或多個(gè)的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內含有多部分的拆開(kāi)分別求和法:適用于通項中能分成兩個(gè)或幾個(gè)可以方便求和的部分,如:an2n1等;
四、綜合性問(wèn)題中
、俚炔顢盗兄幸恍┰诩臃ê统朔ㄖ性O一些數為ad和ad類(lèi)型,這樣可以相加約掉,相乘為平方差;②等比數列中一些在加法和乘法中設一些數為aq和aq類(lèi)型,這樣可以相乘約掉。
第三章:不等式
1、ab0ab;ab0ab;ab0ab.比較兩個(gè)數的大小可以用相減法;相除法;平方法;開(kāi)方法;倒數法等等。
2、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.
3、一元二次不等式:只含有一個(gè)未知數,并且未知數的最高次數是2的不等式.
4、二次函數的圖象、一元二次方程的.根、一元二次不等式的解集間的關(guān)系:判別式b4ac201二次函數yaxbxc2a0的圖象有兩個(gè)相異實(shí)數根一元二次方程axbxc02有兩個(gè)相等實(shí)數根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒(méi)有實(shí)數根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2
5、二元一次不等式:含有兩個(gè)未知數,并且未知數的次數是1的不等式.
6、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.
7、二元一次不等式(組)的解集:滿(mǎn)足二元一次不等式組的x和y的取值構成有序數對x,y,所有這樣的有序數對x,y構成的集合.
8、在平面直角坐標系中,已知直線(xiàn)xyC0,坐標平面內的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線(xiàn)xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線(xiàn)xyC0的下方.
9、在平面直角坐標系中,已知直線(xiàn)xyC0.①若0,則xyC0表示直線(xiàn)xyC0上方的區域;xyC0表示直線(xiàn)xyC0下方的區域.②若0,則xyC0表示直線(xiàn)xyC0下方的區域;xyC0表示直線(xiàn)xyC0上方的區域.
10、線(xiàn)性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線(xiàn)性約束條件.目標函數:欲達到最大值或最小值所涉及的變量x,y的解析式.線(xiàn)性目標函數:目標函數為x,y的一次解析式.線(xiàn)性規劃問(wèn)題:求線(xiàn)性目標函數在線(xiàn)性約束條件下的最大值或最小值問(wèn)題.可行解:滿(mǎn)足線(xiàn)性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數取得最大值或最小值的可行解.
11、設a、b是兩個(gè)正數,則ab稱(chēng)為正數a、b的算術(shù)平均數,ab稱(chēng)為正數a、b的幾何平均數.
12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.
13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.
14、極值定理:設x、y都為正數,則有s(和為定值),則當xy時(shí),積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時(shí),和xy取得最小值2p.
高一數學(xué)知識點(diǎn)總結12
高一數學(xué)第三章函數的應用知識點(diǎn)總結
一、方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數yf(x)(xD),把使f(x)0成立的實(shí)數x叫做函數yf(x)(xD)的零點(diǎn)。
2、函數零點(diǎn)的意義:函數yf(x)的零點(diǎn)就是方程f(x)0實(shí)數根,亦即函數
yf(x)的圖象與x軸交點(diǎn)的橫坐標。
即:方程f(x)0有實(shí)數根函數yf(x)的圖象與x軸有交點(diǎn)函數yf(x)有零點(diǎn).
3、函數零點(diǎn)的求法:
1(代數法)求方程f(x)0的實(shí)數根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象○
聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).
零點(diǎn)存在性定理:如果函數y=f(x)在區間〔a,b〕上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。先判定函數單調性,然后證明是否有f(a)f(b)第三章函數的應用習題
一、選擇題
1.下列函數有2個(gè)零點(diǎn)的是()
222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內的根的過(guò)程中得:f(1)0,f(1.5)0,
f(1.25)0,則方程的根落在區間()
A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)
3.若方程axxa0有兩個(gè)解,則實(shí)數a的取值范圍是A、(1,)B、(0,1)C、(0,)D、
4.函數f(x)=lnx-2x的零點(diǎn)所在的大致區間是()A.(1,2)B.2,eC.e,3D.e,
5.已知方程x3x10僅有一個(gè)正零點(diǎn),則此零點(diǎn)所在的區間是()
A.(3,4)B.(2,3)C.(1,2)D.(0,1)
6.函數f(x)lnx2x6的零點(diǎn)落在區間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)
7.已知函數
fx的圖象是不間斷的,并有如下的對應值表:x1234567fx8735548那么函數在區間(1,6)上的零點(diǎn)至少有()個(gè)A.5B.4C.3D.28.方程2x1x5的解所在的區間是A(0,1)B(1,2)C(2,3)D(3,4)
9.方程4x35x60的根所在的區間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)
10.已知f(x)2x22x,則在下列區間中,f(x)0有實(shí)數解的是()
。
。ǎ
。ǎ
。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據表格中的數據,可以判定方程ex-x-2=0的一個(gè)根所在的區間為()
xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程
x12x根的個(gè)數為()
A、0B、1C、2D、3二、填空題
13.下列函數:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個(gè)零點(diǎn)的函數的序號是。
x214.若方程3x2的實(shí)根在區間m,n內,且m,nZ,nm1,
x則mn.
