97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高中數學(xué)教案

時(shí)間:2022-12-30 14:45:54 教案 我要投稿
  • 相關(guān)推薦

高中數學(xué)教案【薦】

  作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來(lái)輔助教學(xué),教案是備課向課堂教學(xué)轉化的關(guān)節點(diǎn)。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家整理的高中數學(xué)教案,歡迎閱讀與收藏。

高中數學(xué)教案【薦】

高中數學(xué)教案1

  教學(xué)目標

  理解數列的概念,掌握數列的運用

  教學(xué)重難點(diǎn)

  理解數列的概念,掌握數列的運用

  教學(xué)過(guò)程

  【知識點(diǎn)精講】

  1、數列:按照一定次序排列的一列數(與順序有關(guān))

  2、通項公式:數列的第n項an與n之間的函數關(guān)系用一個(gè)公式來(lái)表示an=f(n)。

  (通項公式不)

  3、數列的表示:

  (1)列舉法:如1,3,5,7,9……;

  (2)圖解法:由(n,an)點(diǎn)構成;

  (3)解析法:用通項公式表示,如an=2n+1

  (4)遞推法:用前n項的值與它相鄰的項之間的關(guān)系表示各項,如a1=1,an=1+2an-1

  4、數列分類(lèi):有窮數列,無(wú)窮數列;遞增數列,遞減數列,擺動(dòng)數列,常數數列;有界數列,xx數列

  5、任意數列{an}的前n項和的性質(zhì)

高中數學(xué)教案2

  內容分析:

  1、 集合是中學(xué)數學(xué)的一個(gè)重要的基本概念

  在小學(xué)數學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應用集合的語(yǔ)言表述一些問(wèn)題。例如,在代數中用到的有數集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說(shuō),從開(kāi)始學(xué)習數學(xué)就離不開(kāi)對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習、工作中,也是認識問(wèn)題、研究問(wèn)題不可缺少的工具。這些可以幫助學(xué)生認識學(xué)習本章的意義,也是本章學(xué)習的基礎。

  把集合的初步知識與簡(jiǎn)易邏輯知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎

  例如,下一章講函數的概念與性質(zhì),就離不開(kāi)集合與邏輯。

  本節首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明

  然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子。

  這節課主要學(xué)習全章的引言和集合的基本概念

  學(xué)習引言是引發(fā)學(xué)生的學(xué)習興趣,使學(xué)生認識學(xué)習本章的意義

  本節課的教學(xué)重點(diǎn)是集合的基本概念。

  集合是集合論中的原始的、不定義的概念

  在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對概念有一個(gè)初步認識

  教科書(shū)給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集

  ”這句話(huà),只是對集合概念的描述性說(shuō)明。

  教學(xué)過(guò)程:

  一、復習引入:

  1.簡(jiǎn)介數集的發(fā)展,復習最大公約數和最小公倍數,質(zhì)數與和數;

  2.教材中的章頭引言;

  3.集合論的創(chuàng )始人——康托爾(德國數學(xué)家)(見(jiàn)附錄);

  4.“物以類(lèi)聚”,“人以群分”;

  5.教材中例子(P4)。

  二、講解新課:

  閱讀教材第一部分,問(wèn)題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P(guān)概念:由一些數、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說(shuō),每一組對象的全體形成一個(gè)集合,或者說(shuō),某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集.集合中的每個(gè)對象叫做這個(gè)集合的元素.

  定義:一般地,某些指定的對象集在一起就成為一個(gè)集合.

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡(jiǎn)稱(chēng)集)

 。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

  2、常用數集及記法

 。1)非負整數集(自然數集):全體非負整數的集合,記作N,N={0,1,2,…}

 。2)正整數集:非負整數集內排除0的集,記作N*或N+,N*={1,2,3,…}

 。3)整數集:全體整數的集合,記作Z ,Z={0,±1,±2,…}

 。4)有理數集:全體有理數的集合,記作Q,Q={整數與分數}

 。5)實(shí)數集:全體實(shí)數的集合,記作R,R={數軸上所有點(diǎn)所對應的數}

  注:(1)自然數集與非負整數集是相同的,也就是說(shuō),自然數集包括數0

 。2)非負整數集內排除0的集,記作N*或N+

  Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作aA

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標準給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒(méi)有重復

 。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序寫(xiě)出)

  5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_(kāi)口方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě)。

高中數學(xué)教案3

  1.教學(xué)目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會(huì )由圓的方程寫(xiě)出圓的半徑和圓心,能根據條件寫(xiě)出圓的方程.

  (2)能力目標: 1.進(jìn)一步培養學(xué)生用解析法研究幾何問(wèn)題的能力;

  2.使學(xué)生加深對數形結合思想和待定系數法的理解;

  3.增強學(xué)生用數學(xué)的意識.

  (3)情感目標:培養學(xué)生主動(dòng)探究知識、合作交流的意識,在體驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標準方程的求法及其應用.

  (2)教學(xué)難點(diǎn):會(huì )根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.

  3.教學(xué)過(guò)程

  (一)創(chuàng )設情境(啟迪思維)

  問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  [引導] 畫(huà)圖建系

  [學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線(xiàn)的方程(對求曲線(xiàn)的方程的步驟及圓的定義進(jìn)行提示性復習)

  解:以某一截面半圓的圓心為坐標原點(diǎn),半圓的直徑ab所在直線(xiàn)為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線(xiàn)2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛入這個(gè)隧道。

  (二)深入探究(獲得新知)

  問(wèn)題二:1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點(diǎn),根據定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

  2.根據圓的方程寫(xiě)出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問(wèn)題四:1.求以 為圓心,并且和直線(xiàn) 相切的圓的方程.

  [教師引導]由問(wèn)題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線(xiàn)方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數法(利用代數關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線(xiàn)的方程是: .

  iii.實(shí)際應用(回歸自然)

  問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(cháng)度(精確到0.01m).

  [多媒體課件演示創(chuàng )設實(shí)際問(wèn)題情境]

  (四)反饋訓練(形成方法)

  問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線(xiàn)方程.

  4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線(xiàn)方程.

高中數學(xué)教案4

  教學(xué)目的:掌握圓的標準方程,并能解決與之有關(guān)的問(wèn)題

  教學(xué)重點(diǎn):圓的標準方程及有關(guān)運用

  教學(xué)難點(diǎn):標準方程的靈活運用

  教學(xué)過(guò)程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:⒈說(shuō)出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

 、牛▁-2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學(xué)方法)

  練習:1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(cháng)度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線(xiàn)方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數學(xué)教案5

  =

  =425a0b0=425.

  點(diǎn)評:化簡(jiǎn)這類(lèi)式子一般有兩種辦法,一是首先用負指數冪的定義把負指數化成正指數,另一個(gè)方法是采用分式的基本性質(zhì)把負指數化成正指數。

  (3)5-26+7-43-6-42

  =(3-2)2+(2-3)2-(2-2)2

  =3-2+2-3-2+2=0.

  點(diǎn)評:考慮根號里面的數是一個(gè)完全平方數,千萬(wàn)注意方根的性質(zhì)的運用。

  例3已知,n∈正整數集,求(x+1+x2)n的值。

  活動(dòng):學(xué)生思考,觀(guān)察題目的特點(diǎn),從整體上看,應先化簡(jiǎn),然后再求值,要有預見(jiàn)性,與具有對稱(chēng)性,它們的積是常數1,為我們解題提供了思路,教師引導學(xué)生考慮問(wèn)題的思路,必要時(shí)給予提示。

  = 。

  這時(shí)應看到1+x2=,

  這樣先算出1+x2,再算出1+x2,代入即可。

  解:將代入1+x2,得1+x2=,

  所以(x+1+x2)n=

  =

  = =5.

