高中數學(xué)說(shuō)課稿模板匯編6篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,就有可能用到說(shuō)課稿,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。說(shuō)課稿要怎么寫(xiě)呢?以下是小編幫大家整理的高中數學(xué)說(shuō)課稿6篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
數學(xué):人教A版必修3第二章第三節《變量之間的相關(guān)關(guān)系》說(shuō)課稿各位老師:
大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《變量之間的相關(guān)關(guān)系》,內容選自于高中教材新課程人教A版必修3第二章第三節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
本章我們所要學(xué)習的主要內容就是統計,在前面的章節中我們已經(jīng)對統計的相關(guān)知識作了大致的了解。本節課我們要繼續探討的是變量之間的相關(guān)關(guān)系,它為接下來(lái)要學(xué)習的兩個(gè)變量的線(xiàn)性相關(guān)打下基礎。這是一個(gè)與現實(shí)實(shí)際生活聯(lián)系很緊密的知識,在教師的引導下,可使學(xué)生認識到在現實(shí)世界中存在不能用函數模型描述的變量關(guān)系,從而體會(huì )研究變量之間的相關(guān)關(guān)系的重要性.
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):①通過(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據直觀(guān)認識變量間的相關(guān)關(guān)系;
、诶蒙Ⅻc(diǎn)圖直觀(guān)認識兩個(gè)變量之間的線(xiàn)性關(guān)系;
難點(diǎn):①變量之間相關(guān)關(guān)系的理解;②作散點(diǎn)圖和理解兩個(gè)變量的正相關(guān)和負相關(guān)
二、教學(xué)目標分析
1.知識與技能目標
通過(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據認識變量間的相關(guān)關(guān)系
2、過(guò)程與方法目標:
明確事物間的相互聯(lián)系.認識現實(shí)生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點(diǎn)圖直觀(guān)體會(huì )這種相關(guān)關(guān)系.
3、情感態(tài)度與價(jià)值觀(guān)目標:
通過(guò)對事物之間相關(guān)關(guān)系的了解,讓學(xué)生們認識到現實(shí)中任何事物都是相互聯(lián)系的辯證法思想。
三、教學(xué)方法與手段分析
1.教學(xué)方法:結合本節課的教學(xué)內容和學(xué)生的認知水平,在教法上,我采用“問(wèn)答探究”式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。
2。教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
、鍐(wèn)題引出:
請同學(xué)們如實(shí)填寫(xiě)下表(在空格中打“√”)
然后回答如下問(wèn)題:①“你的數學(xué)成績(jì)對你的物理成績(jì)有無(wú)影響?”②“如果你的數學(xué)成績(jì)好,那么你的物理成績(jì)也不會(huì )太差,如果你的數學(xué)成績(jì)差,那么你的物理成績(jì)也不會(huì )太好!睂δ銇(lái)說(shuō),是這樣嗎?同意這種說(shuō)法的同學(xué)請舉手。
根據同學(xué)們回答的結果,讓學(xué)生討論:我們可以發(fā)現自己的數學(xué)成績(jì)和物理成績(jì)存在某種關(guān)系。(似乎就是數學(xué)好的,物理也好;數學(xué)差的,物理也差,但又不全對。)教師總結如下:
物理成績(jì)和數學(xué)成績(jì)是兩個(gè)變量,從經(jīng)驗看,由于物理學(xué)習要用到比較多的數學(xué)知識和數學(xué)方法。數學(xué)成績(jì)的高低對物理成績(jì)的高低是有一定影響的。但決非唯一因素,還
有其它因素,如圖所示(幻燈片給出):
因此,不能通過(guò)一個(gè)人的數學(xué)成績(jì)是多少就準確地斷定他的物理成績(jì)能達到多少。但這兩個(gè)變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過(guò)數學(xué)成績(jì)的結果對物理成績(jì)進(jìn)行合理估計有非常重要的現實(shí)意義。
「設計意圖」通過(guò)對身邊事例的分析,引出我們今天將要學(xué)習的主要內容,由此可以激起學(xué)
生們的學(xué)習興趣,為接下來(lái)的學(xué)習打下良好的基礎。
、嫣骄啃轮
、备拍钚纬
教師提問(wèn):“像剛才這種情況在現實(shí)生活中是否還有?”學(xué)生們思考之后,請幾位同學(xué)就提出的問(wèn)題作出回答。老師就舉出的例子,引導學(xué)生作出分析,然后由老師總結得出相關(guān)關(guān)系的概念。[兩個(gè)變量之間的關(guān)系可能是確定的關(guān)系(如:函數關(guān)系),或非確定性關(guān)系。當自變量取值一定時(shí),因變量也確定,則為確定關(guān)系;當自變量取值一定時(shí),因變量帶有隨機性,這種變量之間的關(guān)系稱(chēng)為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]
「設計意圖」從現實(shí)生活入手,抓住學(xué)生們的注意力,引導學(xué)生分析得出概念,讓學(xué)生真正參與到概念的形成過(guò)程中來(lái)。
、蔡骄烤(xiàn)性相關(guān)關(guān)系和其他相關(guān)關(guān)系
「課件展示」
例1在一次對人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數據:
問(wèn)題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關(guān)系?