222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(必須寫(xiě)全所有的零點(diǎn))。
擴展閱讀:高中數學(xué)必修一第三章函數的應用知識點(diǎn)總結
第三章函數的應用
一、方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數yf(x)(xD),把使f(x)0成立的實(shí)數x叫做函數yf(x)(xD)的零點(diǎn)。
2、函數零點(diǎn)的意義:函數yf(x)的零點(diǎn)就是方程f(x)0實(shí)數根,亦即函數
yf(x)的圖象與x軸交點(diǎn)的橫坐標。
即:方程f(x)0有實(shí)數根函數yf(x)的圖象與x軸有交點(diǎn)函數yf(x)有零點(diǎn).
3、函數零點(diǎn)的求法:
1(代數法)求方程f(x)0的實(shí)數根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象聯(lián)系起來(lái),○
并利用函數的性質(zhì)找出零點(diǎn).
4、基本初等函數的零點(diǎn):
、僬壤瘮祔kx(k0)僅有一個(gè)零點(diǎn)。
k(k0)沒(méi)有零點(diǎn)。x③一次函數ykxb(k0)僅有一個(gè)零點(diǎn)。
、诜幢壤瘮祔④二次函數yax2bxc(a0).
。1)△>0,方程ax2bxc0(a0)有兩不等實(shí)根,二次函數的圖象與x軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).
。2)△=0,方程ax2bxc0(a0)有兩相等實(shí)根,二次函數的圖象與x軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).
。3)△<0,方程ax2bxc0(a0)無(wú)實(shí)根,二次函數的圖象與x軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).
、葜笖岛瘮祔a(a0,且a1)沒(méi)有零點(diǎn)。⑥對數函數ylogax(a0,且a1)僅有一個(gè)零點(diǎn)1.
、邇绾瘮祔x,當n0時(shí),僅有一個(gè)零點(diǎn)0,當n0時(shí),沒(méi)有零點(diǎn)。
5、非基本初等函數(不可直接求出零點(diǎn)的較復雜的'函數),函數先把fx轉化成,這另fx0,再把復雜的函數拆分成兩個(gè)我們常見(jiàn)的函數y1,y2(基本初等函數)個(gè)函數圖像的交點(diǎn)個(gè)數就是函數fx零點(diǎn)的個(gè)數。
6、選擇題判斷區間a,b上是否含有零點(diǎn),只需滿(mǎn)足fafb0。Eg:試判斷方程xx2x10在區間[0,2]內是否有實(shí)數解?并說(shuō)明理由。
1
42x7、確定零點(diǎn)在某區間a,b個(gè)數是唯一的條件是:①fx在區間上連續,且fafb0②在區間a,b上單調。Eg:求函數f(x)2xlg(x1)2的零點(diǎn)個(gè)數。
8、函數零點(diǎn)的性質(zhì):
從“數”的角度看:即是使f(x)0的實(shí)數;
從“形”的角度看:即是函數f(x)的圖象與x軸交點(diǎn)的橫坐標;
若函數f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱(chēng)為不變號零點(diǎn);若函數f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱(chēng)為變號零點(diǎn).
Eg:一元二次方程根的分布討論
一元二次方程根的分布的基本類(lèi)型
2axbxc0(a0)的兩實(shí)根為x1,x2,且x1x2.設一元二次方程
k為常數,則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區間上的
分布主要有以下基本類(lèi)型:
表一:(兩根與0的大小比較)
分布情況兩個(gè)負根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負根即一個(gè)根小于0,一個(gè)大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結論0b02af000b02af00f00
大致圖象(a0)得出的結論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結a論)
af00表二:(兩根與k的大小比較)
分布情況兩根都小于k即兩根都大于k即一個(gè)根小于k,一個(gè)大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結a論)a0)afk0分布情況大致圖象(得出的結論表三:(根在區間上的分布)
兩根都在m,n內兩根有且僅有一根在m,n一根在m,n內,另一根在p,q內(有兩種情況,只畫(huà)了一種)內,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或
大致圖象(a0)得出的結論0fm0fn0bmn2a綜合結論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論
fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于1,一個(gè)小于1,求m的取值范圍?
