97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)說(shuō)課稿

時(shí)間:2021-08-17 13:08:53 說(shuō)課稿 我要投稿

關(guān)于高中數學(xué)說(shuō)課稿模板錦集七篇

  作為一位不辭辛勞的人民教師,時(shí)常會(huì )需要準備好說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。如何把說(shuō)課稿做到重點(diǎn)突出呢?以下是小編為大家整理的高中數學(xué)說(shuō)課稿7篇,僅供參考,希望能夠幫助到大家。

關(guān)于高中數學(xué)說(shuō)課稿模板錦集七篇

高中數學(xué)說(shuō)課稿 篇1

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一 教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二 教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)

  三 學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四 教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,形成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數學(xué)說(shuō)課稿 篇2

  一、教材分析

  本節是人教A版高中數學(xué)必修三第二章《統計》中的第三節 “變量間的相關(guān)關(guān)系” 的第二課時(shí)。在上一課時(shí),學(xué)生已經(jīng)懂得根據兩個(gè)相關(guān)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。這節課是在上一節課的基礎上介紹了用線(xiàn)性回歸的方法研究?jì)蓚(gè)變量的相關(guān)性和最小二乘法的思想。

  從全章的內容上看,線(xiàn)性回歸方程的建立不僅是本節的難點(diǎn),也是本章內容的難點(diǎn)之一。線(xiàn)性回歸是最簡(jiǎn)單的回歸分析,學(xué)好回歸分析是學(xué)好統計學(xué)的重要基礎。

  二、教學(xué)目標

  根據課標的要求及前面的分析,結合高二學(xué)生的認知特點(diǎn)確定本節課的教學(xué)目標如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據線(xiàn)性回歸方程系數公式求出回歸方程

  過(guò)程與方法:

  經(jīng)歷線(xiàn)性回歸分析過(guò)程,借助圖形計算器得出回歸直線(xiàn),增強數學(xué)應用和使用技術(shù)的意識。

  情感態(tài)度與價(jià)值觀(guān)

  通過(guò)合作學(xué)習,養成傾聽(tīng)別人意見(jiàn)和建議的良好品質(zhì)

  三、重點(diǎn)難點(diǎn)分析:

  根據目標分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:

  教學(xué)重點(diǎn):

  1. 知道最小二乘法和回歸分析的思想;

  2.會(huì )求回歸直線(xiàn)

  教學(xué)難點(diǎn):

  建立回歸思想,會(huì )求回歸直線(xiàn)

  四、教學(xué)設計

  提出問(wèn)題

  理論探究

  驗證結論

  小結提升

  應用實(shí)踐

  作業(yè)設計

  教學(xué)環(huán)節

  內容及說(shuō)明

  創(chuàng )設情境

  探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數據:

  問(wèn)題與引導設計

  師生活動(dòng)

  設計意圖

  問(wèn)題1. 利用圖形計算器作出散點(diǎn)圖,并指出上面的兩個(gè)變量是正相關(guān)還是負相關(guān)?

  教師提問(wèn),學(xué)生

  通過(guò)動(dòng)手操作得

  出散點(diǎn)圖并回答

  以舊“探”新:對舊的知識進(jìn)行簡(jiǎn)要的提問(wèn)復習,為本節課學(xué)生能夠更好的建構新的知識做好充分的準備;尤其為一些后進(jìn)生能夠順利的完成本節課的內容提供必要的基礎。

  教師引導:通過(guò)上節課的學(xué)習,我們知道散點(diǎn)圖是研究?jì)蓚(gè)變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據得出的散點(diǎn)圖,思考下面的問(wèn)題2.

  問(wèn)題2. 甲同學(xué)判斷某人年齡在65歲時(shí)體內脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,

  乙,丙三個(gè)同學(xué)的判斷有什么看法?