  點(diǎn)評:運用整體思想和完全平方公式是解決本題的關(guān)鍵,要深刻理解這種做法。

  知能訓練

  課本習題2.1A組3.

  利用投影儀投射下列補充練習:

  1、化簡(jiǎn):的結果是()

  A. B.

  C. D.

  解析:根據本題的特點(diǎn),注意到它的整體性,特別是指數的規律性,我們可以進(jìn)行適當的變形。

  因為,所以原式的分子分母同乘以。

  依次類(lèi)推,所以。

  答案:A

  2、計算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.

  解:原式=

  =53+100+916-3+13+716=100.

  3、計算a+2a-1+a-2a-1(a≥1)。

  解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。

  本題可以繼續向下做,去掉絕對值,作為思考留作課下練習。

  4、設a>0,,則(x+1+x2)n的值為_(kāi)_________.

  解析:1+x2= 。

  這樣先算出1+x2,再算出1+x2,

  將代入1+x2,得1+x2= 。

  所以(x+1+x2)n=

  = =a.

  答案:a

  拓展提升

  參照我們說(shuō)明無(wú)理數指數冪的意義的過(guò)程,請你說(shuō)明無(wú)理數指數冪的意義。

  活動(dòng):教師引導學(xué)生回顧無(wú)理數指數冪的意義的過(guò)程,利用計算器計算出3的近似值,取它的過(guò)剩近似值和不足近似值,根據這些近似值計算的過(guò)剩近似值和不足近似值,利用逼近思想,“逼出”的意義,學(xué)生合作交流,在投影儀上展示自己的探究結果。

  解:3=1.732 050 80…,取它的過(guò)剩近似值和不足近似值如下表。

  3的過(guò)剩近似值

  的過(guò)剩近似值

  3的不足近似值

  的不足近似值

  1.8 3.482 202 253 1.7 3.249 009 585

  1.74 3.340 351 678 1.73 3.317 278 183

  1.733 3.324 183 446 1.731 3.319 578 342

  1.732 1 3.322 110 36 1.731 9 3.321 649 849

  1.732 06 3.322 018 252 1.732 04 3.321 972 2

  1.732 051 3.321 997 529 1.732 049 3.321 992 923

  1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838

  1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045

  … … … …

  我們把用2作底數,3的不足近似值作指數的各個(gè)冪排成從小到大的一列數

  21.7,21.72,21.731,21.731 9,…,

  同樣把用2作底數,3的過(guò)剩近似值作指數的各個(gè)冪排成從大到小的一列數:

  21.8,21.74,21.733,21.732 1,…,不難看出3的過(guò)剩近似值和不足近似值相同的位數越多,即3的近似值精確度越高,以其過(guò)剩近似值和不足近似值為指數的冪2α會(huì )越來(lái)越趨近于同一個(gè)數,我們把這個(gè)數記為,

  即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.

  也就是說(shuō)是一個(gè)實(shí)數,=3.321 997 …也可以這樣解釋?zhuān)?/p>

  當3的過(guò)剩近似值從大于3的方向逼近3時(shí),23的近似值從大于的方向逼近;

  當3的不足近似值從小于3的方向逼近3時(shí),23的近似值從小于的方向逼近。

  所以就是一串有理指數冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數冪21.8,21.74,21.733,21.732 1,…,按上述規律變化的結果,即≈3.321 997.

  課堂小結

 。1)無(wú)理指數冪的意義。

  一般地,無(wú)理數指數冪aα(a>0,α是無(wú)理數)是一個(gè)確定的實(shí)數。

 。2)實(shí)數指數冪的運算性質(zhì):

  對任意的實(shí)數r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈R)。

 、(ar)s=ars(a>0,r,s∈R)。

 、(a?b)r=arbr(a>0,b>0,r∈R)。

 。3)逼近的思想,體會(huì )無(wú)限接近的含義。

  作業(yè)

  課本習題2.1 B組2.

  設計感想

  無(wú)理數指數是指數概念的又一次擴充,教學(xué)中要讓學(xué)生通過(guò)多媒體的演示,理解無(wú)理數指數冪的意義,教學(xué)中也可以讓學(xué)生自己通過(guò)實(shí)際情況去探索,自己得出結論,加深對概念的理解,本堂課內容較為抽象,又不能進(jìn)行推理,只能通過(guò)多媒體的教學(xué)手段,讓學(xué)生體會(huì ),特別是逼近的思想、類(lèi)比的思想,多作練習,提高學(xué)生理解問(wèn)題、分析問(wèn)題的能力。

  備課資料

  【備用習題】

  1、以下各式中成立且結果為最簡(jiǎn)根式的是()

  A.a?5a3a?10a7=10a4

  B.3xy2(xy)2=y?3x2

  C.a2bb3aab3=8a7b15

  D.(35-125)3=5+125125-235?125

  答案:B

  2、對于a>0,r,s∈Q,以下運算中正確的是()

  A.ar?as=ars B.(ar)s=ars

  C.abr=ar?bs D.arbs=(ab)r+s

  答案:B

  3、式子x-2x-1=x-2x-1成立當且僅當()

  A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2

  解析:方法一:

  要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

  若x≥2,則式子x-2x-1=x-2x-1成立。

  故選D.

  方法二:

  對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時(shí)式子不成立。

  對B,x-1<0時(shí)式子不成立。

  對C,x<1時(shí)x-1無(wú)意義。

  對D正確。

  答案:D

  4、化簡(jiǎn)b-(2b-1)(1

  解:b-(2b-1)=(b-1)2=b-1(1

  5、計算32+5+32-5.

  解:令x=32+5+32-5,

  兩邊立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

  ∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

  ∴32+5+32-5=1.

高中數學(xué)教案6

  教學(xué)目標:

  1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

  2、通過(guò)觀(guān)察、操作培養學(xué)生的觀(guān)察能力和動(dòng)手操作能力。

  3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì )作度、分、秒間的單位互化

  4、采用自學(xué)與小組合作學(xué)習相結合的方法,培養學(xué)生主動(dòng)參與、勇于探究的精神。

  教學(xué)重點(diǎn):

  理解角的概念,掌握角的三種表示方法

  教學(xué)難點(diǎn):

  掌握度、分、秒的進(jìn)位制, ,會(huì )作度、分、秒間的單位互化

  教學(xué)手段:

  教具:電腦課件、實(shí)物投影、量角器

  學(xué)具:量角器需測量的角

  教學(xué)過(guò)程:

  一、建立角的概念

 。ㄒ唬┮虢牵ɡ谜n件演示)

  1、從生活中引入

  提問(wèn):

  A、以前我們曾經(jīng)認識過(guò)角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

  B、在我們的生活當中存在著(zhù)許許多多的角。一起看一看。誰(shuí)能從這些常用的物品中找出角?

  2、從射線(xiàn)引入

  提問(wèn):

  A、昨天我們認識了射線(xiàn),想從一點(diǎn)可以引出多少條射線(xiàn)?

