97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

初中數學(xué)知識點(diǎn)總結

時(shí)間:2023-06-09 11:32:07 知識點(diǎn)總結 我要投稿

初中數學(xué)知識點(diǎn)總結(20篇)

  總結是指社會(huì )團體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績(jì),得到經(jīng)驗,找出差距,得出教訓和一些規律性認識的一種書(shū)面材料,通過(guò)它可以正確認識以往學(xué)習和工作中的優(yōu)缺點(diǎn),我想我們需要寫(xiě)一份總結了吧。你想知道總結怎么寫(xiě)嗎?下面是小編為大家收集的初中數學(xué)知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數學(xué)知識點(diǎn)總結(20篇)

  初中數學(xué)知識點(diǎn)總結1

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數記憶順口溜

  1三角函數記憶口訣

  “奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的名稱(chēng)的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內任何一個(gè)角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱(chēng)?谠E中未提及的.都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對應的三角函數為正值。

  3三角函數順口溜

  三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數字一,連結頂點(diǎn)三角形。向下三角平方和,倒數關(guān)系是對角,

  頂點(diǎn)任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,

  變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數倍,奇數化余偶不變,

  將其后者視銳角,符號原來(lái)函數判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。

  計算證明角先行,注意結構函數名,保持基本量不變,繁難向著(zhù)簡(jiǎn)易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數反函數,實(shí)質(zhì)就是求角度,先求三角函數值,再判角取值范圍;

  利用直角三角形,形象直觀(guān)好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

  初中數學(xué)知識點(diǎn)總結2

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的線(xiàn)段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的作法:利用中垂線(xiàn)找圓心

  定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O命題的結論不成立;

 、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的.弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。

  實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。

  初中數學(xué)知識點(diǎn)總結3

  三角形的知識點(diǎn)

  1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類(lèi)

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。

  5、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。

  6、角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。

  7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法

  8、三角形的穩定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩定性。

  9、三角形內角和定理:三角形三個(gè)內角的和等于180°

  推論1直角三角形的兩個(gè)銳角互余

  推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角和

  推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;三角形的內角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(cháng)線(xiàn);

  (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;

  (3)三角形的一個(gè)外角大于與它不相鄰的任一內角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點(diǎn)、概念總結

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線(xiàn)互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線(xiàn)互相平分的四邊形是平行四邊形

  4、對稱(chēng)性:平行四邊形是中心對稱(chēng)圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對角線(xiàn)相等

  3、判定:

  (1)有一個(gè)角是直角的平行四邊形叫做矩形

  (2)有三個(gè)角是直角的四邊形是矩形

  (3)兩條對角線(xiàn)相等的平行四邊形是矩形

  4、對稱(chēng)性:矩形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角

  (3)菱形被兩條對角線(xiàn)分成四個(gè)全等的直角三角形

  (4)菱形的面積等于兩條對角線(xiàn)長(cháng)的積的一半

  2、s菱=爭6(n、6分別為對角線(xiàn)長(cháng))

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線(xiàn)互相垂直的平行四邊形是菱形

  4、對稱(chēng)性:菱形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個(gè)角都是直角,四條邊都相等

  (2)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  (3)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形

  (4)正方形的對角線(xiàn)與邊的夾角是45°

  (5)正方形的兩條對角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

  3、判定:

  (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

  4、對稱(chēng)性:正方形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線(xiàn)相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線(xiàn)相等的梯形是等腰梯形

  4、對稱(chēng)性:等腰梯形是軸對稱(chēng)圖形

  六、三角形的中位線(xiàn)平行于三角形的第三邊并等于第三邊的.一半;梯形的中位線(xiàn)平行于梯形的兩底并等于兩底和的一半。

  七、線(xiàn)段的重心是線(xiàn)段的中點(diǎn);平行四邊形的重心是兩對角線(xiàn)的交點(diǎn);三角形的重心是三條中線(xiàn)的交點(diǎn)。