。2)關(guān)于x的方程x2(m3)x2m140有兩實(shí)根在[0,4]內,求m的取值范圍?
2(3)關(guān)于x的方程mx2(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍?
9、二分法的定義
對于在區間[a,b]上連續不斷,且滿(mǎn)足f(a)f(b)0的函數
yf(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,
使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.
10、給定精確度ε,用二分法求函數f(x)零點(diǎn)近似值的步驟:(1)確定區間[a,b],驗證f(a)f(b)0,給定精度;(2)求區間(a,b)的中點(diǎn)x1;(3)計算f(x1):
、偃鬴(x1)=0,則x1就是函數的零點(diǎn);
、谌鬴(a)f(x1)14、根據散點(diǎn)圖設想比較接近的可能的函數模型:一次函數模型:f(x)kxb(k0);二次函數模型:g(x)ax2bxc(a0);冪函數模型:h(x)axb(a0);
指數函數模型:l(x)abxc(a0,b>0,b1)
利用待定系數法求出各解析式,并對各模型進(jìn)行分析評價(jià),選出合適的函數模型
高一數學(xué)知識點(diǎn)總結13
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個(gè)特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無(wú)序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類(lèi):
(1) 有限集 含有有限個(gè)元素的集合
(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)
實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)
、廴绻 A?B, B?C ,那么 A?C
、 如果A?B 同時(shí) B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
三、集合的運算
運算類(lèi)型 交 集 并 集 補 集
定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).
設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
二、函數的有關(guān)概念
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的`數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。
求函數的定義域時(shí)列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)
2.值域 : 先考慮其定義域
(1)觀(guān)察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上 .
(2) 畫(huà)法
A、 描點(diǎn)法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱(chēng)變換
4.區間的概念
(1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間
(2)無(wú)窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復合函數。
二.函數的性質(zhì)
1.函數的單調性(局部性質(zhì))
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1
如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質(zhì);
(2) 圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫(xiě)成其并集.
8.函數的奇偶性(整體性質(zhì))
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2).奇函數
一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;
(3)利用定理,或借助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見(jiàn)課本p36頁(yè))
○1 利用二次函數的性質(zhì)(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
高一數學(xué)知識點(diǎn)總結14
一、直線(xiàn)與方程
(1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線(xiàn)的斜率
、俣x:傾斜角不是90的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。當時(shí),。當時(shí),;當時(shí),不存在。
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
注意下面四點(diǎn):
(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。
(3)直線(xiàn)方程
、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)
注意:當直線(xiàn)的斜率為0時(shí),k=0,直線(xiàn)的方程是y=y1。當直線(xiàn)的斜率為90時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b
、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),
、芙鼐厥剑浩渲兄本(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
、菀话闶剑(A,B不全為0)
、菀话闶剑(A,B不全為0)
注意:○1各式的`適用范圍
○2特殊的方程如:平行于x軸的直線(xiàn):(b為常數);平行于y軸的直線(xiàn):(a為常數);
(4)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)
(一)平行直線(xiàn)系
平行于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(二)過(guò)定點(diǎn)的直線(xiàn)系
(ⅰ)斜率為k的直線(xiàn)系:直線(xiàn)過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為(為參數),其中直線(xiàn)不在直線(xiàn)系中。
(5)兩直線(xiàn)平行與垂直;
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。
(6)兩條直線(xiàn)的交點(diǎn)
相交:交點(diǎn)坐標即方程組的一組解。方程組無(wú)解;方程組有無(wú)數解與重合
(7)兩點(diǎn)間距離公式:設是平面直角坐標系中的兩個(gè)點(diǎn),則
(8)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離
(9)兩平行直線(xiàn)距離公式:在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。
高一數學(xué)知識點(diǎn)總結15
集合間的基本關(guān)系
1!鞍标P(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2!跋嗟取标P(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹喝绻鸄B,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
、苋绻鸄B同時(shí)BA那么A=B
3。不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集
集合的'運算
運算類(lèi)型交集并集補集
定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。
設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
【高一數學(xué)知識點(diǎn)總結】相關(guān)文章:
高一數學(xué)知識點(diǎn)總結11-09
高一數學(xué)知識點(diǎn)總結06-06
高一數學(xué)知識點(diǎn)總結06-10