  B、如果從一點(diǎn)出發(fā)任意取兩條射線(xiàn),那出現的是什么圖形?

  C、哪兩條射線(xiàn)可以組成一個(gè)角?誰(shuí)來(lái)指一指。

 。ǘ┱J識角,總結角的定義

  3、 過(guò)渡:角是怎么形成的呢?一起看

 。1)、演示:老師在這畫(huà)上一個(gè)點(diǎn),現在從這點(diǎn)出發(fā)引出一條射線(xiàn),再從這點(diǎn)出發(fā)引出第二條射線(xiàn)。

  提問(wèn):觀(guān)察從這點(diǎn)引出了幾條射線(xiàn)?此時(shí)所組成的圖形是什么圖形?

 。2)、判斷下列哪些圖形是角。

 。ā蹋 (×) (√) (×) (√)

  為何第二幅和第四幅圖形不是角?(學(xué)生回答)

  誰(shuí)能用自己的話(huà)來(lái)概括一下怎樣組成的圖形叫做角?

  總結:有公共端點(diǎn)的兩條射線(xiàn)所組成的圖形叫做角(angle)

  角的第二定義:角也可以看做由一條射線(xiàn)繞端點(diǎn)旋轉所形成的圖形.如下圖中的角,可以看做射線(xiàn)OA繞端點(diǎn)0按逆時(shí)針?lè )较蛐D到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

  B

  0 A

  4、認識角的各部分名稱(chēng),明確頂點(diǎn)、邊的作用

 。1)觀(guān)看角的圖形提問(wèn):這個(gè)點(diǎn)叫什么?這兩條射線(xiàn)叫什么?(學(xué)生邊說(shuō)師邊標名稱(chēng))

 。2)角可以畫(huà)在本上、黑板上,那角的位置是由誰(shuí)決定的?

 。3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

  5、學(xué)會(huì )用符號表示角

  提問(wèn):那么,角的符號是什么?該怎么寫(xiě),怎么讀的呢?(電腦顯示)

 。1)可以標上三個(gè)大寫(xiě)字母,寫(xiě)作:∠ABC或∠CBA,讀作:角ABC或角CBA.

 。2)觀(guān)察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

 。3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫(xiě)作: ∠B,讀作:角B

 。4)為了方便,有時(shí)我們還可以標上數字,寫(xiě)作∠1,讀作:角1

 。5)注:區別 “∠”和“<”的不同。請同學(xué)們指著(zhù)用學(xué)具折出的一個(gè)角,訓練一下這三種讀法。

  6、強調角的大小與兩邊張開(kāi)的程度有關(guān),與兩條邊的長(cháng)短無(wú)關(guān)。

  二、 角的度量

  1、學(xué)習角的度量

 。1)教學(xué)生認識量角器

  (2) 認識了量角器,那怎樣使用它去測量角的度數呢?這部分知識請同學(xué)們合作學(xué)習。

  提出要求:小組合作邊學(xué)習測量方法邊嘗試測量

  第一個(gè)角,想想有幾種方法?

  1、要求合作學(xué)習探究、測量。

  2、反饋匯報:學(xué)生邊演示邊復述過(guò)程

  3、教師利用課件演示正確的操作過(guò)程,糾正學(xué)生中存在的問(wèn)題。

  4、歸納概括測量方法(兩重合一對)

 。1)用量角器的中心點(diǎn)與角的頂點(diǎn)重合

 。2)零刻度線(xiàn)與角的一邊重合(可與內零度刻度線(xiàn)重合;也可與外零度刻度線(xiàn)重合)

 。3)另一條邊所對的角的度數,就是這個(gè)角的度數。

  5、小結:同一個(gè)角無(wú)論是用內刻度量角,還是用外刻度量角,結果都一樣。

  6、獨立練習測量角的度數(書(shū)做一做中第一題1,3與第二題)

 。1) 獨立測量,師注意查看學(xué)生中存在的問(wèn)題。

 。2) 課件演示糾正問(wèn)題

  三、度、分、秒的進(jìn)位制及這些單位間的互化

  為了更精細地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 將57.32°用度、分、秒表示.

  解:先把0.32°化為分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化為秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化為分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化為度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、鞏固練習

  課本P122練習

  五、總結:請大家回憶一下,今天都學(xué)了那些知識,通過(guò)學(xué)習你想說(shuō)些什么?

  六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

高中數學(xué)教案7

  一、單元教學(xué)內容

  (1)算法的基本概念

  (2)算法的基本結構:順序、條件、循環(huán)結構

  (3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內容分析

  算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念3課時(shí)

  2、程序框圖與算法的基本結構5課時(shí)

  3、算法的基本語(yǔ)句2課時(shí)

  四、單元教學(xué)目標分析

  1、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義

  2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。

  3、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。

  4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

  1、重點(diǎn)

  (1)理解算法的含義(2)掌握算法的基本結構(3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

  2、難點(diǎn)

  (1)程序框圖(2)變量與賦值(3)循環(huán)結構(4)算法設計

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。

  七、單元展開(kāi)方式與特點(diǎn)

  1、展開(kāi)方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

  2、特點(diǎn)

  (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(3)三線(xiàn)合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學(xué)過(guò)程分析

  1.算法基本概念教學(xué)過(guò)程分析

  對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。

  3.基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,

  4.通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。

  九、單元評價(jià)設想

  1.重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)

  關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能

  關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法

高中數學(xué)教案8

  1. 該生能以校規班規嚴格要求自己。有較強的集體榮譽(yù)感,學(xué)習態(tài)度認真,能吃苦,肯下功夫,成績(jì)穩定。生活艱苦樸素,待人熱情大方,是個(gè)基礎扎實(shí),品德兼優(yōu)的好學(xué)生。

  2. 該生能?chē)栏褡袷貙W(xué)校的規章制度。尊敬師長(cháng),團結同學(xué)。熱愛(ài)集體,積極配合其他同學(xué)搞好班務(wù)工作,勞動(dòng)積極肯干。學(xué)習刻苦認真,勤學(xué)好問(wèn),學(xué)習成績(jì)穩定,學(xué)風(fēng)和工作作風(fēng)都較為踏實(shí),堅持出滿(mǎn)勤,并能積極參加社會(huì )實(shí)踐和文體活動(dòng),勞動(dòng)積極。是一位發(fā)展全面的好學(xué)生。

  3. 你是同學(xué)擁護、老師信任的班委,乖巧懂事、伶俐開(kāi)朗、自信大方、樂(lè )觀(guān)合群,是同學(xué)們學(xué)習的榜樣。你愛(ài)護集體榮譽(yù),有很強的工作能力,總是及時(shí)協(xié)助老師完成班務(wù)工作,是老師的得力幫手。你心性坦蕩,個(gè)性鮮明,能大膽說(shuō)出自己的想法,難能可貴。而你在運動(dòng)場(chǎng)上的爆發(fā)力更讓老師同學(xué)們驚嘆!潛力深厚,希望在高中時(shí)期能逐漸發(fā)掘出來(lái)!

  4. 你是個(gè)做事小心翼翼,感情細膩豐富的女孩,每次看你認真的樣子老師都很感動(dòng)。你也是幸運的,周邊有很多人都在關(guān)愛(ài)著(zhù)你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學(xué)著(zhù)體諒,學(xué)著(zhù)換位思考,學(xué)著(zhù)懂事。另外,今后要多運動(dòng)、多鍛煉,有健康才能成就美好未來(lái)!