  八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

  九、多邊形

  1、多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(cháng)線(xiàn)組成的角叫做多邊形的外角。

  4、多邊形的對角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn)。

  5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

  6、正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內角和公式:n邊形的內角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個(gè)內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  10、多邊形對角線(xiàn)的條數:

  (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線(xiàn),把多邊形分詞(n-2)個(gè)三角形

  (2)n邊形共有n(n-3)/2條對角線(xiàn)

  圓知識點(diǎn)、概念總結

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)

  21、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

  (2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  24、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)

  27、正三角形面積√3a/4a表示邊長(cháng)

  28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長(cháng)計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

  初中數學(xué)知識點(diǎn)總結4

  平面直角坐標系:

  在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:

 、僭谕黄矫

 、趦蓷l數軸

 、刍ハ啻怪

 、茉c(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的.掌握了吧,希望同學(xué)們都能考試成功。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成

  對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。

  平面直角坐標系的構成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  初中數學(xué)知識點(diǎn)總結5

  一、數與代數

  a、數與式:

  1、有理數:

 、僬麛怠麛/0/負整數

 、诜謹怠謹/負分數

  數軸:

 、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:

 、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。

 、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。

  有理數的運算:加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋(gè)數與0相加不變。

  減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  乘法:

 、賰蓴迪喑,同號得正,異號得負,絕對值相乘。

 、谌魏螖蹬c0相乘得0。

 、鄢朔e為1的兩個(gè)有理數互為倒數。

  除法:

 、俪砸粋(gè)數等于乘以一個(gè)數的倒數。

 、0不能作除數。

  乘方:求n個(gè)相同因數a的.積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實(shí)數 無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數

  平方根:

 、偃绻粋(gè)正數x的平方等于a,那么這個(gè)正數x就叫做a的算術(shù)平方根。

 、谌绻粋(gè)數x的平方等于a,那么這個(gè)數x就叫做a的平方根。

 、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。

 、芮笠粋(gè)數a的平方根運算,叫做開(kāi)平方,其中a叫做被開(kāi)方數。

  立方根:

 、偃绻粋(gè)數x的立方等于a,那么這個(gè)數x就叫做a的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。

 、矍笠粋(gè)數a的立方根的運算叫開(kāi)立方,其中a叫做被開(kāi)方數。

  實(shí)數:

 、賹(shí)數分有理數和無(wú)理數。

 、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

 、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數式

  代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。

  合并同類(lèi)項:

 、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。

 、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。

 、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:

 、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。

 、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。

 、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。

  整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。

  冪的運算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。

 、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬絘除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  初中數學(xué)知識點(diǎn):直線(xiàn)的位置與常數的關(guān)系

 、賙>0則直線(xiàn)的傾斜角為銳角

 、趉<0則直線(xiàn)的傾斜角為鈍角

 、蹐D像越陡,|k|越大

 、躡>0直線(xiàn)與y軸的交點(diǎn)在x軸的上方

 、輇<0直線(xiàn)與y軸的交點(diǎn)在x軸的下方

  初中數學(xué)知識點(diǎn)總結6

 、僦本(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。

 、谥本(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與⊙O相交,d

 、壑本(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的'切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線(xiàn)的距離)

  平面內,直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。

  如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。

  如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。

  2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規定x1

  當x=-C/Ax2時(shí),直線(xiàn)與圓相離;

  初中數學(xué)知識點(diǎn)總結7

  一、平移變換:

  1。概念:在平面內,將一個(gè)圖形沿著(zhù)某個(gè)方向移動(dòng)一定的距離,這樣的圖形運動(dòng)叫做平移。

  2。性質(zhì):(1)平移前后圖形全等;

 。2)對應點(diǎn)連線(xiàn)平行或在同一直線(xiàn)上且相等。

  3。平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離;

 。2)分析所作的圖形,找出構成圖形的關(guān)健點(diǎn);

 。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);

 。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標上相應的字母;