  學(xué)生能夠表達自己的看法。有的學(xué)生可能會(huì )認為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認為甲乙丙三個(gè)同學(xué)的判斷都是對的,答案不唯一

  該問(wèn)題具有探究性、啟發(fā)性和開(kāi)放性。鼓勵學(xué)生大膽表達自己的看法。通過(guò)設計該問(wèn)題,引導學(xué)生自己發(fā)現問(wèn)題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規律,體會(huì )觀(guān)測點(diǎn)與回歸直線(xiàn)的關(guān)系;進(jìn)而引起學(xué)生的對本節課內容的興趣。

  問(wèn)題3. 反思問(wèn)題,你還可以提出哪些問(wèn)題嗎?小組討論,看哪個(gè)小組提出的問(wèn)題多

  在小組討論的形式下和比較哪個(gè)小組提出的問(wèn)題多,學(xué)生之間會(huì )充分的進(jìn)行交流,提出問(wèn)題

  通過(guò)小組討論比較,調動(dòng)學(xué)生的學(xué)習積極性和興趣,活躍課堂氣氛,達到學(xué)生自己提出問(wèn)題的效果,培養學(xué)生的學(xué)生創(chuàng )新思維和問(wèn)題意識。

  學(xué)生可能提出的問(wèn)題:

 、贋槭裁醇、丙同學(xué)的判斷結果正確的可能性較大,而乙同學(xué)判斷結果正確的可能性較?

 、谀橙四挲g在65歲時(shí)體內脂肪含量百分比最可能是多少?在其它年齡時(shí)呢?

 、圻@些樣本數據揭示出兩個(gè)相關(guān)變量之間怎樣的關(guān)系呢?

 、茉鯓佑脭祵W(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個(gè)問(wèn)題都是學(xué)生“火熱的思考”成果

高中數學(xué)說(shuō)課稿 篇3

  一.說(shuō)教材

  1.本節課主要內容是線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,根據約束條件建立線(xiàn)性目標函數。應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  2.地位作用:線(xiàn)性規劃是數學(xué)規劃中理論較完整、方法較成熟、應用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設計、經(jīng)濟管理等許多方面的實(shí)際問(wèn)題。簡(jiǎn)單的線(xiàn)性規劃是在學(xué)習了直線(xiàn)方程的基礎上,介紹直線(xiàn)方程的一個(gè)簡(jiǎn)單應用。通過(guò)這部分內容的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,以培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  3.教學(xué)目標

  (1)知識與技能:了解線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,能根據約束條件建立線(xiàn)性目標函數。

  了解并初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  (2)過(guò)程與方法:提高學(xué)生數學(xué)地提出、分析和解決問(wèn)題的能力,發(fā)展學(xué)生數學(xué)應用意識,力求對現實(shí)世界中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀(guān):體會(huì )數形結合、等價(jià)轉化等數學(xué)思想,逐步認識數學(xué)的應用價(jià)值,提高學(xué)習數學(xué)的興趣,樹(shù)立學(xué)好數學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線(xiàn)性規劃的最優(yōu)解。

  二.說(shuō)教學(xué)方法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。這能充分調動(dòng)學(xué)生的主動(dòng)性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng )造性。

  (3)體現“等價(jià)轉化”、“數形結合”的思想方法。這樣可發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,有利于提高學(xué)生的各種能力。

  三.說(shuō)學(xué)法指導

  教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:觀(guān)察分析、聯(lián)想轉化、動(dòng)手實(shí)驗、練習鞏固。

  (1)觀(guān)察分析:通過(guò)引例讓學(xué)生觀(guān)察化舊知為新知,造成學(xué)生認知沖突。

  (2)聯(lián)想轉化:學(xué)生通過(guò)分析、探索、得出解決問(wèn)題的方法。

  (3)動(dòng)手實(shí)驗:通過(guò)作圖、實(shí)驗、從而得出一般解題步驟。

  (4)練習鞏固:讓學(xué)生知道數學(xué)重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。

  四.說(shuō)教學(xué)程序

  1、導入課題: 由一個(gè)不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問(wèn)題,造成學(xué)生認知沖突。

  3、導學(xué)達標之一:創(chuàng )設情境、形成概念

  通過(guò)引例的問(wèn)題讓學(xué)生探索解決新問(wèn)題的方法。

  (設計意圖:利用已經(jīng)學(xué)過(guò)的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,從而提高學(xué)生數學(xué)的地提出、分析和解決問(wèn)題的能力。)

