高中數學(xué)知識點(diǎn)總結20篇
總結是事后對某一時(shí)期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規律性的結論,寫(xiě)總結有利于我們學(xué)習和工作能力的提高,不如立即行動(dòng)起來(lái)寫(xiě)一份總結吧。那么總結有什么格式呢?以下是小編精心整理的高中數學(xué)知識點(diǎn)總結,僅供參考,歡迎大家閱讀。
高中數學(xué)知識點(diǎn)總結1
一次函數
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數。
特別地,當b=0時(shí),y是x的正比例函數。
即:y=kx (k為常數,k0)
二、一次函數的性質(zhì):
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數b取任何實(shí)數)
2、當x=0時(shí),b為函數在y軸上的截距。
三、一次函數的圖像及性質(zhì):
1、作法與圖形:通過(guò)如下3個(gè)步驟
。1)列表;
。2)描點(diǎn);
。3)連線(xiàn),可以作出一次函數的圖像一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。
3、k,b與函數圖像所在象限:
當k0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;
當k0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。
當b0時(shí),直線(xiàn)必通過(guò)一、二象限;
當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)
當b0時(shí),直線(xiàn)必通過(guò)三、四象限。
特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。
這時(shí),當k0時(shí),直線(xiàn)只通過(guò)一、三象限;當k0時(shí),直線(xiàn)只通過(guò)二、四象限。
四、確定一次函數的表達式:
已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。
。1)設一次函數的表達式(也叫解析式)為y=kx+b。
。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個(gè)二元一次方程,得到k,b的值。
。4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。
2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2
4、求任意線(xiàn)段的長(cháng):(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
。╝,b,c為常數,a0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數。
二次函數表達式的`右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a0)
頂點(diǎn)式:y=a(x—h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的性質(zhì)
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x= —b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時(shí),P在y軸上;當= b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a0時(shí),拋物線(xiàn)向上開(kāi)口;當a0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
= b^2—4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
= b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
= b^2—4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
V、二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),
即ax^2+bx+c=0
此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。
函數與x軸交點(diǎn)的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
解析式頂點(diǎn)坐標對稱(chēng)軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了、這給畫(huà)圖象提供了方便、
2、拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x —b/2a時(shí),y隨x的增大而減;當x —b/2a時(shí),y隨x的增大而增大、若a0,當x —b/2a時(shí),y隨x的增大而增大;當x —b/2a時(shí),y隨x的增大而減小、
4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
。2)當△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|
當△=0、圖象與x軸只有一個(gè)交點(diǎn);
當△0、圖象與x軸沒(méi)有交點(diǎn)、當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y0;當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0、
5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值、
6、用待定系數法求二次函數的解析式
。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、
。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現、
反比例函數
形如y=k/x(k為常數且k0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。
當K0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(xm)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
高中數學(xué)知識點(diǎn)總結2
總體和樣本
、僭诮y計學(xué)中,把研究對象的全體叫做總體。
、诎衙總(gè)研究對象叫做個(gè)體。
、郯芽傮w中個(gè)體的總數叫做總體容量。
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量。
簡(jiǎn)單隨機抽樣
也叫純隨機抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨。
機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。
簡(jiǎn)單隨機抽樣常用的方法
、俪楹灧
、陔S機數表法
、塾嬎銠C模擬法
、苁褂媒y計軟件直接抽取。
在簡(jiǎn)單隨機抽樣的樣本容量設計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
抽簽法
、俳o調查對象群體中的'每一個(gè)對象編號;
、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;
、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查。
拓展閱讀:高二數學(xué)學(xué)習方法
一、提高聽(tīng)課的效率是關(guān)鍵
課前預習能提高聽(tīng)課的針對性。預習中發(fā)現的難點(diǎn),就是聽(tīng)課的重點(diǎn);對預習中遇到的沒(méi)有掌握好的有關(guān)的舊知識,可進(jìn)行補缺,以減少聽(tīng)課過(guò)程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預習還可以培養自己的自學(xué)能力。其次就是聽(tīng)課要全神貫注。
二、做好復習和總結工作
做好及時(shí)的復習。課完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書(shū)或筆記,而是采取回憶式的復習,然后打開(kāi)筆記與書(shū)本,對照一下還有哪些沒(méi)記清的,把它補起來(lái),就使得當天上課內容鞏固下來(lái),同時(shí)也就檢查了當天課堂聽(tīng)課的效果如何,也為改進(jìn)聽(tīng)課方法及提高聽(tīng)課效果提出必要的改進(jìn)措施。
三、指導做一定量的練習題
做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎知識,把它們聯(lián)系起來(lái),你就會(huì )得到更多的經(jīng)驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學(xué)習。
高中數學(xué)知識點(diǎn)總結3
一、集合、簡(jiǎn)易邏輯
1、集合;
2、子集;
3、補集;
4、交集;
5、并集;
6、邏輯連結詞;
7、四種命題;
8、充要條件。
二、函數
1、映射;
2、函數;
3、函數的單調性;
4、反函數;
5、互為反函數的函數圖象間的關(guān)系;
6、指數概念的擴充;
7、有理指數冪的運算;
8、指數函數;
9、對數;
10、對數的運算性質(zhì);
11、對數函數。
12、函數的應用舉例。
三、數列(12課時(shí),5個(gè))
1、數列;
2、等差數列及其通項公式;
3、等差數列前n項和公式;
4、等比數列及其通頂公式;
5、等比數列前n項和公式。
四、三角函數
1、角的概念的推廣;
2、弧度制;
3、任意角的三角函數;
4、單位圓中的三角函數線(xiàn);
5、同角三角函數的基本關(guān)系式;
6、正弦、余弦的誘導公式;
7、兩角和與差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函數、余弦函數的圖象和性質(zhì);
10、周期函數;
11、函數的奇偶性;
12、函數的圖象;
13、正切函數的圖象和性質(zhì);
14、已知三角函數值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法舉例。
五、平面向量
1、向量;
2、向量的加法與減法;
3、實(shí)數與向量的積;
4、平面向量的坐標表示;
5、線(xiàn)段的定比分點(diǎn);
6、平面向量的數量積;
7、平面兩點(diǎn)間的距離;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性質(zhì);
3、不等式的證明;
4、不等式的解法;
5、含絕對值的不等式。
七、直線(xiàn)和圓的方程
1、直線(xiàn)的傾斜角和斜率;
2、直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;
3、直線(xiàn)方程的一般式;
4、兩條直線(xiàn)平行與垂直的條件;
5、兩條直線(xiàn)的交角;
6、點(diǎn)到直線(xiàn)的距離;
7、用二元一次不等式表示平面區域;
8、簡(jiǎn)單線(xiàn)性規劃問(wèn)題;
9、曲線(xiàn)與方程的概念;
10、由已知條件列出曲線(xiàn)方程;
11、圓的標準方程和一般方程;
12、圓的參數方程。
八、圓錐曲線(xiàn)
1、橢圓及其標準方程;
2、橢圓的簡(jiǎn)單幾何性質(zhì);
3、橢圓的參數方程;
4、雙曲線(xiàn)及其標準方程;
5、雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);
6、拋物線(xiàn)及其標準方程;
7、拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。
九、直線(xiàn)、平面、簡(jiǎn)單何體
1、平面及基本性質(zhì);
2、平面圖形直觀(guān)圖的畫(huà)法;
3、平面直線(xiàn);
4、直線(xiàn)和平面平行的判定與性質(zhì);
5、直線(xiàn)和平面垂直的判定與性質(zhì);
6、三垂線(xiàn)定理及其逆定理;
7、兩個(gè)平面的位置關(guān)系;
8、空間向量及其加法、減法與數乘;
9、空間向量的坐標表示;
10、空間向量的數量積;
11、直線(xiàn)的方向向量;
12、異面直線(xiàn)所成的角;
13、異面直線(xiàn)的公垂線(xiàn);
14、異面直線(xiàn)的距離;
15、直線(xiàn)和平面垂直的性質(zhì);
16、平面的法向量;
17、點(diǎn)到平面的距離;
18、直線(xiàn)和平面所成的角;
19、向量在平面內的射影;
20、平面與平面平行的'性質(zhì);
21、平行平面間的距離;
22、二面角及其平面角;
23、兩個(gè)平面垂直的判定和性質(zhì);
24、多面體;
25、棱柱;
26、棱錐;
27、正多面體;
28、球。
十、排列、組合、二項式定理
1、分類(lèi)計數原理與分步計數原理;
2、排列;
3、排列數公式;
4、組合;
5、組合數公式;
6、組合數的兩個(gè)性質(zhì);
7、二項式定理;
8、二項展開(kāi)式的性質(zhì)。
十一、概率
1、隨機事件的概率;
2、等可能事件的概率;
3、互斥事件有一個(gè)發(fā)生的概率;
4、相互獨立事件同時(shí)發(fā)生的概率;
5、獨立重復試驗。
必修一函數重點(diǎn)知識整理
1、函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(—x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;
(5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;
2、復合函數的有關(guān)問(wèn)題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。
(2)復合函數的單調性由“同增異減”判定;
3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)
(1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;
(3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a—x,2b—y)=0;
(5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);
(6)函數y=f(x—a)與y=f(b—x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);
4、函數的周期性
(1)y=f(x)對x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符號由口訣“同正異負”記憶;
(4)a log a N= N(a>0,a≠1,N>0);
8、判斷對應是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10、對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個(gè)函數具有相同的單調性;
(6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;
12、依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題
13、恒成立問(wèn)題的處理方法:
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解。
高中數學(xué)知識點(diǎn)總結4
(一)導數第一定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內 ) 時(shí),相應地函數取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即導數第一定義
(二)導數第二定義
設函數 y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時(shí),相應地函數變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時(shí)極限存在,則稱(chēng)函數 y = f(x) 在點(diǎn) x0 處可導,并稱(chēng)這個(gè)極限值為函數 y = f(x) 在點(diǎn) x0 處的導數記為 f(x0) ,即 導數第二定義
(三)導函數與導數
如果函數 y = f(x) 在開(kāi)區間 I 內每一點(diǎn)都可導,就稱(chēng)函數f(x)在區間 I 內可導。這時(shí)函數 y = f(x) 對于區間 I 內的每一個(gè)確定的 x 值,都對應著(zhù)一個(gè)確定的導數,這就構成一個(gè)新的'函數,稱(chēng)這個(gè)函數為原來(lái)函數 y = f(x) 的導函數,記作 y, f(x), dy/dx, df(x)/dx。導函數簡(jiǎn)稱(chēng)導數。
(四)單調性及其應用
1.利用導數研究多項式函數單調性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對應區間為增區間; f(x)<0的解集與定義域的交集的對應區間為減區間
學(xué)習了導數基礎知識點(diǎn),接下來(lái)可以學(xué)習高二數學(xué)中涉及到的導數應用的部分。
高中數學(xué)知識點(diǎn)總結5
一、函數對稱(chēng)性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱(chēng)
f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱(chēng)f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對稱(chēng)f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對稱(chēng)
f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對稱(chēng)y=f(x)與y=f(-x)關(guān)于x=0對稱(chēng)y=f(x)與y=-f(x)關(guān)于y=0對稱(chēng)y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對稱(chēng)
例1:證明函數y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱(chēng)。
【解析】求兩個(gè)不同函數的對稱(chēng)軸,用設點(diǎn)和對稱(chēng)原理作解。
證明:假設任意一點(diǎn)P(m,n)在函數y=f(a+x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即證得對稱(chēng)軸為x=(b-a)/2.