 。5)寫(xiě)出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉動(dòng)一個(gè)角度,這樣的圖形運動(dòng)叫做旋轉。

  說(shuō)明:

 。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

 。2)旋轉過(guò)程中旋轉中心始終保持不動(dòng)。

 。3)旋轉過(guò)程中旋轉的方向是相同的。

 。4)旋轉過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

  2。性質(zhì):

 。1)對應點(diǎn)到旋轉中心的`距離相等;

 。2)對應點(diǎn)與旋轉中心所連線(xiàn)段的夾角等于旋轉角;

 。3)旋轉前、后的圖形全等。

  3。旋轉作圖的步驟和方法:

 。1)確定旋轉中心及旋轉方向、旋轉角;

 。2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉中心連接起來(lái),然后按旋轉方向分別將它們旋轉一個(gè)旋轉角度數,得到這些關(guān)鍵點(diǎn)的對應點(diǎn);

 。4)按原圖形順次連接這些對應點(diǎn),所得到的圖形就是旋轉后的圖形。

  說(shuō)明:在旋轉作圖時(shí),一對對應點(diǎn)與旋轉中心的夾角即為旋轉角。

  常見(jiàn)考法

 。1)把平移旋轉結合起來(lái)證明三角形全等;

 。2)利用平移變換與旋轉變換的性質(zhì),設計一些題目。

  誤區提醒

 。1)弄反了坐標平移的上加下減,左減右加的規律;

 。2)平移與旋轉的性質(zhì)沒(méi)有掌握。

  初中數學(xué)知識點(diǎn)總結8

  相關(guān)的角:

  1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這兩個(gè)角叫做對頂角。

  2、互為補角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(cháng)線(xiàn)的'兩個(gè)角做互為鄰補角。

  注意:互余、互補是指兩個(gè)角的數量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補角相等。

  初中數學(xué)知識點(diǎn)總結9

  ∴當x1時(shí)函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2

  4],求實(shí)數a的取值(1)若函數f(x)的遞減區間是(,4]上是減函數,求實(shí)數a的取值范圍(2)若函數f(x)在區間(,分析:二次函數的單調區間是由其開(kāi)口方向及對稱(chēng)軸決定的,要分清函數在區間A上是單調函數及單調區間是A的區別與聯(lián)系

  解:(1)f(x)的對稱(chēng)軸是x可得函數圖像開(kāi)口向上

  2(a1)21a,且二次項系數為1>0

  1a]∴f(x)的單調減區間為(,∴依題設條件可得1a4,解得a3

  4]上是減函數(2)∵f(x)在區間(,4]是遞減區間(,1a]的子區間∴(,∴1a4,解得a3

  例5、函數f(x)x2bx2,滿(mǎn)足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的對稱(chēng)軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對稱(chēng)軸x3對稱(chēng)

  x1x223,可得x1x26

  第三章第32頁(yè)由二次項系數為1>0,可知拋物線(xiàn)開(kāi)口向上又134,132,431

  ∴依二次函數的對稱(chēng)性及單調性可f(4)f(1)f(1)(III)課后作業(yè)練習六

 。á簦┙虒W(xué)后記:

  第三章第33頁(yè)

  擴展閱讀:初中數學(xué)函數知識點(diǎn)歸納

  學(xué)大教育

  初中數學(xué)函數板塊的知識點(diǎn)總結與歸類(lèi)學(xué)習方法

  初中數學(xué)知識大綱中,函數知識占了很大的'知識體系比例,學(xué)好了函數,掌握了函數的基本性質(zhì)及其應用,真正精通了函數的每一個(gè)模塊知識,會(huì )做每一類(lèi)函數題型,就讀于中考中數學(xué)成功了一大半,數學(xué)成績(jì)自然上高峰,同時(shí),函數的思想是學(xué)好其他理科類(lèi)學(xué)科的基礎。初中數學(xué)從性質(zhì)上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類(lèi)函數的定義、基本性質(zhì)、函數圖象及函數應用思維方式方法。

