有理數和無(wú)理數的區別
。1)性質(zhì)區別:
有理數是兩個(gè)整數的比,總能寫(xiě)成整數、有限小數或無(wú)限循環(huán)小數;無(wú)理數不能寫(xiě)成兩個(gè)整數之比,是無(wú)限不循環(huán)小數。
。2)結構區別:
有理數是整數和分數的統稱(chēng);無(wú)理數是所有不是有理數的實(shí)數。
。3)范圍區別:
有理數集是整數集的擴張,在有理數集內,加法、減法、乘法、除法(除數不為零)4種運算均可進(jìn)行;無(wú)理數是指實(shí)數范圍內不能表示成兩個(gè)整數之比的數。