  5. 你堅強勇敢、樂(lè )觀(guān)大方的性格讓老師非常欣賞。學(xué)習上始終保持著(zhù)上進(jìn)好學(xué)的決心和韌性,生活中始終能做到豁達開(kāi)朗,還有著(zhù)良好的審美和繪畫(huà)的專(zhuān)長(cháng),令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話(huà),希望你保持好心態(tài),迎接新的學(xué)習生活。

  6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時(shí)機去努力開(kāi)創(chuàng )的人。你是很有才華的孩子,老師希望你能把握好機會(huì ),求得上進(jìn)。你聰明,但也有著(zhù)許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標致力于學(xué)習,定能大限度地發(fā)揮你的聰明才智!

  7. 該生遵紀守法,積極參加社會(huì )實(shí)踐和文體活動(dòng),集體觀(guān)念強,勞動(dòng)積極肯干。是一位誠實(shí)守信,思想上進(jìn),尊敬老師,團結同學(xué),熱心助人,積極參加班集體活動(dòng),有體育特長(cháng),學(xué)習認真,具有較好綜合素質(zhì)的優(yōu)秀學(xué)生。

  8. 你聰穎活潑,渾身洋溢青春氣息。你愛(ài)好廣泛,善鉆精思,具備一定能力,潛質(zhì)無(wú)限。但是在有些時(shí)候,在面臨一些問(wèn)題的時(shí)候,你總表現得太過(guò)緊張,其實(shí),征服畏懼、建立自信的最快最確實(shí)的方法,就是大膽地去做你認為害怕的事,直到你獲得成功的經(jīng)驗。繼續努力!

  9. 你是對3班這個(gè)集體的成長(cháng)貢獻很大的孩子,是老師的得力幫手。你干練沉穩,堅強隱忍,能從大局出發(fā)考慮問(wèn)題,在很多時(shí)候能獨當一面。你獨立能力強,能夠吃苦,但在進(jìn)入高中的學(xué)習上卻顯得有些吃力。其實(shí)你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒(méi)有絕望的處境,只有對處境絕望的人,請樂(lè )觀(guān)一點(diǎn),踏實(shí)地走好接下來(lái)的每一步!

  10. 你是個(gè)能獨立、有主見(jiàn)的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點(diǎn)上做的還是不錯的。晟君,老師希望你能一如既往地關(guān)注于學(xué)習而不懈怠,能堅持懷揣著(zhù)平和感恩的心態(tài)簡(jiǎn)單快樂(lè )地生活。

  11. 你給我的第一印象是有些沉默,其實(shí)和朋友在一起時(shí)還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續秀出真實(shí)而精彩的你!這半個(gè)學(xué)期的學(xué)習有點(diǎn)力不從心,請保持謹慎和細心,保持好的學(xué)習習慣,及時(shí)彌補所缺漏的環(huán)節,大步向前進(jìn)!

  12. 該生認真遵守學(xué)校的規章制度,積極參加社會(huì )實(shí)踐和文體活動(dòng),集體觀(guān)念強,勞動(dòng)積極肯干。尊敬師長(cháng),團結同學(xué)。學(xué)習態(tài)度認真,能吃苦,肯下功夫,成績(jì)穩定上升。是有理想有抱負,基礎扎實(shí),心理素質(zhì)過(guò)硬、全面發(fā)展的優(yōu)秀學(xué)生。

  13. 你是一個(gè)真誠待人、溫柔可愛(ài)的女生。也許是因為你有些不緊不慢的性格,所以在學(xué)習上有時(shí)候行動(dòng)力不夠堅決,造成了學(xué)習成績(jì)的不穩定。請多利用假期時(shí)間好好補缺補漏,向上的姿態(tài)才是最重要的!

  14. 老師同學(xué)們都在說(shuō)你是個(gè)很有責任心和上進(jìn)心的孩子,在班級需要的時(shí)候,你承擔了勞動(dòng)委員的重任,經(jīng)常最后一個(gè)離開(kāi),就為了班級能有個(gè)整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時(shí)間,在工作的空隙抓緊時(shí)間做作業(yè)。希望下學(xué)期你的學(xué)習成績(jì)也能隨你的毅力和執著(zhù)步步攀升,加油,羽騰!

  15. 其實(shí)你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時(shí)常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開(kāi)心扉,多與旁人交流你快樂(lè )的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時(shí)間也是一種成本,對時(shí)間的珍惜就是對成本的節約。請務(wù)必抓緊每寸光陰,努力學(xué)習!

  16. 你知道嗎?在世界上那些最容易的事情中,拖延時(shí)間是最不費力的。而學(xué)習卻是艱辛的勞動(dòng)過(guò)程。表面安靜的你其實(shí)心里有著(zhù)自己的想法和煩憂(yōu)。于是在不經(jīng)意間,精力被不自覺(jué)地轉移到一些瑣事上,卻總無(wú)法完全集中心智于學(xué)業(yè)。也許你也已經(jīng)意識到,也有了些許進(jìn)步,那么請千萬(wàn)記住要持之以恒,要付出比別人更多倍的努力!

  17. 你是班級的數學(xué)科代表,老師很高興選擇你擔任這個(gè)職務(wù),不僅能促進(jìn)自己的進(jìn)步,而且也展現了你負責工作的一面。但是學(xué)習是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽(tīng)講是否及時(shí)而有效,包括功課的完成是否嚴謹而認真。下學(xué)期,愿看到一個(gè)更加全神貫注更加專(zhuān)心致志的你!

  18. 我一直難忘在運動(dòng)會(huì )上你擔任前導牌的樣子,為班級添光增彩了不少!你有著(zhù)繪畫(huà)的特長(cháng),是個(gè)善良、真誠的女孩,有著(zhù)細膩豐富的內心,也許只需一點(diǎn)鼓勵,你便會(huì )勇敢走下去,希望能在平時(shí)多聽(tīng)見(jiàn)你爽朗的笑聲!

  19. 可愛(ài)、熱情、謹小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認為你是能夠認真仔細地作好每一件事情、成就每一個(gè)細節的,因此,希望你能珍惜時(shí)間,提高效率,在學(xué)習上狠狠加油!

  20. 其實(shí),任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個(gè)方面,我很高興地看到你做的很好,你學(xué)習自覺(jué),成績(jì)便是努力的證明。老師安排你做物理科代表就是希望能多培養你的責任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現!

  21. 你是個(gè)可愛(ài)善良,懂事乖巧的女孩。作為語(yǔ)文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂(yōu)郁是旁人不易察覺(jué)的。但是你知道,成長(cháng)就是破蛹成蝶的過(guò)程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長(cháng)帶來(lái)的所有痛苦和快樂(lè )!

  22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進(jìn)度,迎頭趕上,期待你獲得更大的進(jìn)步!

  23. 你曾經(jīng)和我說(shuō)過(guò)你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現在你覺(jué)得有障礙擋在前行之路上,那就說(shuō)明你還沒(méi)有把目標看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時(shí)無(wú)法適從。你現在欠缺的就是對自己發(fā)狠奮進(jìn)的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實(shí)踐去爭取,而不是光靠幾句好聽(tīng)的決心話(huà)!

