函數y=Asin(ωx+φ)圖象優(yōu)秀說(shuō)課稿
一、教材分析
1· 教材的地位和作用
在學(xué)習這節課以前,我們已經(jīng)學(xué)習了振幅變換。本節知識是學(xué)習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。 y=asin(ωx+φ)圖象變換的學(xué)習有助于學(xué)生進(jìn)一步理解正弦函數的圖象和性質(zhì),加深學(xué)生對函數圖象變換的理解和認識,加深數形結合在數學(xué)學(xué)習中的應用的認識。同時(shí)為相關(guān)學(xué)科的學(xué)習打下扎實(shí)的基礎。
、步滩牡闹攸c(diǎn)和難點(diǎn)
重點(diǎn)是對周期變換、相位變換規律的理解和應用。
難點(diǎn)是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
、辰滩膬热莸陌才藕吞幚
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時(shí),本節是第2課時(shí),主要學(xué)習周期變換和相位變換,以及兩種變換的綜合應用。
二、目的分析
、敝R目標
掌握相位變換、周期變換的變換規律。
、材芰δ繕
培養學(xué)生的觀(guān)察能力、動(dòng)手能力、歸納能力、分析問(wèn)題解決問(wèn)題能力。
、车掠繕
在教學(xué)中努力培養學(xué)生的“由簡(jiǎn)單到復雜、由特殊到一般”的辯證思想,培養學(xué)生的探究能力和協(xié)作學(xué)習的能力。
、辞楦心繕
通過(guò)學(xué)數學(xué),用數學(xué),進(jìn)而培養學(xué)生對數學(xué)的興趣。
三、教具使用
、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實(shí)現師生、生生的相互溝通。
、谡n前應先把本課所需要的'幾何畫(huà)板課件通過(guò)多媒體演示系統發(fā)送到每一臺學(xué)生電腦。
四、教法、學(xué)法分析
本節課以“探究——歸納——應用”為主線(xiàn),通過(guò)設置問(wèn)題情境,引導學(xué)生自主探究,總結規律,并能應用規律分析問(wèn)題、解決問(wèn)題。
以學(xué)生的自主探究為主要方式,把計算機使用的主動(dòng)權交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習新知、探究未知,在活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能數學(xué)地提出問(wèn)題、解決問(wèn)題。 五、教學(xué)過(guò)程
五、教學(xué)過(guò)程設計
【預備知識】
。ㄒ唬﹩(wèn)題探究
(1)師生合作探究周期變換
(2)學(xué)生自主探究相位變換
。ǘw納概括
。ㄈ⿲(shí)踐應用
【教學(xué)程序】
【設計說(shuō)明】
1我們已經(jīng)學(xué)習了幾種圖象變換?
2這些變換的規律是什么?
幫助學(xué)生鞏固、理解和歸納基礎知識,為后面的學(xué)習作鋪墊。促使學(xué)生學(xué)會(huì )對知識的歸納梳理。
【問(wèn)題探究】
。ㄒ唬⿴熒献魈骄恐芷谧儞Q
(1)自己動(dòng)手,在幾何畫(huà)板中分別觀(guān)察①y=sinx→y=sin2x;②y=sinx→y=sin x圖象的變換過(guò)程,指出變換過(guò)程中圖象上每一個(gè)點(diǎn)的坐標發(fā)生了什么變化。
(2) 在上述變換過(guò)程中,橫坐標的伸長(cháng)和縮短與ω之間存在怎樣的關(guān)系?
。ǘ⿲W(xué)生自主探究相位變換
(1)我們初中學(xué)過(guò)的由y=f(x)→y=f(x+a)的圖象變換規律是怎樣的?
,函數y=Asin(ωx+φ)圖象說(shuō)課
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規律呢?請動(dòng)手用幾何畫(huà)板加以驗證。
設計這個(gè)問(wèn)題的主要用意是讓學(xué)生通過(guò)觀(guān)察圖象變換的過(guò)程,了解周期變換的基本規律。
設計這個(gè)問(wèn)題意圖是引導學(xué)生再次認真觀(guān)察圖象變換的過(guò)程,以便總結周期變換的規律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎上,由學(xué)生自主探究相位變換規律,提高學(xué)生的綜合能力。
【歸納概括】
通過(guò)以上探究,你能否總結出周期變換和相位變換的一般規律?