  一、一次函數

  1.定義:在定義中應注意的問(wèn)題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(zhì)(1)形狀、直線(xiàn)

  初中數學(xué)知識點(diǎn)總結10

  1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48定理四邊形的內角和等于360°49四邊形的外角和等于360°

  50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形

  78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的'直線(xiàn),必平分另一腰80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)

  136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  (n2)180139正n邊形的每個(gè)內角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長(cháng)

  2142正三角形面積

  32aa表示邊長(cháng)4143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長(cháng)計算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

  公式分類(lèi)及公式表達式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac

  初中數學(xué)知識點(diǎn)總結11

  課題

  3.5正比例函數、反比例函數、一次函數和二次函數

  教學(xué)目標

  1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)2、會(huì )用待定系數法確定函數的解析式

  教學(xué)重點(diǎn)

  掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)

  教學(xué)難點(diǎn)

  掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結合法

  教學(xué)過(guò)程

 。↖)知識要點(diǎn)(見(jiàn)下表:)

  第三章第29頁(yè)函數名稱(chēng)解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線(xiàn)雙曲線(xiàn),x軸、y軸是它的漸近線(xiàn)與直線(xiàn)ykx平行且過(guò)點(diǎn)(0,b)的.直線(xiàn)拋物線(xiàn)定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數,在,-單調性k0時(shí),在,0,k0時(shí)為增函數0,上為減函數k0時(shí),為增函數b上為減函數2ak0時(shí)為減函數k0時(shí),在,0,k0時(shí),為減函數0,上為增函數ba0時(shí),在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時(shí)奇函數b=0時(shí)偶函數a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

  第三章第30頁(yè)b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱(chēng)軸x,頂點(diǎn)(,)

  2a2a4a2拋物線(xiàn)與x軸交點(diǎn)坐標(m,0),(n,0)(II)例題講解

  例1、求滿(mǎn)足下列條件的二次函數的解析式:(1)拋物線(xiàn)過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線(xiàn)的頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)

 。3)拋物線(xiàn)對稱(chēng)軸是x2,它在x軸上截出的線(xiàn)段AB長(cháng)為2且拋物線(xiàn)過(guò)點(diǎn)(1,7)。2,

  解:(1)設yax2bxc(a0),將A、B、C三點(diǎn)坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點(diǎn)坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線(xiàn)對稱(chēng)軸為x2;

  ∴拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)A、B應關(guān)于x2對稱(chēng);∴由題設條件可得兩個(gè)交點(diǎn)坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1

  ∴所求二次函數為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數的圖像過(guò)點(diǎn)(0,8),(1,(4,0)

 。1)求函數圖像的頂點(diǎn)坐標、對稱(chēng)軸、最值及單調區間(2)當x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值

  113x1(x)2,知函數的圖像開(kāi)口向上,對稱(chēng)軸為x

  224111]上是增函數!嘁李}設條件可得f(x)在[1,]上是減函數,在[,22131]時(shí),函數取得最小值,且ymin∴當x[1,24131又∵11

  初中數學(xué)知識點(diǎn)總結12

  初中數學(xué)基礎知識點(diǎn)

  平方根:①如果一個(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。②如果一個(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。③一個(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。④求一個(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。

  立方根:①如果一個(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。

  實(shí)數:①實(shí)數分有理數和無(wú)理數。②在實(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。

  初中數學(xué)平行四邊形的性質(zhì)知識點(diǎn)

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補,對角相等;

  (3)平行四邊形的對角線(xiàn)互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類(lèi):與四邊形的對邊有關(guān)

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類(lèi):與四邊形的對角有關(guān)

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類(lèi):與四邊形的`對角線(xiàn)有關(guān)

  (5)對角線(xiàn)互相平分的四邊形是平行四邊形

  初中數學(xué)函數知識點(diǎn)總結

  1.一次函數

  (1)定義:形如y=kx+b(k、b是常數,且k≠0)的函數,叫做一次函數。特別地,當b=0時(shí),y是x的正比例函數。即:y=kx(k為常數,k≠0)