  24. 你乖巧大方,組織能力一流,但在學(xué)習上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達,只要踏實(shí)努力,不懂就問(wèn),采用適合自己的學(xué)習方法,就會(huì )看到進(jìn)步。也許剛開(kāi)始的時(shí)候進(jìn)步很小,小到你看不見(jiàn),但是不要灰心,萬(wàn)事開(kāi)頭難!將事前的憂(yōu)慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養足精神再迎戰!你能做到的,蔡煒,加油!

  25. 該生能遵守校紀班規,尊敬師長(cháng),能與同學(xué)和睦相處,勤學(xué)好問(wèn),有較強的獨立鉆研能力,分析問(wèn)題比較深入、全面,在某些問(wèn)題上有獨特的見(jiàn)解,學(xué)習成績(jì)在班上一直能保持前茅,樂(lè )于助人,能幫助學(xué)習有困難的同學(xué)。

  26. 不論在體育場(chǎng)還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個(gè)字。這確是一個(gè)高中生應該有的精神面貌。你做事認真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續前進(jìn)!也希望能夠多和老師同學(xué)交流,多提些對班集體建設的好建議!

  27. 該生能以校規班規嚴格要求自己,積極參加社會(huì )實(shí)踐和文體活動(dòng)。尊敬師長(cháng),團結同學(xué)。集體觀(guān)念強,勞動(dòng)積極肯干。積極參加各種集體活動(dòng)和社會(huì )實(shí)踐活動(dòng)。學(xué)習目的明確,刻苦認真,成績(jì)穩定,是一個(gè)有理想、有抱負,基礎扎實(shí),心理素質(zhì)過(guò)硬,全面發(fā)展的優(yōu)秀學(xué)生。

  28. 我很高興看到你是個(gè)有上進(jìn)心,有責任感,能夠讓家人、師長(cháng)寬慰的孩子。有努力就有回報,你下半學(xué)期的表現不就證明了這一點(diǎn)嗎?進(jìn)步是隨著(zhù)時(shí)間節節上升的,不要太過(guò)急躁,要知道,若你不給自己設限,則人生中就沒(méi)有限制你發(fā)揮的藩籬。新學(xué)期要重整旗鼓,再接再勵!

  29. ××× 獨立性較強,對自己的能力也有準確的定位。建議今后學(xué)習上要養成勤思愛(ài)問(wèn)的習慣,不能做井底之蛙,滿(mǎn)足于現狀,要充分利用他人的智慧,最后達到“好風(fēng)憑借力,送我上青云”的目的。

  30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見(jiàn)讀書(shū)的態(tài)度很端正;而你每一次考試的成績(jì)雖然不拔尖,卻是在穩步前進(jìn),可見(jiàn)讀書(shū)的效率還不錯。請繼續保持這種虛心求學(xué)、穩步前進(jìn)的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。

高中數學(xué)教案9

  一、自我介紹

  我姓x,是你們的數學(xué)老師,因為是數學(xué)老師所以在自我介紹的時(shí)候喜歡給出自己的數字特征,也是希望通過(guò)這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴(lài)者。

  二、相信大家對于高中學(xué)習都充滿(mǎn)著(zhù)好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課我們不急于上新課,我想和大家聊一聊數學(xué),一起來(lái)思考為什么要學(xué)習數學(xué)及如何學(xué)好數學(xué)這兩個(gè)問(wèn)題。

  (一)為什么要學(xué)習數學(xué)

  相信高一的第一節課是各位科任老師各顯神通的時(shí)候,通過(guò)各種有趣的方式來(lái)突出每門(mén)課的重要性,作為數學(xué)老師我表達上不如文科老師迂回婉轉和風(fēng)趣幽默,我們更喜歡用數字說(shuō)明問(wèn)題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長(cháng)時(shí),就列數學(xué)系為北大第一系,這種傳統一直保持到現在。為什么數學(xué)系在高校中有如此重要的地位?課本主編寄語(yǔ)是這樣描述的:數學(xué)是有用的,數學(xué)有助于提高能力。

  數學(xué)家華羅庚在《人民日報》精彩描述了數學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無(wú)處不有重要貢獻。

  問(wèn)題1:大家知道海王星是怎么發(fā)現的,冥王星又是怎么被請出十大行星行列的?

  海王星的發(fā)現是在數學(xué)計算過(guò)程中發(fā)現的,天文望遠鏡的觀(guān)測只是驗證了人們的推論。

  1812年,法國人布瓦德在計算天王星的運動(dòng)軌道時(shí),發(fā)現理論計算值同觀(guān)測資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個(gè)問(wèn)題的研究,進(jìn)而發(fā)現天王星的脫軌與一個(gè)未知的引力的存在相關(guān)。也就是說(shuō)有一個(gè)未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來(lái)自法國巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預告了一顆以往沒(méi)有發(fā)現的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現了一顆新的8等星。又過(guò)了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動(dòng)了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話(huà)里的名字把這顆星命名為"海王星"。

  1930年美國天文學(xué)家湯博發(fā)現冥王星,當時(shí)錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過(guò)近30年的進(jìn)一步觀(guān)測和計算,發(fā)現它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫(xiě)入教科書(shū),以后也就將錯就錯了。經(jīng)過(guò)多年的爭論,國際天文學(xué)聯(lián)合會(huì )通過(guò)投票表決做出最終決定,取消冥王星的行星資格。8月24日據國際天文學(xué)聯(lián)合會(huì )宣布,冥王星將被排除在行星行列之外,從而太陽(yáng)系行星的數量將由九顆減為八顆。事實(shí)上,位居太陽(yáng)系九大行星末席70多年的冥王星,自發(fā)現之日起地位就備受爭議。

  馬克思說(shuō):"一種科學(xué)只有在成功運用數學(xué)時(shí),才算達到了真正完善的地步。"正因為數學(xué)是日常生活和進(jìn)一步學(xué)習必不可少的基礎和工具,一切科學(xué)到了最后都歸結為數學(xué)問(wèn)題。

  其實(shí)在我們的周?chē)泻芏嗍虑槎际强梢杂脭祵W(xué)可以來(lái)解決的,無(wú)非很多人都沒(méi)有用數學(xué)的眼光來(lái)看待。

  問(wèn)題2:徒認為上帝是萬(wàn)能的。你們認為呢?如何來(lái)證明你的結論呢?(讓同學(xué)發(fā)言)

  我的觀(guān)點(diǎn):上帝不是萬(wàn)能的。為什么呢?仔細聽(tīng)我講來(lái)。

  證明:(反證法)假如上帝是萬(wàn)能的

  那么他能夠制作出一塊無(wú)論什么力量都搬不動(dòng)的石頭

  根據假設,既然上帝是萬(wàn)能的,那么他一定能夠搬的動(dòng)他自己制造的那石頭

  這與"無(wú)論什么力量都搬不動(dòng)的石頭"相矛盾

  所以假設不成立

  所以上帝不是萬(wàn)能的。問(wèn)題3:抓鬮對個(gè)人來(lái)說(shuō)公平嗎?5張票中有一張獎票,那么先抽還是后抽對個(gè)人還說(shuō)公平嗎?