例2:證明函數y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱(chēng)。
證明:假設任意一點(diǎn)P(m,n)在函數y=f(a-x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即證得對稱(chēng)軸為x=(a+b)/2.
二、函數的周期性
令a,b均不為零,若:
1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a|
2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a|
3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a|
4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a|
5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a|
這里只對第2~5點(diǎn)進(jìn)行解析。
第2點(diǎn)解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……
、賔(x)=-f(x+a)……
、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數最小正周期T=|2a|
第4點(diǎn)解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函數最小正周期T=|2a|
第5點(diǎn)解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函數最小正周期T=|4a|
擴展閱讀:函數對稱(chēng)性、周期性和奇偶性的規律總結
函數對稱(chēng)性、周期性和奇偶性規律總結
。ㄒ唬┩缓瘮档暮瘮档钠媾夹耘c對稱(chēng)性:(奇偶性是一種特殊的`對稱(chēng)性)
1、奇偶性:
。1)奇函數關(guān)于(0,0)對稱(chēng),奇函數有關(guān)系式f(x)f(x)0
。2)偶函數關(guān)于y(即x=0)軸對稱(chēng),偶函數有關(guān)系式f(x)f(x)
2、奇偶性的拓展:同一函數的對稱(chēng)性
。1)函數的軸對稱(chēng):
函數yf(x)關(guān)于xa對稱(chēng)f(ax)f(ax)
f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)
若寫(xiě)成:f(ax)f(bx),則函數yf(x)關(guān)于直線(xiàn)x稱(chēng)
。╝x)(bx)ab對22證明:設點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),
即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對稱(chēng)。得證。
說(shuō)明:關(guān)于xa對稱(chēng)要求橫坐標之和為2a,縱坐標相等。
∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(ax)f(ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(x)f(2ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)
f(x)f(2ax)
。2)函數的點(diǎn)對稱(chēng):
函數yf(x)關(guān)于點(diǎn)(a,b)對稱(chēng)f(ax)f(ax)2b
上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b
若寫(xiě)成:f(ax)f(bx)c,函數yf(x)關(guān)于點(diǎn)(abc,)對稱(chēng)2證明:設點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱(chēng)。得證。
說(shuō)明:關(guān)于點(diǎn)(a,b)對稱(chēng)要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。
。3)函數yf(x)關(guān)于點(diǎn)yb對稱(chēng):假設函數關(guān)于yb對稱(chēng),即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對應,顯然這不符合函數的定義,故函數自身不可能關(guān)于yb對稱(chēng)。但在曲線(xiàn)c(x,y)=0,則有可能會(huì )出現關(guān)于yb對稱(chēng),比如圓c(x,y)x2y240它會(huì )關(guān)于y=0對稱(chēng)。
。4)復合函數的奇偶性的性質(zhì)定理:
性質(zhì)1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。
性質(zhì)2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。
性質(zhì)3、復合函數y=f(x+a)為偶函數,則y=f(x)關(guān)于直線(xiàn)x=a軸對稱(chēng)。復合函數y=f(x+a)為奇函數,則y=f(x)關(guān)于點(diǎn)(a,0)中心對稱(chēng)。
總結:x的系數一個(gè)為1,一個(gè)為-1,相加除以2,可得對稱(chēng)軸方程
總結:x的系數一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數是為1,另一個(gè)為-1,存在對稱(chēng)中心。
總結:x的系數同為為1,具有周期性。
。ǘ﹥蓚(gè)函數的圖象對稱(chēng)性
1、yf(x)與yf(x)關(guān)于X軸對稱(chēng)。
證明:設yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)
∵(x1,y1)與(x1,y1)關(guān)于X軸對稱(chēng),∴y1f(x1)與yf(x)關(guān)于X軸對稱(chēng).注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿(mǎn)足f(x)g(x),即它們關(guān)于y0對稱(chēng)。
高中數學(xué)知識點(diǎn)總結6
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在這個(gè)平面內;
公理2過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
2、空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系:
直線(xiàn)與直線(xiàn)—平行、相交、異面;
直線(xiàn)與平面—平行、相交、直線(xiàn)屬于該平面(線(xiàn)在面內,最易忽視);
平面與平面—平行、相交。
3、異面直線(xiàn):
平面外一點(diǎn)A與平面一點(diǎn)B的連線(xiàn)和平面內不經(jīng)過(guò)點(diǎn)B的直線(xiàn)是異面直線(xiàn)(判定);
所成的角范圍(0,90)度(平移法,作平行線(xiàn)相交得到夾角或其補角);
兩條直線(xiàn)不是異面直線(xiàn),則兩條直線(xiàn)平行或相交(反證);
異面直線(xiàn)不同在任何一個(gè)平面內。
求異面直線(xiàn)所成的角:平移法,把異面問(wèn)題轉化為相交直線(xiàn)的夾角
二、空間中的平行關(guān)系
1、直線(xiàn)與平面平行(核心)
定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)
判定:不在一個(gè)平面內的一條直線(xiàn)和平面內的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)
性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行
2、平面與平面平行
定義:兩個(gè)平面沒(méi)有公共點(diǎn)
判定:一個(gè)平面內有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
3、常利用三角形中位線(xiàn)、平行四邊形對邊、已知直線(xiàn)作一平面找其交線(xiàn)
三、空間中的垂直關(guān)系
1、直線(xiàn)與平面垂直
定義:直線(xiàn)與平面內任意一條直線(xiàn)都垂直
判定:如果一條直線(xiàn)與一個(gè)平面內的兩條相交的直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直
性質(zhì):垂直于同一直線(xiàn)的兩平面平行
推論:如果在兩條平行直線(xiàn)中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線(xiàn)和平面所成的角:【0,90】度,平面內的.一條斜線(xiàn)和它在平面內的射影說(shuō)成的銳角,特別規定垂直90度,在平面內或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內分別作垂直于棱的兩條射線(xiàn)所成的角)
判定:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直
高中數學(xué)知識點(diǎn)總結7
高中數學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書(shū)。
必修一:1、集合與函數的概念 (這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質(zhì)及應用 (比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角
這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分
2、直線(xiàn)方程:高考時(shí)不單獨命題,易和圓錐曲線(xiàn)結合命題
3、圓方程:
必修三:1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學(xué)占到5分
必修四:1、三角函數:(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數混合起來(lái)考查
2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線(xiàn)結合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學(xué)占到13分左右2、數列:高考必考,17---22分3、不等式:(線(xiàn)性規劃,聽(tīng)課時(shí)易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。
文科:選修1—1、1—2
選修1--1:重點(diǎn):高考占30分
1、邏輯用語(yǔ):一般不考,若考也是和集合放一塊考2、圓錐曲線(xiàn):3、導數、導數的應用(高考必考)
選修1--2:1、統計:2、推理證明:一般不考,若考會(huì )是填空題3、復數:(新課標比老課本難的多,高考必考內容)
理科:選修2—1、2—2、2—3
選修2--1:1、邏輯用語(yǔ)2、圓錐曲線(xiàn)3、空間向量:(利用空間向量可以把立體幾何做題簡(jiǎn)便化)
選修2--2:1、導數與微積分2、推理證明:一般不考3、復數
選修2--3:1、計數原理:(排列組合、二項式定理)掌握這部分知識點(diǎn)需要大量做題找規律,無(wú)技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統計:
高考的知識板塊
集合與簡(jiǎn)單邏輯:5分或不考
函數:高考60分:①、指數函數 ②對數函數 ③二次函數 ④三次函數 ⑤三角函數 ⑥抽象函數(無(wú)函數表達式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線(xiàn)性規則)5分必考
數列:17分 (一道大題+一道選擇或填空)易和函數結合命題
平面解析幾何:(30分左右)
計算原理:10分左右
概率統計:12分----17分
復數:5分
推理證明
一般高考大題分布
1、17題:三角函數
2、18、19、20 三題:立體幾何 、概率 、數列
3、21、22 題:函數、圓錐曲線(xiàn)
成績(jì)不理想一般是以下幾種情況:
做題不細心,(會(huì )做,做不對)
基礎知識沒(méi)有掌握
解決問(wèn)題不全面,知識的運用沒(méi)有系統化(如:一道題綜合了多個(gè)知識點(diǎn))
心理素質(zhì)不好
總之學(xué)**數學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒(méi)有的知識點(diǎn),尤其是數列性質(zhì),課本上沒(méi)有,但做題經(jīng)常用到 2、錯題收集、歸納總結
高一年級
必修一
第一章 集合與函數概念
第二章 基本初等函數(Ⅰ)
第三章 函數的應用
必修二
第一章 空間幾何體
第二章 點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系
第三章 直線(xiàn)與方程
必修三
第一章 算法初步
第二章 統計
第三章 概率
必修四
第一章 三角函數
第二章 平面向量
第三章 三角恒等變換
(二)教學(xué)要求
在教學(xué)中,由于集合、函數等內容比較抽象,三角函數在高考中占據重要地位,平面向量又是高考中數學(xué)必考內容,教師在備課組協(xié)作的基礎上應注意對各章知識的重難點(diǎn)的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強學(xué)生學(xué)好數學(xué)的信心。
首先,在高中數學(xué)中,集合的初步知識以及與其它內容的密切聯(lián)系。它們是學(xué)**、掌握和使用數學(xué)語(yǔ)言的基礎,是高中數學(xué)學(xué)**的出發(fā)點(diǎn)。在教學(xué)中,應注重引導學(xué)生更好的理解數學(xué)中出現的集合語(yǔ)言,使學(xué)生更好的使用集合語(yǔ)言表述數學(xué)問(wèn)題,并且可以使學(xué)生運用集合的觀(guān)點(diǎn),研究、處理數學(xué)問(wèn)題。因此集合的基本概念、函數等有關(guān)內容是教師重點(diǎn)講解的內容。