  所以,正比例函數是特殊的一次函數。

  (2)一次函數的圖像及性質(zhì):

  1在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。

  2一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數的圖像總是過(guò)原點(diǎn)。

  4k,b與函數圖像所在象限的關(guān)系:

  當k>0時(shí),y隨x的增大而增大;當k<0時(shí),y隨x的增大而減小。

  當k>0,b>0時(shí),直線(xiàn)通過(guò)一、二、三象限;

  當k>0,b<0時(shí),直線(xiàn)通過(guò)一、三、四象限;

  當k<0,b>0時(shí),直線(xiàn)通過(guò)一、二、四象限;

  當k<0,b<0時(shí),直線(xiàn)通過(guò)二、三、四象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

  2.二次函數

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數,a≠0,),稱(chēng)y為x的二次函數。

  (2)二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0);

  頂點(diǎn)式:y=a(x-h)^2+k(拋物線(xiàn)的頂點(diǎn)P(h,k));

  交點(diǎn)式:

  (3)二次函數的圖像與性質(zhì)

  1二次函數的圖像是一條拋物線(xiàn)。

  2拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)。

  3二次項系數a決定拋物線(xiàn)的開(kāi)口方向。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;

  當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  4一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。

  5拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn);

  Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn);

  Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。

  3.反比例函數

  (1)定義:形如y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。

  (2)反比例函數圖像性質(zhì):

  1反比例函數的圖像為雙曲線(xiàn);

  當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數;

  當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數;

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  2由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  初中數學(xué)知識點(diǎn)總結13

  知識點(diǎn)總結

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

 。1)平行四邊形的對邊平行且相等;

 。2)平行四邊形的鄰角互補,對角相等;

 。3)平行四邊形的對角線(xiàn)互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類(lèi):與四邊形的對邊有關(guān)

 。1)兩組對邊分別平行的四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

 。3)一組對邊平行且相等的`四邊形是平行四邊形;

  第二類(lèi):與四邊形的對角有關(guān)

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類(lèi):與四邊形的對角線(xiàn)有關(guān)

 。5)對角線(xiàn)互相平分的四邊形是平行四邊形

  常見(jiàn)考法

 。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);

 。2)求平行四邊形某邊的取值范圍;

 。3)考查一些綜合計算問(wèn)題;

 。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;

 。5)利用判定定理證明四邊形是平行四邊形。

  誤區提醒

 。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;

 。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

  初中數學(xué)知識點(diǎn)總結14

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

  若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無(wú)解

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 、谶\用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

 、凼窒喑朔

  2、銳角三角函數定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的'銳角三角函數。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

  初中數學(xué)知識點(diǎn)總結15

  一、基本知識

 、、數與代數A、數與式:

  1、有理數

  有理數:

 、僬麛怠麛/0/負整數

 、诜謹怠謹/負分數

  數軸:

 、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方

  向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:

 、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的

  絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。

  有理數的運算:

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋(gè)數與0相加不變。

  減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖蹬c0相乘得0。

 、鄢朔e為1的兩個(gè)有理數互為倒數。除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。

 、0不能作除數。

  乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數;旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實(shí)數

  無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數

  平方根:

 、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。③一個(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。

 、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。

  立方根:

 、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。③求一個(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。

  實(shí)數:

 、賹(shí)數分有理數和無(wú)理數。

 、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。3、代數式

  代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。

  合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項。

 、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。

 、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。

 、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。③一個(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。冪的運算:AM+AN=A(M+N)

 。ˋM)N=AMN

 。ˋ/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作

  為積的因式。

 、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

  連同他的指數一起作為商的一個(gè)因式。

 、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱(chēng)為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。

  二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函數有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;

  III當△B,A+C>B+C在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個(gè)正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負數,不等號改向;例如:A>B,A*C系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。