  當然,我們學(xué)習的數學(xué)只是數學(xué)學(xué)科體系中很基礎,很小的一部分,F在課本上學(xué)的未必能直接應用于生活,主要是為以后學(xué)習更高層次的理科打好基礎,同時(shí),也為了掌握一些數學(xué)的思考方法以及分析問(wèn)題解決問(wèn)題的思維方式。哲學(xué)家培根說(shuō)過(guò):"讀詩(shī)使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數學(xué)使人聰明…",也有人形象地稱(chēng)數學(xué)是思維的體操。下面我們通過(guò)具體的例子來(lái)體驗一下某些數學(xué)思想方法和思維方式。

  故事一:據說(shuō)國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問(wèn)他的宰相要什么賞賜。聰明的宰相說(shuō),"我所要的從一粒谷子(沒(méi)錯,是1粒,不是1兩或1斤)開(kāi)始。在這個(gè)有64格的棋盤(pán)上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,……如此下去,一直放滿(mǎn)到棋盤(pán)上的64格。這就是我所要的賞賜。"國王覺(jué)得宰相要的實(shí)在不多,就叫人按宰相的要求賞賜。但后來(lái)發(fā)現即使把全國所有的谷子抬來(lái)也遠遠不夠。

  人們通常憑借自己掌握的數學(xué)知識耍些小聰明,使問(wèn)題妙不可言。

  數學(xué)游戲:兩人相繼輪流往長(cháng)方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏(yíng)。應該先放還是后放才有必勝的把握。

  數學(xué)思想:退到最簡(jiǎn)單、最特殊的地方。

  故事二:聰明的渡邊:20世紀40年代末,手寫(xiě)工具突破性進(jìn)展-圓珠筆問(wèn)世,它以?xún)r(jià)廉、方便、書(shū)寫(xiě)流利在社會(huì )上廣泛流傳,但寫(xiě)到20萬(wàn)字時(shí)就會(huì )因圓珠磨小而漏油,影響了銷(xiāo)售。工程師們從圓珠質(zhì)量入手,從改進(jìn)油墨性能入手進(jìn)行改良,但收效甚微。于是廠(chǎng)家打出廣告:解決此問(wèn)題獲獎金50萬(wàn)元。當時(shí)山地制筆廠(chǎng)的青年工人渡邊看到女兒把圓珠筆用到快漏油時(shí)就德育不用這一現象中受到啟發(fā),很好地解決了這一問(wèn)題,你認為他會(huì )怎么做呢?

  渡邊的成功之處就在于思維角度新,從問(wèn)題的側面輕巧取勝。也正體現了數學(xué)學(xué)習中經(jīng)常用到的發(fā)散式思維。在數學(xué)學(xué)習中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問(wèn)題的歸納,聯(lián)系思維方式,表現為對解題方法的模仿和繼承;而發(fā)散式思維即對問(wèn)題開(kāi)拓、創(chuàng )新,表現為對問(wèn)題舉一反三,觸類(lèi)旁通。在解決具體問(wèn)題中,我們應該將兩種思維方式相結合。

  學(xué)數學(xué)有利于培養人的思維品質(zhì):結構意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數學(xué)在培養學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著(zhù)交集,但數學(xué)在其中的地位是無(wú)法被代替的?傊,學(xué)習數學(xué)可以使人思考問(wèn)題更合乎邏輯,更有條理,更嚴密精確,更深入簡(jiǎn)潔,更善于創(chuàng )造……

  (二)如何學(xué)好數學(xué)

  高中數學(xué)的內容多,抽象性、理論性強,高中很注重自學(xué)能力的培養的,高中不會(huì )像初中那樣老師一天到晚盯著(zhù)你,在高中一定要注重自學(xué)能力的培養,誰(shuí)的自學(xué)能力強,那么在一定的程度上影響著(zhù)你的成績(jì)以及你將來(lái)你發(fā)展的前途。同時(shí)要注意以下幾點(diǎn):

  第一:對數學(xué)學(xué)科特點(diǎn)有清楚的認識

  主編寄語(yǔ)里是這樣描述數學(xué)的特征的:數學(xué)是自然的。數學(xué)的概念、方法、思想都是人類(lèi)長(cháng)期實(shí)踐中自然發(fā)展形成的,以數域的發(fā)展為例,從自然數到有理數到實(shí)數再到復數,都是由自然的認知沖突引起的。因此,在學(xué)習過(guò)程中我們有必要了解知識產(chǎn)生的背景,它的形成過(guò)程以及它的應用,讓數學(xué)顯得合情合理,渾然天成。數學(xué)中沒(méi)有含糊不清的詞,對錯分明,凡事都要講個(gè)為什么,只要按照數學(xué)規則去學(xué)去想就能融會(huì )貫通,但是如果不把來(lái)龍去脈想清楚而是"想當然"的話(huà),那就學(xué)不下去了。

  第二:要改變一個(gè)觀(guān)念。

  有人會(huì )說(shuō)自己的基礎不好。那我問(wèn)下什么是基礎?今天所學(xué)的知識就是明天的基礎。明天學(xué)習的知識就是后天的基礎。所以要學(xué)好每一天的內容,那么你打的基礎就是最扎實(shí)的了。所以現在你們是在同一個(gè)起跑線(xiàn)上的,無(wú)所謂基礎好不好。過(guò)去的幾年里我分別帶過(guò)五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺(jué)差不多,應該說(shuō)接受能力不相上下,有的時(shí)候我會(huì )選擇在五十一中開(kāi)公開(kāi)課,因為課堂氣氛活躍、輕松,但是成績(jì)差異卻是很大,原因在于我們同學(xué)外課自主時(shí)間的投入太少,學(xué)習習慣不太好。

  第三:學(xué)數學(xué)要摸索自己的學(xué)習方法

  學(xué)習、掌握并能靈活應用數學(xué)的途徑有千萬(wàn)條,每個(gè)人都可以有與眾不同的數學(xué)學(xué)習方法。做習題、用數學(xué)解決各種問(wèn)題是必需的,理解、學(xué)會(huì )證明、領(lǐng)會(huì )思想、掌握方法也是必需的。此外,還要發(fā)揮問(wèn)題的作用,學(xué)會(huì )提問(wèn),熱心幫助別人解決問(wèn)題,用自己的問(wèn)題和別人的問(wèn)題帶動(dòng)自己的學(xué)習。同時(shí),注意前后知識的銜接,類(lèi)比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。

  第四:養成良好的學(xué)習習慣(與一中學(xué)生相比較)

 、逭n前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個(gè)記號或者打個(gè)問(wèn)號,以至于上課的時(shí)候重點(diǎn)聽(tīng),這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個(gè)目標,那就是通過(guò)預習可以把書(shū)本后面的練習題可以自己獨立的完成。一中的同學(xué)預習就已經(jīng)有好幾個(gè)層次了,先是課本,再是精編,再是高考題典,上課對于他們來(lái)說(shuō)是第一輪高考復習。

 、嫔险n認真聽(tīng)講。上課的時(shí)候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過(guò)我不大提倡數學(xué)課做筆記的。不過(guò)有一點(diǎn),有些知識點(diǎn)比較重要,課本上又沒(méi)有的,我要求你們把它寫(xiě)在課本上的相應的空白地方。還有如果你覺(jué)得某個(gè)例題比較新或者比較重要,也可以把它記在書(shū)本的相應位置上,這樣以后復習起來(lái)就一目了然了。那么草稿要來(lái)干什么的呢?課堂上你可以自己演算還有做課堂練習。