其次,函數作為中學(xué)數學(xué)中最重要的基本概念之一,教師應注意運用有關(guān)的概念和函數的性質(zhì),培養學(xué)生的思維能力;通過(guò)指數與對數,指數函數與對數函數之間的內在聯(lián)系,對學(xué)生進(jìn)行辯證唯物主義觀(guān)點(diǎn)的教育;通過(guò)聯(lián)系實(shí)際的引入問(wèn)題和解決帶有實(shí)際意義的某些問(wèn)題,培養學(xué)生的實(shí)踐能力和創(chuàng )新意識。
第三,通過(guò)對三角函數的學(xué)**,學(xué)生將進(jìn)一步了解符號與變元、集合與對應、數形結合等基本的數學(xué)思想在研究三角函數時(shí)所起的重要作用,在式子與圖形的變化中,教師應引導學(xué)生通過(guò)分析、探索、劃歸、類(lèi)比、平行移動(dòng)、伸長(cháng)和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數學(xué)和應用數學(xué)方面達到一個(gè)新的層次。
第四,學(xué)**平面向量,不但應注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應用數學(xué)知識解決實(shí)際問(wèn)題的能力和實(shí)際操作的能力,使學(xué)生學(xué)會(huì )提出問(wèn)題,明確研究方向,使學(xué)生學(xué)會(huì )交流,體驗數學(xué)活動(dòng)的過(guò)程,培養創(chuàng )新精神和應用能力。
第五、在學(xué)**空間幾何體、點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系時(shí),重點(diǎn)要幫助學(xué)生逐步形成空間想象能力,嚴格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問(wèn)題。
第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過(guò)程:首先將幾何問(wèn)題代數化,用代數的語(yǔ)言描述幾何要素及其關(guān)系,進(jìn)而將幾何問(wèn)題轉化為代數問(wèn)題;處理代數問(wèn)題;分析代數結果的幾何含義,最終解決幾何問(wèn)題。這種思想應貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會(huì )“數形結合”的思想方法。
第七、在學(xué)**算法初步、統計等內容的時(shí)候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。
高二年級
必修五
第一章 解三角形
第二章 數列
第三章 不等式
選修1-1
第一章 常用邏輯用語(yǔ)
第二章 圓錐曲線(xiàn)與方程
第三章 導數及其應用
選修1-2
第一章 統計案例
第二章 推理與證明
第三章 數系的擴充與復數的引入
第四章 框圖
選修2-1
第一章 常用邏輯用語(yǔ)
第二章 圓錐曲線(xiàn)與方程
第三章 空間向量與立體幾何
選修2-2
第一章 導數及其應用
第二章 推理與證明
第三章 數系的擴充與復數的引入
選修2-3
第一章 計數原理
第二章 隨機變量及其分布
第三章 統計案例
(二)教學(xué)要求
高二上
必修5
學(xué)生將在已有知識的基礎上,通過(guò)對任意三角形邊角關(guān)系的.探究,發(fā)現并掌握三角形中的邊長(cháng)與角度之間的數量關(guān)系,并認識到運用它們可以解決一些與測量和幾何計算有關(guān)的實(shí)際問(wèn)題。
數列作為一種特殊的函數,是反映自然規律的基本數學(xué)模型。在本模塊中,學(xué)生將通過(guò)對日常生活中大量實(shí)際問(wèn)題的分析,建立等差數列和等比數列這兩種數列模型,探索并掌握它們的一些基本數量關(guān)系,感受這兩種數列模型的廣泛應用,并利用它們解決一些實(shí)際問(wèn)題。
不等關(guān)系與相等關(guān)系都是客觀(guān)事物的基本數量關(guān)系,是數學(xué)研究的重要內容。建立不等觀(guān)念、處理不等關(guān)系與處理等量問(wèn)題是同樣重要的。在本模塊中,學(xué)生將通過(guò)具體情境,感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,理解不等式(組)對于刻畫(huà)不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問(wèn)題;能用二元一次不等式組表示平面區域,并嘗試解決一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題;認識基本不等式及其簡(jiǎn)單應用;體會(huì )不等式、方程及函數之間的聯(lián)系。
選修1—1(文科)
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎上,學(xué)**常用邏輯用語(yǔ),體會(huì )邏輯用語(yǔ)在表述和論證中的作用,利用這些邏輯用語(yǔ)準確地表達數學(xué)內容,更好地進(jìn)行交流。
在必修課程學(xué)**平面解析幾何初步的基礎上,在本模塊中,學(xué)生將學(xué)**圓錐曲線(xiàn)與方程,了解圓錐曲線(xiàn)與二次方程的關(guān)系,掌握圓錐曲線(xiàn)的基本幾何性質(zhì),感受圓錐曲線(xiàn)在刻畫(huà)現實(shí)世界和解決實(shí)際問(wèn)題中的作用,進(jìn)一步體會(huì )數形結合的思想。
在本模塊中,學(xué)生將通過(guò)大量實(shí)例,經(jīng)歷由平均變化率到瞬時(shí)變化率的過(guò)程,刻畫(huà)現實(shí)問(wèn)題,理解導數的含義,體會(huì )導數的思想及其內涵;應用導數探索函數的單調、極值等性質(zhì)及其在實(shí)際中的應用,感受導數在解決數學(xué)問(wèn)題和實(shí)際問(wèn)題中的作用,體會(huì )微積分的產(chǎn)生對人類(lèi)文化發(fā)展的價(jià)值。
選修2-1(理科)
在本模塊中,學(xué)生將學(xué)**常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間中的向量(簡(jiǎn)稱(chēng)空間向量)與立體幾何。
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎上,學(xué)**常用邏輯用語(yǔ),體會(huì )邏輯用語(yǔ)在表述和論證中的作用,利用這些邏輯用語(yǔ)準確地表達數學(xué)內容,從而更好地進(jìn)行交流。
在必修階段學(xué)**平面解析幾何初步的基礎上,在本模塊中,學(xué)生將學(xué)**圓錐曲線(xiàn)與方程,了解圓錐曲線(xiàn)與二次方程的關(guān)系,掌握圓錐曲線(xiàn)的基本幾何性質(zhì),感受圓錐曲線(xiàn)在刻畫(huà)現實(shí)世界和解決實(shí)際問(wèn)題中的作用。結合已學(xué)過(guò)的曲線(xiàn)及其方程的實(shí)例,了解曲線(xiàn)與方程的對應關(guān)系,進(jìn)一步體會(huì )數形結合的思想。
在本模塊中,學(xué)生將在學(xué)**平面向量的基礎上,把平面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線(xiàn)、平面位置關(guān)系的問(wèn)題,體會(huì )向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀(guān)能力。
高中數學(xué)知識點(diǎn)總結8
數學(xué)選修2-2導數及其應用知識點(diǎn)必記
1.函數的平均變化率是什么?答:平均變化率為
f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負,可零。
注2:函數的平均變化率可以看作是物體運動(dòng)的平均速度。
2、導函數的概念是什么?
答:函數yf(x)在xx0處的瞬時(shí)變化率是limf(x0x)f(x0)y,則稱(chēng)limx0xx0x函數yf(x)在點(diǎn)x0處可導,并把這個(gè)極限叫做yf(x)在x0處的導數,記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x
3.平均變化率和導數的幾何意義是什么?
答:函數的平均變化率的幾何意義是割線(xiàn)的斜率;函數的導數的幾何意義是切線(xiàn)的斜率。
4導數的背景是什么?
答:(1)切線(xiàn)的斜率;(2)瞬時(shí)速度;(3)邊際成本。
5、常見(jiàn)的函數導數和積分公式有哪些?函數導函數不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx
6、常見(jiàn)的導數和定積分運算公式有哪些?答:若fx,gx均可導(可積),則有:和差的導數運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導數運算特別地:Cfx"Cf"x商的導數運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復合函數的導數yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區間可加性bakf(x)dxkf(x)dx(k為常數)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb
7.用導數求函數單調區間的步驟是什么?答:①求函數f(x)的導數f"(x)
、诹頵"(x)>0,解不等式,得x的范圍就是遞增區間.③令f"(x)
8.利用導數求函數的最值的'步驟是什么?
答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;
、茖(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。
注:實(shí)際問(wèn)題的開(kāi)區間唯一極值點(diǎn)就是所求的最值點(diǎn);
9.求曲邊梯形的思想和步驟是什么?
答:分割近似代替求和取極限(“以直代曲”的思想)
10.定積分的性質(zhì)有哪些?
根據定積分的定義,不難得出定積分的如下性質(zhì):
11.
ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0
、偻茝V:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)
aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx
aac1ckbc1c2b11定積分的取值情況有哪幾種?
答:定積分的值可能取正值,也可能取負值,還可能是0.
(l)當對應的曲邊梯形位于x軸上方時(shí),定積分的值取正值,且等于x軸上方的圖形面積;
。2)當對應的曲邊梯形位于x軸下方時(shí),定積分的值取負值,且等于x軸上方圖形面積的相反數;
。3)當位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時(shí),定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.
12.物理中常用的微積分知識有哪些?答:(1)位移的導數為速度,速度的導數為加速度。(2)力的積分為功。
數學(xué)選修2-2推理與證明知識點(diǎn)必記
13.歸納推理的定義是什么?答:從個(gè)別事實(shí)中推演出一般性的結論,像這樣的推理通常稱(chēng)為歸納推理。歸納推理是由部分到整體,由個(gè)別到一般的推理。
14.歸納推理的思維過(guò)程是什么?答:大致如圖:
實(shí)驗、觀(guān)察概括、推廣猜測一般性結論
15.歸納推理的特點(diǎn)有哪些?
答:①歸納推理的前提是幾個(gè)已知的特殊現象,歸納所得的結論是尚屬未知的一般現象。
、谟蓺w納推理得到的結論具有猜測的性質(zhì),結論是否真實(shí),還需經(jīng)過(guò)邏輯證明和實(shí)驗檢驗,因此,它不能作為數學(xué)證明的工具。③歸納推理是一種具有創(chuàng )造性的推理,通過(guò)歸納推理的猜想,可以作為進(jìn)一步研究的起點(diǎn),幫助人們發(fā)現問(wèn)題和提出問(wèn)題。
16.類(lèi)比推理的定義是什么?
答:根據兩個(gè)(或兩類(lèi))對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱(chēng)為類(lèi)比推理。類(lèi)比推理是由特殊到特殊的推理。
17.類(lèi)比推理的思維過(guò)程是什么?答:
觀(guān)察、比較聯(lián)想、類(lèi)推推測新的結論
18.演繹推理的定義是什么?
答:演繹推理是根據已有的事實(shí)和正確的結論(包括定義、公理、定理等)按照嚴格的邏輯法則得到新結論的推理過(guò)程。演繹推理是由一般到特殊的推理。
19.演繹推理的主要形式是什么?答:三段論
20.“三段論”可以表示為什么?
答:①大前題:M是P②小前提:S是M③結論:S是P。
其中①是大前提,它提供了一個(gè)一般性的原理;②是小前提,它指出了一個(gè)特殊對象;③是結論,它是根據一般性原理,對特殊情況做出的判斷。
21.什么是直接證明?它包括哪幾種證明方法?
答:直接證明是從命題的條件或結論出發(fā),根據已知的定義、公理、定理,直接推證結論的真實(shí)性。直接證明包括綜合法和分析法。
22.什么是綜合法?
答:綜合法就是“由因導果”,從已知條件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結論。
23.什么是分析法?答:分析法就是從所要證明的結論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱(chēng)為“由果索因”。
要注意敘述的形式:要證A,只要證B,B應是A成立的充分條件.分析法和綜合法常結合使用,不要將它們割裂開(kāi)。
24什么是間接證明?
答:即反證法:是指從否定的結論出發(fā),經(jīng)過(guò)邏輯推理,導出矛盾,證實(shí)結論的否定是錯誤的,從而肯定原結論是正確的證明方法。
25.反證法的一般步驟是什么?
答:(1)假設命題結論不成立,即假設結論的反面成立;
。2)從假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
。3)從矛盾判定假設不正確,即所求證命題正確。
26常見(jiàn)的“結論詞”與“反義詞”有哪些?原結論詞反義詞原結論詞至少有一個(gè)至多有一個(gè)至少有n個(gè)至多有n個(gè)一個(gè)也沒(méi)有至少有兩個(gè)至多有n-1個(gè)至少有n+1個(gè)對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立
27.反證法的思維方法是什么?答:正難則反....