 、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。

 、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。

 、婵臻g與圖形A、圖形的認識1、點(diǎn),線(xiàn),面

  點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構成的。

 、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。③點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。

  展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相

  等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形;、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。

 、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。③將線(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。

  比較長(cháng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。

 、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。

 、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。

  平行:①同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。

 、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。

 、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。

 、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。

 、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。

  垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。

  垂直平分線(xiàn)定理:

  性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。

  定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出

  現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)

  性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)2、兩點(diǎn)之間線(xiàn)段最短

  3、同角或等角的補角相等4、同角或等角的余角相等

  5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9、同位角相等,兩直線(xiàn)平行10、內錯角相等,兩直線(xiàn)平行11、同旁?xún)冉腔パa,兩直線(xiàn)平行12、兩直線(xiàn)平行,同位角相等13、兩直線(xiàn)平行,內錯角相等14、兩直線(xiàn)平行,同旁?xún)冉腔パa

  15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

  17、三角形內角和定理三角形三個(gè)內角的和等于180°18、推論1直角三角形的兩個(gè)銳角互余

  19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35、推論1三個(gè)角都相等的三角形是等邊三角形

  36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  5

  39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°

  50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75、等腰梯形的兩條對角線(xiàn)相等

  76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77、對角線(xiàn)相等的梯形是等腰梯形

  78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

  82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr

  122、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項133、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

 、軆蓤A內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142、正三角形面積√3a/4a表示邊長(cháng)

  143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(cháng)計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

  一、常用數學(xué)公式

  公式分類(lèi)公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。9、幾何變換法

  在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。10、客觀(guān)性題的解題方法

  選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

 。2)驗證法:由題設找出合適的驗證條件,再通過(guò)驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱(chēng)為驗證法(也稱(chēng)代入法)。當遇到定量命題時(shí),常用此法。

 。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

 。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據數學(xué)知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。

 。5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。

 。6)分析法:直接通過(guò)對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。

  初中數學(xué)知識點(diǎn)總結16

  1.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

  2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類(lèi)項……系數化為1 ……(檢驗方程的解)。

  4.列一元一次方程解應用題:

 。1)讀題分析法:多用于“和,差,倍,分問(wèn)題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關(guān)系填入代數式,得到方程。

 。2)畫(huà)圖分析法:多用于“行程問(wèn)題”

  利用圖形分析數學(xué)問(wèn)題是數形結合思想在數學(xué)中的.體現,仔細讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據,最后利用量與量之間的關(guān)系(可把未知數看做已知量),填入有關(guān)的代數式是獲得方程的基礎。

  11.列方程解應用題的常用公式:

 。1)行程問(wèn)題:距離=速度·時(shí)間;

 。2)工程問(wèn)題:工作量=工效·工時(shí);

 。3)比率問(wèn)題:部分=全體·比率;

 。4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

 。5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

 。6)周長(cháng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(cháng)方形=2(a+b),S長(cháng)方形=ab,C正方形=4a,

  S正方形=a2,S環(huán)形=π(R2—r2),V長(cháng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內容是代數學(xué)的核心,也是所有代數方程的基礎。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè )很容易激起學(xué)生對數學(xué)的樂(lè )趣,所以要注意引導學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習、探究學(xué)習的過(guò)程中獲得知識,提升能力,體會(huì )數學(xué)思想方法。

  初中數學(xué)知識點(diǎn)總結17

  初中數學(xué)知識點(diǎn)總結:菱形

  我們在初中數學(xué)的學(xué)習中,將在一個(gè)平面內,一組鄰邊相等的平行四邊形成為菱形。

  對角線(xiàn)相互垂直的平行四邊形是菱形(rhombus)

  四條邊都相等的四邊形是菱形(rhombus)

  菱形的特殊性質(zhì)

  1、對角線(xiàn)互相垂直且平分,并且每條對角線(xiàn)平分一組對角;

  2、四條邊都相等;