  然后老師逐步引導,動(dòng)手實(shí)驗,化抽象為直觀(guān)。從而得到解決此類(lèi)問(wèn)題的方法,并對比引例給出相關(guān)概念:線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、線(xiàn)性規劃、可行解、可行域、最優(yōu)解。并能根據引例提煉線(xiàn)性規劃問(wèn)題的解法——圖解法。

  (設計意圖:引導學(xué)生觀(guān)察和分析問(wèn)題,激發(fā)學(xué)生的探索欲望,從而培養學(xué)生的解決問(wèn)題和總結歸納的能力。)

  4.導學(xué)達標之二:針對問(wèn)題、舉例講解、形成技能

  例一:課本61頁(yè)例3

  (創(chuàng )設意境:,練習是使學(xué)生明白數學(xué)來(lái)源于實(shí)際又運用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。)

  6.鞏固目標:

  練習一:學(xué)生做課堂練習P64例4

  (叫學(xué)生提出解決問(wèn)題的方法,并用多媒體展示,并根據問(wèn)題的實(shí)際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習二:為了賺大錢(qián),老張最近承包了一家具廠(chǎng),可老張卻悶悶不樂(lè ),原來(lái)家具廠(chǎng)有方木料90m3,五合板600m2,老張準備加工成書(shū)桌和書(shū)廚出售,他通過(guò)調查了解到:生產(chǎn)每張書(shū)桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書(shū)櫥需要方木料0.2m3、五合板1m2,出售一張書(shū)桌可獲利潤80元,出售一個(gè)書(shū)櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問(wèn)題)

  (設計意圖:通過(guò)實(shí)際問(wèn)題,激發(fā)學(xué)生興趣,培養學(xué)生的數學(xué)應用意識,力求學(xué)生能夠對現實(shí)生活中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結:

  小結本課的主要學(xué)習內容是什么?(由師生共同來(lái)完成本課小結)

  (創(chuàng )設意境:讓學(xué)生參與小結,引導學(xué)生對所學(xué)知識進(jìn)行反思,有利于加強學(xué)生記憶和形成良好的數學(xué)思維習慣)

  8.布置作業(yè):

  P64. 2

  五.說(shuō)板書(shū)設計

  板書(shū)設計為表格式,這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對重點(diǎn)知識的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

高中數學(xué)說(shuō)課稿 篇4

  一、教學(xué)背景分析

  1、教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。

  2、學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3、教學(xué)目標

  (1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

  (2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識。

  (3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4、教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標準方程的求法及其應用。

  (2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  二、教法學(xué)法分析

  1、教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。

  2、學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。

  下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  三、教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

  (二)深入探究——獲得新知

  問(wèn)題二 1、根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2、如果圓心在,半徑為時(shí)又如何呢?

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。

  (三)應用舉例——鞏固提高

  I、直接應用 內化新知

  問(wèn)題三 1、寫(xiě)出下列各圓的標準方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2、寫(xiě)出圓的圓心坐標和半徑。

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。

  II、靈活應用 提升能力

  問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。

  2、求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。

  3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的'過(guò)程,使探究氣氛達到高潮。

  III、實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。

  (四)反饋訓練——形成方法

  問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。

  2、求圓過(guò)點(diǎn)的切線(xiàn)方程。

  3、求圓過(guò)點(diǎn)的切線(xiàn)方程。

  接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。

  (五)小結反思——拓展引申

  1、課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法

 、賵A心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  3、激發(fā)新疑

  問(wèn)題七 1、把圓的標準方程展開(kāi)后是什么形式?

  2、方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計:

  橫向闡述教學(xué)設計

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

  (二)學(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。

  (三)培養思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數學(xué)說(shuō)課稿 篇5

  一、教材分析

  1、教材內容

  本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題.

  2、教材所處地位、作用

  函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì).通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題.通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識.函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一.從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法.

  3、教學(xué)目標

 。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性

  的方法;

 。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.

 。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì).