28.如何歸繆矛盾?
答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;
。3)自相矛盾.
29.數學(xué)歸納法(只能證明與正整數有關(guān)的數學(xué)命題)的步驟是什么?nnN答:(1)證明:當n取第一個(gè)值時(shí)命題成立;00
(2)假設當n=k(k∈N*,且k≥n0)時(shí)命題成立,證明當n=k+1時(shí)命題也成立由(1),(2)可知,命題對于從n0開(kāi)始的所有正整數n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。
數學(xué)選修2-2數系的擴充和復數的概念知識點(diǎn)必記
30.復數的概念是什么?答:形如a+bi的數叫做復數,其中i叫虛數單位,a叫實(shí)部,b叫虛部,數集
Cabi|a,bR叫做復數集。
規定:abicdia=c且,強調:兩復數不能比較大小,只有相等或不相b=d等。實(shí)數(b0)
31.數集的關(guān)系有哪些?答:復數Z一般虛數(a0)
虛數(b0)純虛數(a0)
32.復數的幾何意義是什么?答:復數與平面內的點(diǎn)或有序實(shí)數對一一對應。
33.什么是復平面?
答:根據復數相等的定義,任何一個(gè)復數zabi,都可以由一個(gè)有序實(shí)數對
(a,b)唯一確定。由于有序實(shí)數對(a,b)與平面直角坐標系中的點(diǎn)一一對應,因此
復數集與平面直角坐標系中的點(diǎn)集之間可以建立一一對應。這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。實(shí)軸上的點(diǎn)都表示實(shí)數,除了原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數。
34.如何求復數的模(絕對值)?答:與復數z對應的向量OZ的模r叫做復數zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2
35.復數的加、減法運算及幾何意義是什么?
答:①復數的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。
注:復數的加、減法運算也可以按向量的加、減法來(lái)進(jìn)行。
、趶蛿档某朔ǚ▌t:(abi)(cdi)acbdadbci。
、蹚蛿档某ǚ▌t:
abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實(shí)數化因子
36.什么是共軛復數?
答:兩復數abi與abi互為共軛復數,當b0時(shí),它們叫做共軛虛數。
高中數學(xué)知識點(diǎn)總結9
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1、建立適當的`坐標系,設出動(dòng)點(diǎn)M的坐標;
2、寫(xiě)出點(diǎn)M的集合;
3、列出方程=0;
4、化簡(jiǎn)方程為最簡(jiǎn)形式;
5、檢驗。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數法:當動(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。
5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
、俳ㄏ怠⑦m當的坐標系;
、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);
、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高中數學(xué)知識點(diǎn)總結10
1.萬(wàn)能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)
2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a
3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)
5.空間向量:同上推論(提示:向量a={x,y,z})
6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方
高中數學(xué)知識點(diǎn)總結11
1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等?4同角或等角的余角相等
5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內錯角相等,兩直線(xiàn)平行11同旁?xún)冉腔パa,兩直線(xiàn)平行12兩直線(xiàn)平行,同位角相等13兩直線(xiàn)平行,內錯角相等14兩直線(xiàn)平行,同旁?xún)冉腔パa
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°
50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形
78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??
84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108到兩條平行線(xiàn)距離相等的點(diǎn)的`軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r
122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)
、軆蓤A內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公*弦137定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142正三角形面積√3a/4a表示邊長(cháng)
143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(cháng)撲愎劍=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)(還有一些,大家幫補充吧)實(shí)用工具:常用數學(xué)公式公式分類(lèi)公式表達式
乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac拋物線(xiàn)標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側面積S=c*h斜棱柱側面積S=c"*h
正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l
弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=s*h圓柱體V=pi*r2h
高中數學(xué)知識點(diǎn)總結12
總結是指社會(huì )團體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績(jì),得到經(jīng)驗,找出差距,得出教訓和一些規律性認識的一種書(shū)面材料,寫(xiě)總結有利于我們學(xué)習和工作能力的提高,讓我們來(lái)為自己寫(xiě)一份總結吧。我們該怎么寫(xiě)總結呢?下面是小編收集整理的高中數學(xué)必修2知識點(diǎn)總結,歡迎大家分享。
高中數學(xué)必修2知識點(diǎn)總結1
一、直線(xiàn)與方程
。1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線(xiàn)的斜率
、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即ktan。斜率反映直線(xiàn)與軸的傾斜程度。
當0,90時(shí),k0;當90,180時(shí),k0;當90時(shí),k不存在。
yy1(x1x2)②過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:k2x2x1注意下面四點(diǎn):(1)當x1x2時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。(3)直線(xiàn)方程
、冱c(diǎn)斜式:yy1k(xx1)直線(xiàn)斜率k,且過(guò)點(diǎn)x1,y1
注意:當直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1。
當直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑簓kxb,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b③兩點(diǎn)式:④截矩式:
yy1y2y1xayxx1x2x1(x1x2,y1y2)直線(xiàn)兩點(diǎn)x1,y1,x2,y2
1b其中直線(xiàn)l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。
、菀话闶剑篈xByC0(A,B不全為0)
1各式的適用范圍○2特殊的方程如:注意:○
平行于x軸的直線(xiàn):yb(b為常數);平行于y軸的直線(xiàn):xa(a為常數);(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)(一)平行直線(xiàn)系
平行于已知直線(xiàn)A0xB0yC00(A0,B0是不全為0的常數)的直線(xiàn)系:
A0xB0yC0(C為常數)
。ǘ┻^(guò)定點(diǎn)的直線(xiàn)系
。ǎ┬甭蕿閗的直線(xiàn)系:yy0kxx0,直線(xiàn)過(guò)定點(diǎn)x0,y0;
。ǎ┻^(guò)兩條直線(xiàn)l1:A1xB1yC10,l2:A2xB2yC20的交點(diǎn)的直線(xiàn)系方程為,其中直線(xiàn)l2不在直線(xiàn)系中。A1xB1yC1A2xB2yC20(為參數)(6)兩直線(xiàn)平行與垂直
當l1:yk1xb1,l2:yk2xb2時(shí),l1//l2k1k2,b1b2;l1l2k1k21
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。(7)兩條直線(xiàn)的交點(diǎn)
l1:A1xB1yC10l2:A2xB2yC20相交交點(diǎn)坐標即方程組A1xB1yC10的一組解。
A2xB2yC20方程組無(wú)解l1//l2;方程組有無(wú)數解l1與l2重合(8)兩點(diǎn)間距離公式:設A(x1,y1),B是平面直角坐標系中的兩個(gè)點(diǎn),(x2,y2)則|AB|(x2x1)2(y2y1)2
。9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)Px0,y0到直線(xiàn)l1:AxByC0的距離d(10)兩平行直線(xiàn)距離公式
在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。
Ax0By0CAB22
二、圓的方程
1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的
半徑。
2、圓的方程
。1)標準方程xaybr2,圓心a,b,半徑為r;
22(2)一般方程x2y2DxEyF0當DE2224F0時(shí),方程表示圓,此時(shí)圓心為22D2,1E,半徑為r22D2E24F
當DE4F0時(shí),表示一個(gè)點(diǎn);當DE4F0時(shí),方程不表示任何圖
形。
。3)求圓方程的方法:一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線(xiàn)與圓的位置關(guān)系:
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
。1)設直線(xiàn)l:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為
dAaBbCAB222,則有drl與C相離;drl與C相切;drl與C相交
22(2)設直線(xiàn)l:AxByC0,圓C:xaybr2,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為,則有
0l與C相離;0l與C相切;0l與C相交
2注:如果圓心的位置在原點(diǎn),可使用公式xx0yy0r去解直線(xiàn)與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標,r表示半徑。
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:
22
、賵Ax2+y2=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為xx0yy0r(課本命題).
2222
、趫A(x-a)+(y-b)=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r(課本命題的推廣).
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設圓C1:xa12yb12r2,C2:xa22yb22R2兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當dRr時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;
當dRr時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;當RrdRr時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);當dRr時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);當dRr時(shí),兩圓內含;當d0時(shí),為同心圓。
三、立體幾何初步
1、柱、錐、臺、球的結構特征
。1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共
邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱ABCDEA"B"C"D"E"或用對角線(xiàn)的端點(diǎn)字母,如五棱柱
"AD
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且
相等;平行于底面的截面是與底面全等的多邊形。
。2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐PABCDE
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到
截面距離與高的比的平方。
。3)棱臺:定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
"""""表示:用各頂點(diǎn)字母,如五棱臺PABCDE
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖
是一個(gè)矩形。
。5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何
體
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。(6)圓臺:定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
4、柱體、錐體、臺體的表面積與體積
。1)幾何體的表面積為幾何體各個(gè)面的面積的和。
。2)特殊幾何體表面積公式(c為底面周長(cháng),h為高,h為斜高,l為母線(xiàn))
"
S直棱柱側面積S正棱臺側面積12chS圓柱側2rhS正棱錐側面積(c1c2)h"S圓臺側面積(rR)l
12ch"S圓錐側面積rl
S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2
。3)柱體、錐體、臺體的體積公式V柱ShV圓柱ShV臺13(S""21rhV錐ShV圓錐1r2h
33SSS)hV圓臺13(S"SSS)h"13(rrRR)h
22
。4)球體的表面積和體積公式:V球4、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系
=
43R3;S
球面=4R2
。1)平面
、倨矫娴母拍睿篈.描述性說(shuō)明;B.平面是無(wú)限伸展的;
、谄矫娴谋硎荆和ǔS孟ED字母α、β、γ表示,如平面α(通常寫(xiě)在一個(gè)銳角內);
也可以用兩個(gè)相對頂點(diǎn)的字母來(lái)表示,如平面BC。
、埸c(diǎn)與平面的關(guān)系:點(diǎn)A在平面內,記作A;點(diǎn)A不在平面內,記作A點(diǎn)與直線(xiàn)的關(guān)系:點(diǎn)A的直線(xiàn)l上,記作:A∈l;點(diǎn)A在直線(xiàn)l外,記作Al;
直線(xiàn)與平面的關(guān)系:直線(xiàn)l在平面α內,記作lα;直線(xiàn)l不在平面α內,記作lα。(2)公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內。
。粗本(xiàn)在平面內,或者平面經(jīng)過(guò)直線(xiàn))
應用:檢驗桌面是否平;判斷直線(xiàn)是否在平面內
用符號語(yǔ)言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面。
公理2及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)
符號:平面α和β相交,交線(xiàn)是a,記作α∩β=a。
符號語(yǔ)言:PABABl,Pl公理3的作用:
、偎桥卸▋蓚(gè)平面相交的方法。
、谒f(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據。(5)公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行(6)空間直線(xiàn)與直線(xiàn)之間的.位置關(guān)系
、佼惷嬷本(xiàn)定義:不同在任何一個(gè)平面內的兩條直線(xiàn)②異面直線(xiàn)性質(zhì):既不平行,又不相交。
、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn)與平面內不過(guò)該店的直線(xiàn)是異面直線(xiàn)④異面直線(xiàn)所成角:直線(xiàn)a、b是異面直線(xiàn),經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線(xiàn)a’∥a,b’∥b,則把直線(xiàn)a’和b’所成的銳角(或直角)叫做異面直線(xiàn)a和b所成的角。兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直。說(shuō)明:(1)判定空間直線(xiàn)是異面直線(xiàn)方法:①根據異面直線(xiàn)的定義;②異面直線(xiàn)的判定定理(2)在異面直線(xiàn)所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線(xiàn)所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角
。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線(xiàn)與平面之間的位置關(guān)系
直線(xiàn)在平面內有無(wú)數個(gè)公共點(diǎn).