  3、對角相等,鄰角互補;

  4、菱形既是軸對稱(chēng)圖形,對稱(chēng)軸是兩條對角線(xiàn)所在直線(xiàn),也是中心對稱(chēng)圖形,

  5、在60°的菱形中,短對角線(xiàn)等于邊長(cháng),長(cháng)對角線(xiàn)是短對角線(xiàn)的根號三倍。

  菱形是特殊的平行四邊形,它具備平行四邊形的一切性質(zhì)。

  初中數學(xué)知識點(diǎn)總結:平面直角坐標系

  平面直角坐標系

  平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成

  平面直角坐標系的構成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。

  對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的`坐標。

  一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。

  初中數學(xué)知識點(diǎn):因式分解的一般步驟

  關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。

  初中數學(xué)知識點(diǎn):因式分解

  因式分解

  因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

 、垭p重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻韧(lèi)項合并。

  初中數學(xué)知識點(diǎn)總結18

  1.有理數:

 。1)凡能寫(xiě)成形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

 。2)有理數的分類(lèi):① ②

  2.數軸:數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn)。

  3.相反數:

 。1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;

 。2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

 。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;

  5.有理數比大。海1)正數的絕對值越大,這個(gè)數越大;(2)正數永遠比0大,負數永遠比0;(3)正數大于一切負數;(4)兩個(gè)負數比大小,絕對值大的反而;(5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;(6)大數—小數> 0,小數—大數< 0。

  6.互為倒數:乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

 。1)同號兩數相加,取相同的符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個(gè)數與0相加,仍得這個(gè)數。

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定。

  11.有理數乘法的'運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數除法法則:除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

 。1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;

  15.科學(xué)記數法:把一個(gè)大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法。

  16.近似數的精確位:一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位。

  17.有效數字:從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學(xué)生正確認識有理數的概念,在實(shí)際生活和學(xué)習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點(diǎn)利用有理數的運算法則解決實(shí)際問(wèn)題。

  體驗數學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習數學(xué)的興趣,教師培養學(xué)生的觀(guān)察、歸納與概括的能力,使學(xué)生建立正確的數感和解決實(shí)際問(wèn)題的能力。教師在講授本章內容時(shí),應該多創(chuàng )設情境,充分體現學(xué)生學(xué)習的主體性地位。

  初中數學(xué)知識點(diǎn)總結19

  一、基本知識

  一、數與代數

  A、數與式:

  1、有理數:①整數→正整數,0,負整數;

 、诜謹怠謹,負分數

  數軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:①在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。

 、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。

  有理數的運算:帶上符號進(jìn)行正常運算。

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋(gè)數與0相加不變。

  減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖蹬c0相乘得0。

 、鄢朔e為1的兩個(gè)有理數互為倒數。

  除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。

 、0不能作除數。

  乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實(shí)數

  無(wú)理數

  無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數,例如:π=3.1415926…

  平方根:①如果一個(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。

 、垡粋(gè)正數有2個(gè)平方根;0的平方根為0;負數沒(méi)有平方根。

 、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。

  立方根:①如果一個(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。

 、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。

  實(shí)數:①實(shí)數分有理數和無(wú)理數。

 、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;

 、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數式

  代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。

  合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項;②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。

 、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。

 、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。

 、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。

  整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

 。

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。

 、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。

  二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y=0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖像與X軸的交點(diǎn)。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數有頂點(diǎn)式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;

  II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個(gè)正數,不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個(gè)負數,不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;

  3、函數

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。

  一次函數:①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。

 、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。

  一次函數的圖像:

 、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖像。

 、谡壤瘮礩=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。

 、墼谝淮魏瘮抵,當K〈0,B〈O時(shí),則經(jīng)234象限;

  當K〈0,B〉0時(shí),則經(jīng)124象限;

  當K〉0,B〈0時(shí),則經(jīng)134象限;