 、珀P(guān)于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現有誰(shuí)抄作業(yè),那么既然他這樣喜歡抄,我就要你把當天的作業(yè)多抄幾遍給我。那有人會(huì )問(wèn),碰到不會(huì )做的題目怎么辦?有兩個(gè)辦法:一、向同學(xué)請教,請教做題目的思路,而不是整個(gè)過(guò)程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個(gè)道理大家應該明白吧。我非常提倡同學(xué)之間的相互討論問(wèn)題的,這樣才能夠相互促進(jìn)提高。二、向老師請教,要養成多想多問(wèn)的習慣。我的辦公室在二樓二號,歡迎大家前來(lái)交流

 、铚蕚湟槐竟P記本,作為自己的問(wèn)題集。把平時(shí)自己不懂的和不大理解的還有易錯的記錄下來(lái),并且要及時(shí)的消化,不懂的地方問(wèn)老師。這是一個(gè)很好的辦法,到考試的時(shí)候就可以有重點(diǎn)、有針對性的自己復習了。我高中的時(shí)候就是采用這樣的方法把數學(xué)成績(jì)提高。

  好的開(kāi)始是成功的一半,新的學(xué)期開(kāi)始了,請大家調整好自己的思想,找到學(xué)習的原動(dòng)力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學(xué)都有個(gè)好的開(kāi)始。

高中數學(xué)教案10

  第一章:空間幾何體

  1.1.1柱、錐、臺、球的結構特征

  一、教學(xué)目標

  1.知識與技能

 。1)通過(guò)實(shí)物操作,增強學(xué)生的直觀(guān)感知。

 。2)能根據幾何結構特征對空間物體進(jìn)行分類(lèi)。

 。3)會(huì )用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

 。4)會(huì )表示有關(guān)于幾何體以及柱、錐、臺的分類(lèi)。

  2.過(guò)程與方法

 。1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結構特征。

 。2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識。

  3.情感態(tài)度與價(jià)值觀(guān)

 。1)使學(xué)生感受空間幾何體存在于現實(shí)生活周?chē),增強學(xué)生學(xué)習的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。

 。2)培養學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結構特征。

  難點(diǎn):柱、錐、臺、球的結構特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀(guān)察、思考、交流、討論、概括。

 。2)實(shí)物模型、投影儀

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng )設情景,揭示課題

  1.教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評價(jià)。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過(guò)觀(guān)察。根據某種標準對這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習的內容。

 。ǘ、研探新知

  1.引導學(xué)生觀(guān)察物體、思考、交流、討論,對物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。

  2.觀(guān)察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

  3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學(xué)生結合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5.提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類(lèi)?請列舉身邊具有已學(xué)過(guò)的幾何結構特征的物體,并說(shuō)出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

  6.以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關(guān)的概念,分類(lèi)以及表示。

  7.讓學(xué)生觀(guān)察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。

  8.引導學(xué)生以類(lèi)似的方法思考圓錐、圓臺、球的結構特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導學(xué)生思考、討論、概括。

  9.教師指出圓柱和棱柱統稱(chēng)為柱體,棱臺與圓臺統稱(chēng)為臺體,圓錐與棱錐統稱(chēng)為錐體。

  10.現實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學(xué)過(guò)的幾何結構特征的物體,并說(shuō)出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

  1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

  2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3.課本P8,習題1.1A組第1題。

  4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

  5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7練習1、2(1)(2)

  課本P8習題1.1第2、3、4題

  五、歸納整理

  由學(xué)生整理學(xué)習了哪些內容

  六、布置作業(yè)

  課本P8練習題1.1B組第1題

  課外練習課本P8習題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時(shí))

  一、教學(xué)目標

  1.知識與技能

 。1)掌握畫(huà)三視圖的基本技能

 。2)豐富學(xué)生的空間想象力

  2.過(guò)程與方法

  主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì )三視圖的作用。

  3.情感態(tài)度與價(jià)值觀(guān)

 。1)提高學(xué)生空間想象力

 。2)體會(huì )三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng )設情景,揭開(kāi)課題

  “橫看成嶺側看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體,這堂課我們主要學(xué)習空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習了正方體、長(cháng)方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫(huà)出空間幾何體的三視圖嗎?

 。ǘ⿲(shí)踐動(dòng)手作圖

  1.講臺上放球、長(cháng)方體實(shí)物,要求學(xué)生畫(huà)出它們的三視圖,教師巡視,學(xué)生畫(huà)完后可交流結果并討論;

  2.教師引導學(xué)生用類(lèi)比方法畫(huà)出簡(jiǎn)單組合體的三視圖

 。1)畫(huà)出球放在長(cháng)方體上的三視圖

 。2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結自己的作圖心得。

  作三視圖之前應當細心觀(guān)察,認識了它的基本結構特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉化。

 。1)投影出示圖片(課本P10,圖1.2-3)

  請同學(xué)們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫(huà)出圓臺的三視圖嗎?

 。3)三視圖對于認識空間幾何體有何作用?你有何體會(huì )?

  教師巡視指導,解答學(xué)生在學(xué)習中遇到的困難,然后讓學(xué)生發(fā)表對上述問(wèn)題的看法。

  4.請同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

 。ㄈ╈柟叹毩

  課本P12練習1、2P18習題1.2A組1

 。ㄋ模w納整理

  請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┱n外練習

  1.自己動(dòng)手制作一個(gè)底面是正方形,側面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫(huà)出它的三視圖。

  1.2.2空間幾何體的直觀(guān)圖(1課時(shí))

  一、教學(xué)目標

  1.知識與技能

 。1)掌握斜二測畫(huà)法畫(huà)水平設置的平面圖形的直觀(guān)圖。

 。2)采用對比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。

  2.過(guò)程與方法

  學(xué)生通過(guò)觀(guān)察和類(lèi)比,利用斜二測畫(huà)法畫(huà)出空間幾何體的直觀(guān)圖。

  3.情感態(tài)度與價(jià)值觀(guān)

 。1)提高空間想象力與直觀(guān)感受。

 。2)體會(huì )對比在學(xué)習中的作用。

 。3)感受幾何作圖在生產(chǎn)活動(dòng)中的應用。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn)、難點(diǎn):用斜二測畫(huà)法畫(huà)空間幾何值的直觀(guān)圖。

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀(guān)感,并自然采用斜二測畫(huà)法畫(huà)空間幾何體的過(guò)程。

  2.教學(xué)用具:三角板、圓規

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng )設情景,揭示課題

  1.我們都學(xué)過(guò)畫(huà)畫(huà),這節課我們畫(huà)一物體:圓柱

  把實(shí)物圓柱放在講臺上讓學(xué)生畫(huà)。

  2.學(xué)生畫(huà)完后展示自己的結果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀(guān)圖呢?這是我們這節主要學(xué)習的內容。

 。ǘ┭刑叫轮

  1.例1,用斜二測畫(huà)法畫(huà)水平放置的正六邊形的直觀(guān)圖,由學(xué)生閱讀理解,并思考斜二測畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評。

  畫(huà)水平放置的多邊形的直觀(guān)圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因為多邊形頂點(diǎn)的位置一旦確定,依次連結這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀(guān)圖的畫(huà)法可以歸結為確定點(diǎn)的位置的畫(huà)法。強調斜二測畫(huà)法的步驟。