三種位置關(guān)系的符號表示:aαa∩α=Aa∥α
。9)平面與平面之間的位置關(guān)系:平行沒(méi)有公共點(diǎn);α∥β
相交有一條公共直線(xiàn)。α∩β=b
5、空間中的平行問(wèn)題
。1)直線(xiàn)與平面平行的判定及其性質(zhì)
線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。
線(xiàn)線(xiàn)平行線(xiàn)面平行
線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,
那么這條直線(xiàn)和交線(xiàn)平行。線(xiàn)面平行線(xiàn)線(xiàn)平行
。2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理
。1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行
。ň(xiàn)面平行→面面平行),
。2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行。(線(xiàn)線(xiàn)平行→面面平行),
。3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理
。1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行。(面面平行→線(xiàn)面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行。(面面平行→線(xiàn)線(xiàn)平行)7、空間中的垂直問(wèn)題
。1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義①兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。②線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線(xiàn)面垂直判定定理和性質(zhì)定理判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。
9、空間角問(wèn)題
。1)直線(xiàn)與直線(xiàn)所成的角
、賰善叫兄本(xiàn)所成的角:規定為0。
、趦蓷l相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角。③兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn)a,b,形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角。
。2)直線(xiàn)和平面所成的角
、倨矫娴钠叫芯(xiàn)與平面所成的角:規定為0。②平面的垂線(xiàn)與平面所成的角:規定為90。③平面的斜線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角。
求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),在解題時(shí),注意挖掘題設中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn)。(3)二面角和二面角的平面角①二面角的定義:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射.....線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角7、空間直角坐標系
。1)定義:如圖,OBCDD,A,B,C,是單位正方體.以A為原點(diǎn),分別以OD,OA,,OB的方向為正方向,建立三條數軸x軸.y軸.z軸。這時(shí)建立了一個(gè)空間直角坐標系Oxyz.
1)O叫做坐標原點(diǎn)2)x軸,y軸,z軸叫做坐標軸.3)過(guò)每?jì)蓚(gè)坐標軸的平面叫做坐標面。
。2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
。3)任意點(diǎn)坐標表示:空間一點(diǎn)M的坐標可以用有序實(shí)數組(x,y,z)來(lái)表示,有序實(shí)數組(x,y,z)叫做點(diǎn)M在此空間直角坐標系中的坐標,記作M(x,y,z)(x叫做點(diǎn)M的橫坐標,y叫做點(diǎn)M的縱坐標,z叫做點(diǎn)M的豎坐標)
。4)空間兩點(diǎn)距離坐標公式:d(x2x1)2(y2y1)2(z2z1)2
高中數學(xué)必修2知識點(diǎn)總結2
一、直線(xiàn)與方程
。1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
。2)直線(xiàn)的斜率
、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即ktan。斜率反映直線(xiàn)與軸的傾斜程度。當0,90時(shí),k0;當90y2y1x2x1,180時(shí),k0;當90時(shí),k不存在。
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:k(x1x2)
注意下面四點(diǎn):
(1)當x1x2時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。
。3)直線(xiàn)方程
、冱c(diǎn)斜式:yy1k(xx1)直線(xiàn)斜率k,且過(guò)點(diǎn)x1,y1注意:當直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1。
當直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑簓kxb,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b③兩點(diǎn)式:
yy1y2y1xyxx1x2x1(x1x2,y1y2)直線(xiàn)兩點(diǎn)x1,y1,x2,y2
、芙鼐厥剑
ab其中直線(xiàn)l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。
1
、菀话闶剑
AxByC0(A,B不全為0)
注意:○1各式的適用范圍○2特殊的方程如:
平行于x軸的直線(xiàn):yb(b為常數);平行于y軸的直線(xiàn):(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)(一)平行直線(xiàn)系(二)過(guò)定點(diǎn)的直線(xiàn)系
。ǎ┬甭蕿閗的直線(xiàn)系:yy0kxx0,直線(xiàn)過(guò)定點(diǎn)x0,y0;()過(guò)兩條直線(xiàn)l1:A1xB1yC10,l2xa(a為常數);
平行于已知直線(xiàn)A0xB0yC00(A0,B0是不全為0的常數)的直線(xiàn)系:A0xB0yC0(C為常數)
:A2xB2yC20的交點(diǎn)的直線(xiàn)系方程為
A1xB1yC1A2xB2yC20((6)兩直線(xiàn)平行與垂直
當l1:yk1xb1,l2:yk2xb2時(shí),
為參數),其中直線(xiàn)l2不在直線(xiàn)系中。
l1//l2k1k2,b1b2;l1l2k1k21
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。
。7)兩條直線(xiàn)的交點(diǎn)
l1:A1xB1yC10l2:A2xB2yC20相交
AxB1yC10交點(diǎn)坐標即方程組1的一組解。
AxByC0222方程組無(wú)解l1//l2;方程組有無(wú)數解l1與l2重合
。8)兩點(diǎn)間距離公式:設A(x1,y1),B是平面直角坐標系中的兩個(gè)點(diǎn),(x2,y2)則|AB|(x2x1)(y2y1)
。9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)Px0,y0到直線(xiàn)l1:AxByC0的距離dAx0By0C
AB22(10)兩平行直線(xiàn)距離公式
在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。
二、圓的方程
1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。2、圓的方程
。1)標準方程xayb22r,圓心a,b,半徑為r;
2(2)一般方程x當D22yDxEyF0
D222E24F0時(shí),方程表示圓,此時(shí)圓心為2,1E,半徑為r22D2E24F
當DE4F0時(shí),表示一個(gè)點(diǎn);當DE4F0時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線(xiàn)與圓的位置關(guān)系:
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
22(1)設直線(xiàn)l:AxByC0,圓C:xaybr2,圓心Ca,b到l的距離為dAaBbC,則有
2222ABdrl與C相離;drl與C相切;drl與C相交
。2)設直線(xiàn)l:AxByC0,圓C:xaybr,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令
222其中的判別式為,則有
0l與C相離;0l與C相切;0l與C相交
注:如果圓心的位置在原點(diǎn),可使用公式xx0yy0r去解直線(xiàn)與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標,r表示
2半徑。
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:
、賵Ax2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為xx0yy0r(課本命題).
、趫A(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設圓C1:xa1yb1r2,C2:xa22222yb222R
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當dRr時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;
當dRr時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;當RrdRr時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);當dRr時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);當dRr時(shí),兩圓內含;當d三、立體幾何初步
0時(shí),為同心圓。
"(2)特殊幾何體表面積公式(c為底面周長(cháng),h為高,h為斜高,l為母線(xiàn))
S直棱柱側面積S正棱臺側面積12chS圓柱側2rhS正棱錐側面積12ch"S圓錐側面積rl
(c1c2)h"S圓臺側面積(rR)l
S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2
。3)柱體、錐體、臺體的體積公式
V柱ShV圓柱Sh211rhV錐ShV圓錐r2h
V臺13(S"SSS)hV圓臺"133(S"SSS)h2
"13(rrRR)h
22(4)球體的表面積和體積公式:V球=4R3;S球面=4R4、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系(1)平面
、倨矫娴母拍睿篈.描述性說(shuō)明;B.平面是無(wú)限伸展的;
、谄矫娴谋硎荆和ǔS孟ED字母α、β、γ表示,如平面α(通常寫(xiě)在一個(gè)銳角內);
也可以用兩個(gè)相對頂點(diǎn)的字母來(lái)表示,如平面BC。
、埸c(diǎn)與平面的關(guān)系:點(diǎn)A在平面內,記作A;點(diǎn)A不在平面內,記作A
點(diǎn)與直線(xiàn)的關(guān)系:點(diǎn)A的直線(xiàn)l上,記作:A∈l;點(diǎn)A在直線(xiàn)l外,記作Al;直線(xiàn)與平面的關(guān)系:直線(xiàn)l在平面α內,記作lα;直線(xiàn)l不在平面α內,記作lα。
。2)公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內。(即直線(xiàn)在平面內,或者平面經(jīng)過(guò)直線(xiàn))應用:檢驗桌面是否平;判斷直線(xiàn)是否在平面內用符號語(yǔ)言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面。公理2及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據
。4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)符號:平面α和β相交,交線(xiàn)是a,記作α∩β=a。符號語(yǔ)言:PABABl,Pl
公理3的作用:①它是判定兩個(gè)平面相交的方法。②它說(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據。(5)公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行(6)空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系
、佼惷嬷本(xiàn)定義:不同在任何一個(gè)平面內的兩條直線(xiàn)②異面直線(xiàn)性質(zhì):既不平行,又不相交。
、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn)與平面內不過(guò)該店的直線(xiàn)是異面直線(xiàn)
、墚惷嬷本(xiàn)所成角:直線(xiàn)a、b是異面直線(xiàn),經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線(xiàn)a’∥a,b’∥b,則把直線(xiàn)a’和b’所成的銳角(或直角)叫做異面直線(xiàn)a和b所成的角。兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直。說(shuō)明:(1)判定空間直線(xiàn)是異面直線(xiàn)方法:①根據異面直線(xiàn)的定義;②異面直線(xiàn)的判定定理(2)在異面直線(xiàn)所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線(xiàn)所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作
出的角即為所求角C、利用三角形來(lái)求角
。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線(xiàn)與平面之間的位置關(guān)系
直線(xiàn)在平面內有無(wú)數個(gè)公共點(diǎn).
三種位置關(guān)系的符號表示:aαa∩α=Aa∥α
。9)平面與平面之間的位置關(guān)系:平行沒(méi)有公共點(diǎn);α∥β
相交有一條公共直線(xiàn)。α∩β=b
5、空間中的平行問(wèn)題
。1)直線(xiàn)與平面平行的判定及其性質(zhì)
線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。線(xiàn)線(xiàn)平行線(xiàn)面平行
線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。線(xiàn)面平行線(xiàn)線(xiàn)平行
。2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理
。1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線(xiàn)面平行→面面平行),(2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行。(線(xiàn)線(xiàn)平行→面面平行),(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
。1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行。(面面平行→線(xiàn)面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行。(面面平行→線(xiàn)線(xiàn)平行)7、空間中的垂直問(wèn)題
。1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義
、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。②線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線(xiàn)面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。9、空間角問(wèn)題
。1)直線(xiàn)與直線(xiàn)所成的角
、賰善叫兄本(xiàn)所成的角:規定為0。
、趦蓷l相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角。③兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn)a,條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角。(2)直線(xiàn)和平面所成的角
、倨矫娴钠叫芯(xiàn)與平面所成的角:規定為0。②平面的垂線(xiàn)與平面所成的角:規定為90。
、燮矫娴男本(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角。求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計算”。在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),
在解題時(shí),注意挖掘題設中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn)。(3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角.....的平面角。
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角
垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角7、空間直角坐標系
。1)定義:如圖,OBCDDABC是單位正方體.以A為原點(diǎn),
分別以OD,OA,OB的方向為正方向,建立三條數軸x軸.y軸.z軸。
這時(shí)建立了一個(gè)空間直角坐標系Oxyz.