[教師特別向學(xué)生強調在研究?jì)蓚(gè)變量之間是否存在某種關(guān)系時(shí),必須從散點(diǎn)圖入手(向學(xué)生介紹什么是散點(diǎn)圖)。并且引導學(xué)生從散點(diǎn)圖上可以得出如下規律:(幻燈片給出)
、偃绻械臉颖军c(diǎn)都落在某一函數曲線(xiàn)上,那么變量之間具有函數關(guān)系(確定性關(guān)系);②如果所有的樣本點(diǎn)都落在某一函數曲線(xiàn)的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點(diǎn)都落在某一直線(xiàn)附近,那么變量之間具有線(xiàn)性相關(guān)關(guān)系(不確定性關(guān)系)。
「設計意圖」通過(guò)對這個(gè)典型事例的分析,向學(xué)生們介紹什么是散點(diǎn)圖,并總結出如何從散點(diǎn)圖上判斷變量之間關(guān)系的規律。
下面我們用TI圖形計算器作出這兩個(gè)變量的散點(diǎn)圖。
學(xué)生實(shí)驗:先把數據中成對出現的兩個(gè)數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點(diǎn)圖:
[引導學(xué)生觀(guān)察作出的散點(diǎn)圖,體會(huì )現實(shí)生活中兩個(gè)變量之間的關(guān)系存在著(zhù)不確定性。散點(diǎn)圖中的散點(diǎn)并不在一條直線(xiàn)上,只是分布在一條直線(xiàn)的周?chē),即為線(xiàn)性相關(guān)關(guān)系。]
「設計意圖」通過(guò)實(shí)驗讓學(xué)生們感受散點(diǎn)圖的主要形成過(guò)程,并由此引出線(xiàn)性相關(guān)關(guān)系。為后面回歸直線(xiàn)和回歸直線(xiàn)方程的學(xué)習做好鋪墊。
「課件展示」四組數據,請學(xué)生作出散點(diǎn)圖,并觀(guān)察每組數據的特點(diǎn)。
根據四組數據,學(xué)生作出四個(gè)散點(diǎn)圖。
通過(guò)學(xué)生討論、交流、用TI圖形計算器展示、對比自己作出的散點(diǎn)圖,我們引出線(xiàn)性相關(guān)關(guān)系,正負相關(guān)關(guān)系的概念。
「設計意圖」及時(shí)鞏固知識,學(xué)生通過(guò)親自動(dòng)手作散點(diǎn)圖,并交流討論,進(jìn)一步加深對散點(diǎn)圖的理解,并由此引出正負相關(guān)關(guān)系的概念,突破難點(diǎn)。
、缋}講解,深化認識
「課件展示」
例2一般說(shuō)來(lái),一個(gè)人的身高越高,他的人就越大,相應地,他的右手一拃長(cháng)就越長(cháng),因此,人的身高與右手一拃長(cháng)之間存在著(zhù)一定的關(guān)系。為了對這個(gè)問(wèn)題進(jìn)行調查,我們收集了北京市某中學(xué)20xx年高三年級96名學(xué)生的身高與右手一拃長(cháng)的數據如下表。
。1)根據上表中的數據,制成散點(diǎn)圖。你能從散點(diǎn)圖中發(fā)現身高與右手一拃長(cháng)之間的近似關(guān)系嗎?
。2)如果近似成線(xiàn)性關(guān)系,請畫(huà)出一條直線(xiàn)來(lái)近似地表示這種線(xiàn)性關(guān)系。
。3)如果一個(gè)學(xué)生的身高是188cm,你能估計他的一拃大概有多長(cháng)嗎?