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數單調性的概念;

 。2)運用函數單調性的定義判斷一些函數的單調性.

  教學(xué)難點(diǎn)(1)函數單調性的知識形成;

 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.

  二、教法分析與學(xué)法指導

  本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:

  1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性.

  2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決.

  3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用.具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達.

  4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性.

  在學(xué)法上:

  1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力.

  2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍.

高中數學(xué)說(shuō)課稿 篇6

  一、說(shuō)教材

  1.從在教材中的地位與作用來(lái)看

  《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養.

  2.從學(xué)生認知角度看

  從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯.

  3.學(xué)情分析

  教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.

  4.重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用.

  教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

  二、說(shuō)目標

  知識與技能目標:

  理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題.

  過(guò)程與方法目標:

  通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價(jià)值觀(guān):

  通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn).

  三、說(shuō)過(guò)程

  學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:

  1.創(chuàng )設情境,提出問(wèn)題

  在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求.西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚.為什么呢?

  設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性.故事內容緊扣本節課的主題與重點(diǎn).

  此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲.帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和.這時(shí)我對他們的這種思路給予肯定.

  設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.

  2.師生互動(dòng),探究問(wèn)題

  在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,…,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?

  探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現?

  設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機.

  經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心.

  3.類(lèi)比聯(lián)想,解決問(wèn)題

  這時(shí)我再順勢引導學(xué)生將結論一般化,

  這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導.

  設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感.

  對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎.)

  再次追問(wèn):結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)

  設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力.這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用.

  4.討論交流,延伸拓展

高中數學(xué)說(shuō)課稿 篇7

  一、教材分析(說(shuō)教材):

  1. 教材所處的地位和作用:

  本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。

  2. 教育教學(xué)目標:

  根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

  (1)知識目標:

  (2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據:

  下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說(shuō)教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  3. 學(xué)情分析:(說(shuō)學(xué)法)

  (1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

  (2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。

  (3)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  4. 教學(xué)程序及設想:

  (1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  (2)由實(shí)例得出本課新的知識點(diǎn)

  (3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。

  (4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。

  (5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。

  (6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

  (7)板書(shū)

  (8)布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  (一)課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

  高中數學(xué)集合教學(xué)反思

  集合這章內容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對學(xué)生的實(shí)際情況估計不足,第一課時(shí)的導學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內容很廣,學(xué)生學(xué)習本章內容時(shí),不僅要理解本章的概念,還要理解與本章內容相關(guān)聯(lián)的其他內容,這些內容有初中學(xué)習過(guò)的內容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì )學(xué)生對元素的性質(zhì)進(jìn)行分析,反復訓練,讓學(xué)生通過(guò)實(shí)例體會(huì )這三個(gè)性質(zhì)。

  第二,掌握相關(guān)的符號語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運算—交集和并集。突破難點(diǎn)充分運用數形結合思想,集合間的關(guān)系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關(guān)系直觀(guān)明了,使抽象的集合運算建立在直觀(guān)的基礎上,使解題思路清晰明朗,直觀(guān)簡(jiǎn)捷,有利于問(wèn)題的解決。

  第三,指導學(xué)生理解并掌握自然語(yǔ)言、符號語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準確地進(jìn)行語(yǔ)言轉換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。

  第四,集合問(wèn)題涉及到的其他內容,遇到了講透,不拓展。

【關(guān)于高中數學(xué)說(shuō)課稿模板錦集七篇】相關(guān)文章:

關(guān)于會(huì )議通知模板錦集七篇10-14

關(guān)于雇傭合同模板錦集七篇08-18

蘭亭集序說(shuō)課稿模板錦集8篇06-13

關(guān)于《赤壁賦》教案模板錦集七篇06-30

關(guān)于募捐倡議書(shū)模板錦集七篇01-18

關(guān)于圓明園的毀滅教案模板錦集七篇12-22

關(guān)于停薪留職合同模板錦集七篇12-01

關(guān)于技術(shù)咨詢(xún)合同模板錦集七篇03-19

水調歌頭教案模板錦集七篇06-16

會(huì )議方案模板錦集七篇07-31