1)O叫做坐標原點(diǎn)2)x軸,y軸,z軸叫做坐標軸.3)過(guò)每?jì)蓚(gè)坐標軸的平面叫做坐標面。
。2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
。3)任意點(diǎn)坐標表示:空間一點(diǎn)M的坐標可以用有序實(shí)數組(x,y,z)來(lái)表示,有序實(shí)數組(x,y,z)叫做點(diǎn)M在此空間直角坐標系中的坐標,記作M(x,y,z)(x叫做點(diǎn)M的橫坐標,y叫做點(diǎn)M的縱坐標,z叫做點(diǎn)M的豎坐標)(4)空間兩點(diǎn)距離坐標公式:d
222(x2x1)(y2y1)(z2z1)
高中數學(xué)知識點(diǎn)總結13
有界性
設函數f(x)在區間X上有定義,如果存在M>0,對于一切屬于區間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區間X上有界,否則稱(chēng)f(x)在區間上無(wú)界.
單調性
設函數f(x)的定義域為D,區間I包含于D.如果對于區間上任意兩點(diǎn)x1及x2,當x1f(x2),則稱(chēng)函數f(x)在區間I上是單調遞減的.單調遞增和單調遞減的函數統稱(chēng)為單調函數.
奇偶性
設為一個(gè)實(shí)變量實(shí)值函數,若有f(—x)=—f(x),則f(x)為奇函數.
幾何上,一個(gè)奇函數關(guān)于原點(diǎn)對稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉后不會(huì )改變.
奇函數的例子有x、sin(x)、sinh(x)和erf(x).
設f(x)為一實(shí)變量實(shí)值函數,若有f(x)=f(—x),則f(x)為偶函數.
幾何上,一個(gè)偶函數關(guān)于y軸對稱(chēng),亦即其圖在對y軸映射后不會(huì )改變.
偶函數的`例子有|x|、x2、cos(x)和cosh(x).
偶函數不可能是個(gè)雙射映射.
連續性
在數學(xué)中,連續是函數的一種屬性.直觀(guān)上來(lái)說(shuō),連續的函數就是當輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì )隨之足夠小的函數.如果輸入值的某種微小的變化會(huì )產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數被稱(chēng)為是不連續的函數(或者說(shuō)具有不連續性).
高中數學(xué)知識點(diǎn)總結14
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數量:只有大小,沒(méi)有方向的量.
(3)有向線(xiàn)段的三要素:起點(diǎn)、方向、長(cháng)度.
(4)零向量:長(cháng)度為0的'向量.
(5)單位向量:長(cháng)度等于1個(gè)單位的向量.
(6)平行向量(共線(xiàn)向量):方向相同或相反的非零向量.
※零向量與任一向量平行.
(7)相等向量:長(cháng)度相等且方向相同的向量.
2.向量加法運算:
、湃切畏▌t的特點(diǎn):首尾相連.
、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)
高中數學(xué)知識點(diǎn)總結15
簡(jiǎn)單隨機抽樣的定義:
一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。
簡(jiǎn)單隨機抽樣的特點(diǎn):
。1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為_(kāi)__;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為_(kāi)___。
。2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。
。3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的'客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎。
。4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣。
簡(jiǎn)單抽樣常用方法:
。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法。
。2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率。
高中數學(xué)知識點(diǎn)總結16
函數與導數。主要考查集合運算、函數的有關(guān)概念定義域、值域、解析式、函數的極限、連續、導數。
平面向量與三角函數、三角變換及其應用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎題或中檔題。
數列及其應用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統計。這部分和我們的生活聯(lián)系比較大,屬應用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點(diǎn),運算量大,一般含參數。
高考對數學(xué)基礎知識的考查,既全面又突出重點(diǎn),扎實(shí)的數學(xué)基礎是成功解題的關(guān)鍵。
掌握分類(lèi)計數原理與分步計數原理,并能用它們分析和解決一些簡(jiǎn)單的應用問(wèn)題。
理解排列的意義,掌握排列數計算公式,并能用它解決一些簡(jiǎn)單的應用問(wèn)題。
理解組合的意義,掌握組合數計算公式和組合數的性質(zhì),并能用它們解決一些簡(jiǎn)單的應用問(wèn)題。
掌握二項式定理和二項展開(kāi)式的性質(zhì),并能用它們計算和證明一些簡(jiǎn)單的問(wèn)題。
了解隨機事件的`發(fā)生存在著(zhù)規律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會(huì )用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會(huì )用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會(huì )計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率。
高中數學(xué)知識點(diǎn)總結17
1、集合的含義與表示
集合的三大特性:確定性、互異性、無(wú)序性。集合的表示有列舉法、描述法。
描述法格式為:{元素|元素的特征},例如{x|x5,且xN}2、常用數集及其表示方法
。1)自然數集N(又稱(chēng)非負整數集):0、1、2、3、
。2)正整數集N
或N+:1、2、3、
。3)整數集Z:
。4)有理數集Q:包含分數、整數、有限小數等
。5)實(shí)數集R:全體實(shí)數的集合
。6)空集Ф:不含任何元素的集合
3、元素與集合的關(guān)系:屬于∈,不屬于
4、集合與集合的關(guān)系:子集、真子集、相等
5、重要結論
。1)傳遞性:若AB,BC,則AC
。2)Ф是任何集合的子集,是任意非空集合的真子集。
6、含有n個(gè)元素的集合,它的子集個(gè)數共有2n個(gè);真子集有2n1個(gè);非空子集有2n1個(gè)(即不計空集);非空的真子集有2n2個(gè)。
7、集合的運算:交集、并集、補集.
。1)A∩B={x|x∈A,且x∈B}.
。2)A∪B={x|x∈A,或x∈B}.
。3)CUAx|xU,且xA注:討論集合的情況時(shí),不要發(fā)遺忘了A的情況。
8、函數概念
9、分段函數:在定義域的不同部分,有不同的對應法則的函數。如y2x1x0x23x010、求函數的定義域的原則:(解決任何函數問(wèn)題,必須要考慮其定義域)
、俜质降姆帜覆粸榱;如:y1x1,則x10
、谂即畏礁谋婚_(kāi)方數大于或等于零;如:y5x,則5x0
、蹖档牡讛荡笥冢扒也坏扔冢;如:yloga(x2),則a0且a1
、軐档恼鏀荡笥冢;如:yloga(x2),則x20
、葜笖禐椋暗牡撞荒転榱;如:y(m1)x,則m1011、函數的奇偶性(在整個(gè)定義域內考慮)
。1)奇函數滿(mǎn)足f(x)f(x),奇函數的圖象關(guān)于原點(diǎn)對稱(chēng);
。2)偶函數滿(mǎn)足f(x)f(x),偶函數的圖象關(guān)于y軸對稱(chēng);
注:
、倬哂衅媾夹缘暮瘮,其定義域關(guān)于原點(diǎn)對稱(chēng);
、谌羝婧瘮翟谠c(diǎn)有定義,則f(0)0
、鄹鶕媾夹钥蓪⒑瘮捣譃樗念(lèi):奇函數、偶函數、既是奇函數又是偶函數、非奇非偶函數。
12、函數的單調性(在定義域的某個(gè)區間內考慮)
當x1x2時(shí),都有f(x1)f(x2),則f(x)在該區間上是增函數,圖象從左到右上升;當x1x2時(shí),都有f(x1)f(x2),則f(x)在該區間上是減函數,圖象從左到右下降。
函數f(x)在某區間上是增函數或減函數,那么說(shuō)f(x)在該區間具有單調性,該區間叫做單調(增/減)區間
13、一元二次方程ax2bxc0(a0)
。1)求根公式:xbb24ac21,22a
。2)判別式:b4ac
。3)0時(shí)方程有兩個(gè)不等實(shí)根;0時(shí)方程有一個(gè)實(shí)根;0時(shí)方程無(wú)實(shí)根。
。4)根與系數的關(guān)系韋達定理:xxbc12a,x1x2a
14、二次函數:一般式yax2bxc(a0);兩根式ya(xx1)(xx2)(a0)
。1)頂點(diǎn)坐標為(b4acb2by2a,4a);
。2)對稱(chēng)軸方程為:x=2a;x0
。3)當a0時(shí),圖象是開(kāi)口向上的拋物線(xiàn),在x=b4acb22a處取得最小值4a
當a0時(shí),圖象是開(kāi)口向下的拋物線(xiàn),在x=b4acb22a處取得最大值4a
。4)二次函數圖象與x軸的交點(diǎn)個(gè)數和判別式的關(guān)系:
0時(shí),有兩個(gè)交點(diǎn);0時(shí),有一個(gè)交點(diǎn)(即頂點(diǎn));0時(shí),無(wú)交點(diǎn)。
15、函數的零點(diǎn)
使f(x)0的實(shí)數x20叫做函數的零點(diǎn)。例如x01是函數f(x)x1的一個(gè)零點(diǎn)。注:函數yfx有零點(diǎn)函數yfx的圖象與x軸有交點(diǎn)方程fx0有實(shí)根
16、函數零點(diǎn)的判定:
如果函數yfx在區間a,b上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)f(b)0。那么,函數yfx在區間a,b內有零點(diǎn),即存在ca,b,使得fc0。
17、分數指數冪(a0,m,nN,且n1)m3
。1)annam。如x3x2;