設計這個(gè)環(huán)節的意圖是通過(guò)對上述變換過(guò)程的探究,進(jìn)而引導學(xué)生歸納概括,從現象到本質(zhì),總結出周期變換和相位變換的一般規律。
【實(shí)踐應用】
。ㄒ唬⿷门e例
(1)用五點(diǎn)法作出y=sin(2x+ )一個(gè)周期內的簡(jiǎn)圖。
(2)我們可以通過(guò)哪些方法完成y=sinx到y=sin(2x+ )的圖象變換
(3)請動(dòng)手驗證上述方法,把幾何畫(huà)板所得圖象與用五點(diǎn)法作出的簡(jiǎn)圖作比較,觀(guān)察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
從上述的變換過(guò)程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+ ),由f(x)→f(x+a)的變換規律得從y=sin2x →y= sin(2x+ )的變換應該是_____.
。ǘ┓謱佑柧
a組題(基礎題)
如何完成下列圖象的變換: ①y=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換: ①y=sin3x→y=sin(3x+1) ②y=sin(x+1) →y=sin(3x+1)
、踶=sinx →y=sin(3x+1)
c組題(拓展題)
、偃绾瓮瓿上铝袌D象的變換: y=sinx →y=sin(3x+1) ②我們知道,從f(x)到f(x)+k的變換可通過(guò)圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過(guò)實(shí)例加以驗證。
讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗證變換方法是否正確。
給出這個(gè)問(wèn)題的用意是開(kāi)拓學(xué)生的思維,讓學(xué)生從多角度思考問(wèn)題。
這個(gè)步驟主要目的是培養學(xué)生的探究能力和動(dòng)手能力。
這個(gè)問(wèn)題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過(guò)問(wèn)題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應特別關(guān)注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學(xué)生對新問(wèn)題進(jìn)行探究,
有較大難度,適合基礎較好的
同學(xué)完成。
六、作業(yè)
。1)必做題
。2)選做題
作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學(xué)有余力的學(xué)生課后研究。
七、評價(jià)分析
在本節的教與學(xué)活動(dòng)中,始終體現以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認知基礎上進(jìn)行設問(wèn)和引導,關(guān)注學(xué)生的認知過(guò)程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養,重視問(wèn)題探究意識和能力的培養。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現因材施教原則。
調節與反饋:
、膨炞C兩種變換的綜合時(shí),可能會(huì )出現有些學(xué)生無(wú)法觀(guān)察到兩種變換的區別這種情況,此時(shí),教師除了加以引導外,還需通過(guò)教師演示和詳細講解加以解決。
、平虒W(xué)中可能出現個(gè)別學(xué)生無(wú)法正確操作課件的情況,這種情況下一定要強調學(xué)生的協(xié)作意識。
附:板書(shū)設計
課題
、胖芷谧儞Q規律 ⑶兩種變換的綜合 例題與練習
、葡辔蛔儞Q的規律 ⑷注意點(diǎn)
,函數y=Asin(ωx+φ)圖象說(shuō)課
【函數y=Asin(ωx+φ)圖象優(yōu)秀說(shuō)課稿】相關(guān)文章:
《函數y=Asin(ωx+φ)的圖象》說(shuō)課稿04-02
函數y=Asin(ωx+φ)圖象說(shuō)課稿01-01
正弦函數、余弦函數的圖象和性質(zhì)的說(shuō)課稿02-25
《函數的圖象》教案08-26
《反比例函數及其圖象》說(shuō)課稿05-26
反比例函數及其圖象說(shuō)課稿11-06
反比例函數的圖象及性質(zhì)的說(shuō)課稿05-04
高中優(yōu)秀教案范例:正弦函數、余弦函數的圖象10-11
函數的圖象的教案參考07-18