「設計意圖」這個(gè)例子很容易激起學(xué)生們的學(xué)習興趣,由此可達到更好的教學(xué)效果。通過(guò)對這道題的解答,使對前面知識的認識更加牢固。
、璺此夹〗Y、培養能力
、抛兞块g相關(guān)關(guān)系、線(xiàn)性關(guān)系和正負相關(guān)關(guān)系
、迫绾巫錾Ⅻc(diǎn)圖
「設計意圖」小節是一堂課的概括和總結,有利于優(yōu)化學(xué)生的認知結構,把課堂教學(xué)傳授的知識較快轉化為學(xué)生的素質(zhì),也更進(jìn)一步培養學(xué)生的歸納概括能力
、檎n后作業(yè),自主學(xué)習
習題2.31、2
[設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
高中數學(xué)說(shuō)課稿 篇2
各位老師你們好!今天我要為大家講的課題是
首先,我對本節教材進(jìn)行一些分析:
一、教材分析(說(shuō)教材):
1. 教材所處的地位和作用:
本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。
2. 教育教學(xué)目標:
根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
。1)知識目標: (2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據:
本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過(guò) 突出重點(diǎn)
難點(diǎn): 通過(guò) 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說(shuō)教法)
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
3. 學(xué)情分析:(說(shuō)學(xué)法)
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)
生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
。2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。
。3) 動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
4. 教學(xué)程序及設想:
。1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
。2)由實(shí)例得出本課新的知識點(diǎn)
。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。
。4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
。5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。
。6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
。7)板書(shū)
。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數學(xué)說(shuō)課稿 篇3
【一】教學(xué)背景分析
1。教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3。教學(xué)目標
。1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4。 教學(xué)重點(diǎn)與難點(diǎn)
。1)重點(diǎn):圓的標準方程的求法及其應用。
。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
【三】教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
。ǘ┥钊胩骄俊@得新知
問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2。如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
。ㄈ⿷门e例——鞏固提高
I。直接應用 內化新知
問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:
。1)圓心在原點(diǎn),半徑為3;
。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2。寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II。靈活應用 提升能力
問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III。實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
。ㄋ模┓答佊柧殹纬煞椒
問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2。求圓過(guò)點(diǎn)的切線(xiàn)方程。
3。求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
。ㄎ澹┬〗Y反思——拓展引申
1。課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2。分層作業(yè)
。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3。激發(fā)新疑
問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計
。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇4
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的.概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿 篇5
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2。1。3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題。
2、教材所處地位、作用
函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì)。通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題。通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識。函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一。從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法。
3、教學(xué)目標
。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性
的方法;
。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì)。
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數單調性的概念;
。2)運用函數單調性的定義判斷一些函數的單調性。
教學(xué)難點(diǎn)(1)函數單調性的知識形成;
。2)利用函數圖象、單調性的定義判斷和證明函數的單調性。
二、教法分析與學(xué)法指導
本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性。
2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決。
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用。具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達。
4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性。
在學(xué)法上:
1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力。
2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍。
三、 教學(xué)過(guò)程
教學(xué)
環(huán)節
教 學(xué) 過(guò) 程
設 計 意 圖
問(wèn)題
情境
。úシ胖醒腚娨暸_天氣預報的音樂(lè ))
滿(mǎn)足在定義域上的單調性的討論。
2、重視學(xué)生發(fā)現的過(guò)程。如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程。
3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程。通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義。
4、重視課堂問(wèn)題的設計。通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題。
高中數學(xué)說(shuō)課稿 篇6
各位評委:下午好!
我叫 ,來(lái)自 。今天我說(shuō)課的課題《 》(第 課時(shí))。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設計五方面逐一加以分析和說(shuō)明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了 的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。
。ǘ、學(xué)情分析
通過(guò)前一階段的教學(xué),學(xué)生對 的認識已有了一定的認知結構,主要體現在三個(gè)層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數學(xué)新內容的學(xué)習有相當的興趣和積極性。但探究問(wèn)題的能力以及合作交流等方面發(fā)展不夠均衡.
。ㄈ┙虒W(xué)課時(shí)
本節內容分 課時(shí)學(xué)習。(本課時(shí),品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。)
二、教學(xué)目標分析
根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高中生的認知規律,本節課的教學(xué)目標確定為:
知識與技能:
過(guò)程與方法:
情感態(tài)度:
。ɡ纾簞(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過(guò)程中,培養學(xué)生的合作意識和創(chuàng )新精神. 通過(guò) 對立統一關(guān)系的認識,對學(xué)生進(jìn)行辨證唯物主義教育)
在探索過(guò)程中,培養獨立獲取數學(xué)知識的能力。在解決問(wèn)題的過(guò)程中,讓學(xué)生感受到成功的喜悅,樹(shù)立學(xué)好數學(xué)的信心。在解答數學(xué)問(wèn)題時(shí),讓學(xué)生養成理性思維的品質(zhì)。
三、重難點(diǎn)分析
重點(diǎn)確定為:
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解
其本質(zhì)就是
本節課的難點(diǎn)確定為:
要突破這個(gè)難點(diǎn),讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。
。ǘ┙谭ǚ治
本節課設計的指導思想是:現代認知心理學(xué)--建構主義學(xué)習理論。
建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設計教學(xué)過(guò)程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現。
五、說(shuō)教學(xué)過(guò)程
本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。
。ㄒ唬﹦(chuàng )設情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
。ㄋ模⿷眯轮,熟練掌握 …………………
。ㄎ澹┛偨Y…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟(shū)設計…………………
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家批評指正。謝謝
著(zhù)名美國數學(xué)家和數學(xué)教育家波利亞 包括“弄清問(wèn)題”、“擬定計劃”、“實(shí)現計劃”和“回顧反思”四大步驟的解題全過(guò)程,它們就好比是尋找和發(fā)現解法的思維過(guò)程進(jìn)行分解,使我們對解題的思維過(guò)程看得見(jiàn),摸得著(zhù),易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
【高中數學(xué)說(shuō)課稿模板匯編6篇】相關(guān)文章:
高中數學(xué)說(shuō)課稿02-17
高中數學(xué)說(shuō)課稿(精選10篇)11-02
人教版高中數學(xué)必修一說(shuō)課稿 函數的概念說(shuō)課稿11-02
初中地理說(shuō)課稿模板《北京》說(shuō)課稿12-29
《離騷》說(shuō)課稿模板12-05
蘭亭集序說(shuō)課稿模板匯編九篇04-05