。2)amn1132mn。如1;
。3)(na)na;anamx3x
。4)當n為奇數時(shí),nana;當n為偶數時(shí),nan|a|a,a0a,a0.1
18、有理指數冪的運算性質(zhì)(a0,r,sQ)
。1)arasars;
。2)(ar)sars;
。3)(ab)rarbr
19、指數函數yax(a0且a1),其中x是自變量,a叫做底數,定義域是Ra10a1yy圖象1x10x
。1)定義域:R0性
。2)值域:(0,+∞)質(zhì)
。3)過(guò)定點(diǎn)(0,1),即x=0時(shí),y=1
。4)在R上是增函數(4)在R上是減函數20、若abN,則叫做以為底N的對數。記作:logaNb(a0,a1,N0)其中,a叫做對數的底數,N叫做對數的真數。
注:指數式與對數式的互化公式:logaNbabN(a0,a1,N0)
21、對數的性質(zhì)
。1)零和負數沒(méi)有對數,即logaN中N0;
。2)1的對數等于0,即loga10;底數的對數等于1,即logaa122、常用對數lgN:以10為底的對數叫做常用對數,記為:log10NlgN
自然對數lnN:以e(e=2。71828)為底的對數叫做自然對數,記為:logeNlnN23、對數恒等式:alogaNN
24、對數的運算性質(zhì)(a>0,a≠1,M>0,N>0)
。1)loga(MN)logMaMlogaN;
。2)logaNlogaMlogaN;
。3)lognaMnlogaM(nR)(注意公式的逆用)
25、對數的換底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。
ma推論
、倩騦og1nnablog;
、趌ogamblogab。
bam
26、對數函數ylogax(a0,且a1):其中,x是自變量,a叫做底數,定義域是(0,)
a10a1y圖像x01x01定義域:(0,∞)性質(zhì)值域:R過(guò)定點(diǎn)(1,0)增函數減函數取值范圍0
、廴绻麅蓚(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且僅有一條過(guò)該點(diǎn)的公共直線(xiàn)。
、芷叫杏谕恢本(xiàn)的兩條直線(xiàn)平行(平行的傳遞性)。
33、等角定理:
空間中如果兩個(gè)角的兩邊對應平行,那么這兩個(gè)角相等或互補(如圖)12334、兩條直線(xiàn)的位置關(guān)系:平行:(在同一平面內,沒(méi)有公共點(diǎn))共面直線(xiàn)(在同一平面內,有一個(gè)公共點(diǎn))異面直線(xiàn)
相交:(不同在任何一個(gè)平面內的兩條直線(xiàn),沒(méi)有公共點(diǎn))直線(xiàn)與平面的位置關(guān)系:
。1)直線(xiàn)在平面上;
。2)直線(xiàn)在平面外(包括直線(xiàn)與平面平行,直線(xiàn)與平面相交)
兩個(gè)平面的位置關(guān)系:
。1)兩個(gè)平面平行;
。2)兩個(gè)平面相交35、直線(xiàn)與平面平行:
定義一條直線(xiàn)與一個(gè)平面沒(méi)有公共點(diǎn),則這條直線(xiàn)與這個(gè)平面平行。判定平面外一條直線(xiàn)與此平面內的一直線(xiàn)平行,則該直線(xiàn)與此平面平行。
性質(zhì)一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。
36、平面與平面平行:
定義兩個(gè)平面沒(méi)有公共點(diǎn),則這兩平面平行。
判定若一個(gè)平面內有兩條相交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。
性質(zhì)
、偃绻麅蓚(gè)平面平行,則其中一個(gè)面內的任一直線(xiàn)與另一個(gè)平面平行。
、谌绻麅蓚(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們交線(xiàn)平行。
37、直線(xiàn)與平面垂直:
定義如果一條直線(xiàn)與一個(gè)平面內的任一直線(xiàn)都垂直,則這條直線(xiàn)與這個(gè)平面垂直。
判定一條直線(xiàn)與一個(gè)平面內的兩相交直線(xiàn)垂直,則這條直線(xiàn)與這個(gè)平面垂直。
性質(zhì)
、俅怪庇谕黄矫娴膬蓷l直線(xiàn)平行。
、趦善叫兄本(xiàn)中的一條與一個(gè)平面垂直,則另一條也與這個(gè)平面垂直。
38、平面與平面垂直:
定義兩個(gè)平行相交,如果它們所成的二面角是直二面角,則這兩個(gè)平面垂直。判定一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。
性質(zhì)兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。
39、三角形的五“心”
。1)O為ABC的外心(各邊垂直平分線(xiàn)的交點(diǎn))。外心到三個(gè)頂點(diǎn)的距離相等
。2)O為ABC的重心(各邊中線(xiàn)的交點(diǎn))。重心將中線(xiàn)分成2:1的兩段
。3)O為ABC的垂心(各邊高的交點(diǎn))。
。4)O為ABC的內心(各內角平分線(xiàn)的交點(diǎn))。內心到三邊的距離相等
40、直線(xiàn)的斜率:
。1)過(guò)Ax1,y1,Bx2,y2y12兩點(diǎn)的直線(xiàn),斜率kyx,(x1x2)2x1
。2)已知傾斜角為的直線(xiàn),斜率ktan(900)
41、直線(xiàn)位置關(guān)系:已知兩直線(xiàn)l1:yk1xb1,l2:yk2xb2,則l1//l2k1k2且b1b2 l1l2k1k21
特殊情況:
。1)當k1,k2都不存在時(shí),l1//l2;
。2)當k1不存在而k20時(shí),l1l24
2、直線(xiàn)的五種方程:
、冱c(diǎn)斜式yy1k(xx1)(直線(xiàn)l過(guò)點(diǎn)(x1,y1),斜率為k).
、谛苯厥統kxb(直線(xiàn)l在y軸上的截距為b,斜率為k)。
、蹆牲c(diǎn)式yy1xx1yx(直線(xiàn)過(guò)兩點(diǎn)(x1,y1)與(x2,y2))。2y12x1
、芙鼐嗍絰ayb1(a,b分別是直線(xiàn)在x軸和y軸上的截距,均不為0)
、菀话闶紸xByC0(其中A、B不同時(shí)為0);可化為斜截式:yABxCB4
3、(1)平面上兩點(diǎn)A(x,y221,y1),B(x22)間的距離公式:|AB|=(x1x2)(y1y2)
。2)空間兩點(diǎn)A(x(x2221,y1,z1),B2,y2,z2)距離公式|AB|=(x1x2)(y1y2)(z1z2)
。3)點(diǎn)到直線(xiàn)的距離d|Ax0By0C|A2B2(點(diǎn)P(x0,y0),直線(xiàn)l:AxByC0)。
44、兩條平行直線(xiàn)AxByC10與AxByC20間的.距離公式:dC1C2A2B2
注:求直線(xiàn)AxByC0的平行線(xiàn),可設平行線(xiàn)為AxBym0,求出m即得。
45、求兩相交直線(xiàn)A1xB1yC10與A2xB2yC20的交點(diǎn):解方程組AxB1yC10A12xB2yC20
46、圓的方程:
、賵A的標準方程(xa)2(yb)2r2。其中圓心為(a,b),半徑為r
、趫A的一般方程x2y2DxEyF0。
其中圓心為(D2,ED2E24F222),半徑為r2,其中DE4F>0
47、直線(xiàn)AxByC0與圓的(xa)2(yb)2r2位置關(guān)系
。1)dr相離0;
。2)dr相切0;其中d是圓心到直線(xiàn)的距離,且dAaBbC(3)dr相交0。
A2B23
48、直線(xiàn)與圓相交于A(yíng)(x1,y1),B(x2,y2)兩點(diǎn),求弦AB長(cháng)度的公式:
。1)|AB|2r2d2
。2)|AB|1k2(x21x2)4x1x2(結合韋達定理使用),其中k是直線(xiàn)的斜率
49、兩個(gè)圓的位置關(guān)系:設兩圓的圓心分別為O1,O2,半徑分別為r1,r2,O1O2d
1)dr1r2外離4條公切線(xiàn);
2)dr1r2外切3條公切線(xiàn);
3)r1r2dr1r2相交2條公切線(xiàn);
4)dr1r2內切1條公切線(xiàn);
5)0dr1r2內含無(wú)公切線(xiàn)
必修③公式表
50、三種抽樣方法的區別與聯(lián)系類(lèi)別共同點(diǎn)各自特點(diǎn)相互聯(lián)系適用范圍簡(jiǎn)單隨機抽樣從總體中逐個(gè)抽取總體中個(gè)體數較少分層抽取過(guò)程將總體分成幾層各層抽樣可采用總體有差異明顯的幾部抽樣中每個(gè)個(gè)體進(jìn)行抽取簡(jiǎn)單隨機抽樣或分組成被抽取的概系統抽樣率相等將總體平均分成系統抽樣幾部分,按事先確在起始部分抽樣定的規則分別在各時(shí)采用簡(jiǎn)單隨機總體中的個(gè)體較多部分抽取抽樣
51、
。1)頻率分布直方圖(注意其縱坐標是“頻率/組距)
組數極差,頻率頻數,小矩形面積組距頻率頻率。組距樣本容量組距
。2)數字特征
眾數:一組數據中,出現次數最多的數。
中位數:一組數從小到大排列,最中間的那個(gè)數(若最中間有兩個(gè)數,則取其平均數)。平均數:x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]
標準差:s1nxx2x2212xxnx
注:通過(guò)標準差或方差可以判斷一組數據的分散程度;其值越小,數據越集中;其值越大,數據越分散。ninxyxiy回歸直線(xiàn)方程:ybxa,其中bi1n,aybx,
x2inx2i1
注:回歸直線(xiàn)一定過(guò)樣本點(diǎn)中心(x,y)
52、事件的分類(lèi):
基本事件:一個(gè)事件如果不能再被分解為兩個(gè)或兩個(gè)以上事件,稱(chēng)作基本事件。
。1)必然事件:必然事件是每次試驗都一定出現的事件。P(必然事件)=1
。2)不可能事件:任何一次試驗都不可能出現的事件稱(chēng)為不可能事件。P(不可能事件)=0
。3)隨機事件:隨機試驗的每一種結果或隨機現象的每一種表現稱(chēng)作隨機事件,簡(jiǎn)稱(chēng)為事件
53、在n次重復實(shí)驗中,事件A發(fā)生的次數為m,則事件A發(fā)生的頻率為m/n,當n很大時(shí),m總是在某個(gè)常數值附近擺動(dòng),就把這個(gè)常數叫做事件A的概率。(概率范圍:0PA1)
54、互斥事件概念:在一次隨機事件中,不可能同時(shí)發(fā)生的兩個(gè)事件,叫做互斥事件(如圖1)。如果事件A、B是互斥事件,則P(A+B)=P(A)+P(B)
55、對立事件(如圖2):指兩個(gè)事件不可能同時(shí)發(fā)生,但必有一個(gè)發(fā)生。AB圖1對立事件性質(zhì):P(A)+P(A)=1,其中A表示事件A的對立事件。
56、古典概型是最簡(jiǎn)單的隨機試驗模型,古典概型有兩個(gè)特征:AB
。1)基本事件個(gè)數是有限的;
。2)各基本事件的出現是等可能的,即它們發(fā)生的概率相同.