  當K〉0,B〉0時(shí),則經(jīng)123象限。

 、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點(diǎn),線(xiàn),面

  點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構成的。

 、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。

 、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。

  展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。

 、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。

 、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。

 、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。

  比較長(cháng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。兩點(diǎn)之間直線(xiàn)最短。

 、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。

 、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角,360。

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。

  平行:①同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。

 、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。

 、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。

  垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。

 、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。

 、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。

  垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。

  垂直平分線(xiàn)定理:

  性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;

  判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上;

  角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。

  定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)的集合。

  性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)

  2、兩點(diǎn)之間線(xiàn)段最短

  3、同角或等角的補角相等

  ——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

  8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

  9、同位角相等,兩直線(xiàn)平行

  10、內錯角相等,兩直線(xiàn)平行

  11、同旁?xún)冉腔パa,兩直線(xiàn)平行

  12、兩直線(xiàn)平行,同位角相等

  13、兩直線(xiàn)平行,內錯角相等

  14、兩直線(xiàn)平行,同旁?xún)冉腔パa

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內角和定理:

  三角形三個(gè)內角的和等于180°

  18、推論1

  直角三角形的兩個(gè)銳角互余

  19、推論2

  三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和

  20、推論3

  三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對應相等的

  兩個(gè)三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等

  27、定理1

  在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2

  到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

  29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1

  等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  33、等腰三角形的判定定理

  如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個(gè)底角相等

  (即等邊對等角)

  35、推論1

  三個(gè)角都相等的三角形是等邊三角形

  36、推論

  有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39、定理

  線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40、逆定理

  和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1

  關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43、定理

  如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44、定理3

  兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45、逆定理

  如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理

  四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理

  n邊形的內角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線(xiàn)互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線(xiàn)互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線(xiàn)相等

  62、矩形判定定理1

  有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線(xiàn)相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角

  66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線(xiàn)互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71、定理1

  關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72、定理2

  關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73、逆定理

  如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對角線(xiàn)相等

  76、等腰梯形判定定理

  在同一底上的兩個(gè)角相等的梯

  形是等腰梯形

  77、對角線(xiàn)相等的梯形是等腰梯形

  78、平行線(xiàn)等分線(xiàn)段定理

  如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79、推論1

  經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  80、推論2

  經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

  81、三角形中位線(xiàn)定理

  三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

  82、梯形中位線(xiàn)定理

  梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線(xiàn)分線(xiàn)段成比例定理

  三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  87、推論

  平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88、定理

  如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),

  所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理

  平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2

  兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對應成比例,兩三角形相似(SSS)

  95、定理

  如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長(cháng)的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109、定理

  不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理

  圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  121、①直線(xiàn)L和⊙O相交

  0<=d<r

 、谥本(xiàn)L和⊙O相切

  d=r

 、壑本(xiàn)L和⊙O相離

  d>r

  122、切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  123、切線(xiàn)的性質(zhì)定理

  圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124、推論1

  經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  125、推論2

  經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126、切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等

  ,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132、切割線(xiàn)定理

  從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條

  割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內切

  d=R-r(R>r)

 、輧蓤A內含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長(cháng)

  142、正三角形面積√3a^2/4

  a表示邊長(cháng)

  143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(cháng)計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內公切線(xiàn)長(cháng)=d-(R-r)

  外公切線(xiàn)長(cháng)=d-(R+r)

  初中數學(xué)知識點(diǎn)總結20

  誘導公式的本質(zhì)

  所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的.三角函數值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結12-12

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)《整式》知識點(diǎn)總結10-21

初中數學(xué)知識點(diǎn)總結05-30

初中數學(xué)必學(xué)的知識點(diǎn)總結01-14

初中數學(xué)函數知識點(diǎn)總結04-08

初中數學(xué)圓的知識點(diǎn)總結06-07

初中數學(xué)幾何知識點(diǎn)總結03-01

初中數學(xué)知識點(diǎn)總結03-07

數學(xué)初中知識點(diǎn)總結01-15