57、設一試驗有n個(gè)等可能的基本事件,而事件A恰包含其中的m個(gè)基本事件,則事件A的概率P(A)公式為PAA包含的基本事件的個(gè)數基本事件的總數=mn
運用互斥事件的概率加法公式時(shí),首先要判斷它們是否互斥,再由隨機事件的概率公式分別求它們的概率,然后計算。在計算某些事件的概率較復雜時(shí),可轉而先示對立事件的概率。58、幾何概型的概率公式:PA構成事件A的區域長(cháng)度(面積或體積)試驗的全部結果構成的區域長(cháng)度(面積或體積)
必修④公式表
r59、終邊相同角構成的集合:|2k,kZ
l)l
60、弧度計算公式:r
61、扇形面積公式:S12lr12r2(為弧度)62、三角函數的定義:已知Px,y是的終邊上除原點(diǎn)外的任一點(diǎn)P(x,y)r則siny,cosx,tany,其中r2x2)yrrxy2x63、三角函數值的符號++++
++sincostan
4
64、特殊角的三角函數值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函數的關(guān)系:sin2cos21,tansincos
66、和角與差角公式:二倍角公式:
sin()sincoscossin;sin22sincos
cos()coscossinsin;cos2cos2sin212sin2
tan()tantan2cos211tantan。tan22tan1tan267、誘導公式記憶口訣:奇變偶不變,符號看象限;其中,奇偶是指2的個(gè)數
sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos
tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin
68、輔助角公式:asinbcos=a2b2sin()(輔助角所在象限與點(diǎn)(a,b)的象限相同,且
tanba)。主要在求周期、單調性、最值時(shí)運用。如y3sinxcosx2sin(x6)
69、半角公式(降冪公式):sin21cos1cos22,cos22270、三角函數yAsin(x)的性質(zhì)(A0,0)
。1)最小正周期T2;振幅為A;頻率f1T;相位:x;初相:;值域:[A,A];
對稱(chēng)軸:由x2k解得x;對稱(chēng)中心:由xk解得x組成的點(diǎn)(x,0)
。2)圖象平移:x左加右減、y上加下減。
例如:向左平移1個(gè)單位,解析式變?yōu)閥Asin[(x1)]向下平移3個(gè)單位,解析式變?yōu)閥Asin(x)3
。3)函數ytan(x)的最小正周期T。71、正弦定理:在一個(gè)三角形中,各邊與對應角正弦的比相等。
asinAbsinBcsinC2R(R是三角形外接圓半徑)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推論cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面積公式:S11ABC2absinC2acsinB12bcsinA。74、三角函數的圖象與性質(zhì)和性質(zhì)三角函數ysinxycosxytanxyyy11圖象xx—0x3—122—20—122—0222定義域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函數偶函數奇函數在[22k,22k]在[2k,2k]在(2k,22k)單調性上是增函數上是增函數上都是增函數kZ在[22k,322k]在[2k,2k]上是減函數上是減函數76、向量的三角形法則:79、向量的平行平行四邊形法則:
a+bbabab—aba+ba—177、平面向量的坐標運算:設向量a=(x1,y1),向量b=(x2,y2)
。1)加法a+b=(x1x2,y1y2)。(2)減法a—b=(x1x2,y1y2)。(3)數乘a=(x1,y1)(x1,y1)
。4)數量積ab=|a||b|cosθ=x1x2y1y2,其中是這兩個(gè)向量的夾角
。5)已知兩點(diǎn)A(x1,y1),B(x2,y2),則向量ABOBOA(x2x1,y2y1)。
78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a
79、兩向量的夾角公式cosabx1x2y1y2abx2y22y2
11x2280、向量的平行與垂直(b0)
a||bb=λax1y2x2y10。記法:a=(x1,y1),b=(x2,y2)
abab=0x1x2y1y20。記法:a=(x1,y1),b=(x2,y2)
必修⑤公式表
81、數列前n項和與通項公式的關(guān)系:
aS1,n1;n(數列{an}的前n項的和為sna1a2aSn)。nSn1,n2。82、等差、等比數列公式對比nN等差數列等比數列定義式aanan1danq(q0)n1通項公式及a1推廣公式anaa1n1mddana1qnnmnanamqnm中項公式若a,A,b成等差,則Aab若a,G,b成等比,則G22ab運算性質(zhì)若mnpq2r,則若mnpq2r,則anamapaq2aranamapaqa2r前n項和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一個(gè)性質(zhì)Sm,S2mSm,S3mS2m成等差數列Sm,S2mSm,S3mS2m成等比數列83、解不等式(1)、含有絕對值的不等式
當a>0時(shí),有xax2a2axa。[小于取中間]
xax2a2xa或xa。[大于取兩邊]
。2)、解一元二次不等式ax2bxc0,(a0)的步驟:
、偾笈袆e式b24ac000②求一元二次方程的解:兩相異實(shí)根一個(gè)實(shí)根沒(méi)有實(shí)根③畫(huà)二次函數yax2bxc的圖象
、芙Y合圖象寫(xiě)出解集
ax2bxc0解集xxxb2或xx1xx2aR
ax2bxc0解集xx1xx2
注:ax2bxc0(a0)解集為Rax2bxc0對xR恒成立0(3)分式不等式:先移項通分,化一邊為0,再將除變乘,化為整式不等式,求解。如解分式不等式
x1x1:先移項x1x10;通分(x1)xx0;再除變乘(2x1)x0,解出。
84、線(xiàn)性規劃:
直線(xiàn)AxByC0
。1)一條直線(xiàn)將平面分為三部分(如圖):
AxByC0(2)不等式AxByC0表示直線(xiàn)AxByC0
AxByC0
某一側的平面區域,驗證方法:取原點(diǎn)(0,0)代入不
等式,若不等式成立,則平面區域在原點(diǎn)所在的一側。假如直線(xiàn)恰好經(jīng)過(guò)原點(diǎn),則取其它點(diǎn)來(lái)驗證,例如取點(diǎn)(1,0)。
。3)線(xiàn)性規劃求最值問(wèn)題:一般情況可以求出平面區域各個(gè)頂點(diǎn)的坐標,代入目標函數z,最大的為最大值。
高中數學(xué)知識點(diǎn)總結18
一、直線(xiàn)與方程高考考試內容及考試要求:
考試內容:
1.直線(xiàn)的傾斜角和斜率;直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;直線(xiàn)方程的一般式;
2.兩條直線(xiàn)平行與垂直的條件;兩條直線(xiàn)的交角;點(diǎn)到直線(xiàn)的距離;
考試要求:
1.理解直線(xiàn)的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線(xiàn)的斜率公式,掌握直線(xiàn)方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據條件熟練地求出直線(xiàn)方程;
2.掌握兩條直線(xiàn)平行與垂直的條件,兩條直線(xiàn)所成的角和點(diǎn)到直線(xiàn)的距離公式能夠根據直線(xiàn)的方程判斷兩條直線(xiàn)的位置關(guān)系;
二、直線(xiàn)與方程
課標要求:
1.在平面直角坐標系中,結合具體圖形,探索確定直線(xiàn)位置的幾何要素;
2.理解直線(xiàn)的傾斜角和斜率的'概念,經(jīng)歷用代數方法刻畫(huà)直線(xiàn)斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線(xiàn)斜率的計算公式;
3.根據確定直線(xiàn)位置的幾何要素,探索并掌握直線(xiàn)方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì )斜截式與一次函數的關(guān)系;
4.會(huì )用代數的方法解決直線(xiàn)的有關(guān)問(wèn)題,包括求兩直線(xiàn)的交點(diǎn),判斷兩條直線(xiàn)的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線(xiàn)的距離以及兩條平行線(xiàn)之間的距離等。
要點(diǎn)精講:
1.直線(xiàn)的傾斜角:當直線(xiàn)l與x軸相交時(shí),取x軸作為基準,x軸正向與直線(xiàn)l向上方向之間所成的角α叫做直線(xiàn)l的傾斜角。特別地,當直線(xiàn)l與x軸平行或重合時(shí),規定α= 0°.
傾斜角α的取值范圍:0°≤α<180°. 當直線(xiàn)l與x軸垂直時(shí), α= 90°.
2.直線(xiàn)的斜率:一條直線(xiàn)的傾斜角α(α≠90°)的正切值叫做這條直線(xiàn)的斜率,斜率常用小寫(xiě)字母k表示,也就是k = tanα
。1)當直線(xiàn)l與x軸平行或重合時(shí),α=0°,k = tan0°=0;
。2)當直線(xiàn)l與x軸垂直時(shí),α= 90°,k 不存在。
由此可知,一條直線(xiàn)l的傾斜角α一定存在,但是斜率k不一定存在。
3.過(guò)兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線(xiàn)的斜率公式:
。ㄈ魓1=x2,則直線(xiàn)p1p2的斜率不存在,此時(shí)直線(xiàn)的傾斜角為90°)。
4.兩條直線(xiàn)的平行與垂直的判定
。1)若l1,l2均存在斜率且不重合:
、;②
注: 上面的等價(jià)是在兩條直線(xiàn)不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結論并不成立。
。2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應注意討論字母=0與0的情況。
兩條直線(xiàn)的交點(diǎn):兩條直線(xiàn)的交點(diǎn)的個(gè)數取決于這兩條直線(xiàn)的方程組成的方程組的解的個(gè)數。
5.直線(xiàn)方程的五種形式
確定直線(xiàn)方程需要有兩個(gè)互相獨立的條件,確定直線(xiàn)方程的形式很多,但必須注意各種形式的直線(xiàn)方程的適用范圍。
直線(xiàn)的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線(xiàn);兩點(diǎn)式不能表示平行或重合兩坐標軸的直線(xiàn);截距式不能表示平行或重合兩坐標軸的直線(xiàn)及過(guò)原點(diǎn)的直線(xiàn)。
6.直線(xiàn)的交點(diǎn)坐標與距離公式
。1)兩直線(xiàn)的交點(diǎn)坐標
一般地,將兩條直線(xiàn)的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線(xiàn)相交,解即為交點(diǎn)的坐標;若方程組無(wú)解,則兩條直線(xiàn)無(wú)公共點(diǎn),此時(shí)兩條直線(xiàn)平行。
。2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
。3)點(diǎn)到直線(xiàn)的距離公式
點(diǎn)到直線(xiàn)的距離為:
。4)兩平行線(xiàn)間的距離公式:
若,則:
注意點(diǎn):x,y對應項系數應相等。
高中數學(xué)知識點(diǎn)總結19
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(cháng)稱(chēng)為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內切圓,其圓心稱(chēng)為內心。
5.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線(xiàn)。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長(cháng)/圓錐母線(xiàn)—l 周長(cháng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱(chēng)圖形,其對稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn)。圓也是中心對稱(chēng)圖形,其對稱(chēng)中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線(xiàn)上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內切圓的圓心是三角形各內角平分線(xiàn)的交點(diǎn),到三角形3邊距離相等。
9.直線(xiàn)AB與圓O的位置關(guān)系(設OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線(xiàn)垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。
11.圓與圓的位置關(guān)系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計算公式
1.圓的周長(cháng)C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長(cháng)l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側面積S=πrl
四、圓的方程
1.圓的標準方程
在平面直角坐標系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標準方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標準方程展開(kāi),移項,合并同類(lèi)項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線(xiàn)的位置關(guān)系判斷
平面內,直線(xiàn)Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線(xiàn)的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離
。2)如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規定x1
當x=-C/Ax2時(shí),直線(xiàn)與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時(shí),直線(xiàn)與圓相切
圓的定理:
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11.定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角
12.①直線(xiàn)L和⊙O相交 d
、谥本(xiàn)L和⊙O相切 d=r
、壑本(xiàn)L和⊙O相離 d>r
13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的'直線(xiàn)是圓的切線(xiàn)
14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
、軆蓤A內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
。1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
。2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)
27.正三角形面積√3a/4 a表示邊長(cháng)
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長(cháng)計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
高中數學(xué)知識點(diǎn)總結20
。1)不等關(guān)系
感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的'實(shí)際背景。
。2)一元二次不等式
、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。
、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。
、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。
。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題
、購膶(shí)際情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。
、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。
。4)基本不等式
、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。
、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。
【高中數學(xué)知識點(diǎn)總結】相關(guān)文章:
高中數學(xué)知識點(diǎn)總結09-29
高中數學(xué)知識點(diǎn)總結02-20