  練習反饋

  根據斜二測畫(huà)法,畫(huà)出水平放置的正五邊形的直觀(guān)圖,讓學(xué)生獨立完成后,教師檢查。

  2.例2,用斜二測畫(huà)法畫(huà)水平放置的圓的直觀(guān)圖

  教師引導學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀(guān)圖一樣,畫(huà)水平放置的圓的直觀(guān)圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構造出一些點(diǎn)。

  教師組織學(xué)生思考、討論和交流,如何構造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細板書(shū)畫(huà)法。

  3.探求空間幾何體的直觀(guān)圖的畫(huà)法

 。1)例3,用斜二測畫(huà)法畫(huà)長(cháng)、寬、高分別是4cm、3cm、2cm的長(cháng)方體ABCD-A’B’C’D’的直觀(guān)圖。

  教師引導學(xué)生完成,要注意對每一步驟提出嚴格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。

 。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說(shuō)出三視圖表示的幾何體?并用斜二測畫(huà)法畫(huà)出它的直觀(guān)圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學(xué)生觀(guān)察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。

  5.鞏固練習,課本P16練習1(1),2,3,4

  三、歸納整理

  學(xué)生回顧斜二測畫(huà)法的關(guān)鍵與步驟

  四、作業(yè)

  1.書(shū)畫(huà)作業(yè),課本P17練習第5題

  2.課外思考課本P16,探究(1)(2)

高中數學(xué)教案11

  一、教學(xué)目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區間角的概念。

  過(guò)程與方法:

  會(huì )建立直角坐標系討論任意角,能判斷象限角,會(huì )書(shū)寫(xiě)終邊相同角的集合;掌握區間角的集合的書(shū)寫(xiě)。

  情感態(tài)度與價(jià)值觀(guān):

  1、提高學(xué)生的推理能力;

  2、培養學(xué)生應用意識。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):

  任意角概念的理解;區間角的集合的書(shū)寫(xiě)。

  教學(xué)難點(diǎn):

  終邊相同角的集合的表示;區間角的集合的書(shū)寫(xiě)。

  三、教學(xué)過(guò)程

 。ㄒ唬⿲胄抡n

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內一條射線(xiàn)繞著(zhù)端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。

 。ǘ┙虒W(xué)新課

  1、角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內一條射線(xiàn)繞著(zhù)端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。

 、诮堑拿Q(chēng):

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過(guò)推廣后,已包括正角、負角和零角。

 、菥毩暎赫堈f(shuō)出角α、β、γ各是多少度?

  2、象限角的概念:

 、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數學(xué)教案12

  一、教學(xué)目標

  (1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;

  (2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;

  (3)能用邏輯聯(lián)結詞和簡(jiǎn)單命題構成不同形式的復合命題;

  (4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡(jiǎn)單命題;

  (5)會(huì )用真值表判斷相應的復合命題的真假;

  (6)在知識學(xué)習的基礎上,培養學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復合命題真假的方法;難點(diǎn)是對“或”的含義的理解.

  三、教學(xué)過(guò)程

  1.新課導入

  在當今社會(huì )中,人們從事任何工作、學(xué)習,都離不開(kāi)邏輯.具有一定邏輯知識是構成一個(gè)公民的文化素質(zhì)的重要方面.數學(xué)的特點(diǎn)是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調邏輯性.如果不學(xué)習一定的邏輯知識,將會(huì )在我們學(xué)習的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識.

  初一平面幾何中曾學(xué)過(guò)命題,請同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

  (從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習邏輯的有關(guān)知識.)

  學(xué)生舉例:平行四邊形的對角線(xiàn)互相平. ……(1)

  兩直線(xiàn)平行,同位角相等.…………(2)

  教師提問(wèn):“……相等的角是對頂角”是不是命題?……(3)

  (同學(xué)議論結果,答案是肯定的)

  教師提問(wèn):什么是命題?

  (學(xué)生進(jìn)行回憶、思考.)

  概念總結:對一件事情作出了判斷的語(yǔ)句叫做命題.

  (教師肯定了同學(xué)的回答,并作板書(shū).)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

  (教師利用投影片,和學(xué)生討論以下問(wèn)題.)

  例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒(méi)有對一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識,我們今天開(kāi)始要在初中學(xué)習的基礎上,介紹簡(jiǎn)易邏輯的知識.

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內容主要講了哪些問(wèn)題?

  (片刻后請同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

  (1)什么叫做命題?

  可以判斷真假的語(yǔ)句叫做命題.

  判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

  (2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

  對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

  對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿(mǎn)足的意思.

  對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著(zhù)集合 在全集 中的補集 .

  命題可分為簡(jiǎn)單命題和復合命題.

  不含邏輯聯(lián)結詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡(jiǎn)單命題“6是自然數”和“6是偶數”由邏輯聯(lián)結詞“且”構成的復合命題.

  (4)命題的表示:用 , , , ,……來(lái)表示.

  (教師根據學(xué)生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開(kāi).)

  我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復合命題,應能說(shuō)出構成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結詞;應能根據所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.

  對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合”,此命題字面上無(wú)“且”;命題“5的倍數的末位數字不是0就是5”的字面上無(wú)“或”,但它們都是復合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡(jiǎn)單命題.

  (1) ;

  (2)0.5非整數;

  (3)內錯角相等,兩直線(xiàn)平行;

  (4)菱形的對角線(xiàn)互相垂直且平分;

  (5)平行線(xiàn)不相交;

  (6)若 ,則 .

  (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據學(xué)生的情況作些補充.)

  例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

  若給定語(yǔ)為

  等于

  大于

  是

  都是

  至多有一個(gè)

  至少有一個(gè)

  至多有個(gè)

  其否定語(yǔ)分別為

  分析:“等于”的否定語(yǔ)是“不等于”;

  “大于”的否定語(yǔ)是“小于或者等于”;

  “是”的否定語(yǔ)是“不是”;

  “都是”的否定語(yǔ)是“不都是”;

  “至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

  “至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

  “至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”.

  (如果時(shí)間寬裕,可讓學(xué)生討論后得出結論.)

  置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當的辨析與展開(kāi).)

  4.課堂練習:第26頁(yè)練習1

  5.課外作業(yè):第29頁(yè)習題1.6

高中數學(xué)教案13

  整體設計

  教學(xué)分析

  我們在初中的學(xué)習過(guò)程中,已了解了整數指數冪的概念和運算性質(zhì)。從本節開(kāi)始我們將在回顧平方根和立方根的基礎上,類(lèi)比出正數的n次方根的定義,從而把指數推廣到分數指數。進(jìn)而推廣到有理數指數,再推廣到實(shí)數指數,并將冪的運算性質(zhì)由整數指數冪推廣到實(shí)數指數冪。

  教材為了讓學(xué)生在學(xué)習之外就感受到指數函數的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長(cháng)問(wèn)題和碳14的衰減問(wèn)題。前一個(gè)問(wèn)題,既讓學(xué)生回顧了初中學(xué)過(guò)的整數指數冪,也讓學(xué)生感受到其中的函數模型,并且還有思想教育價(jià)值。后一個(gè)問(wèn)題讓學(xué)生體會(huì )其中的函數模型的同時(shí),激發(fā)學(xué)生探究分數指數冪、無(wú)理數指數冪的興趣與欲望,為新知識的學(xué)習作了鋪墊。

  本節安排的內容蘊涵了許多重要的數學(xué)思想方法,如推廣的思想(指數冪運算律的推廣)、類(lèi)比的思想、逼近的思想(有理數指數冪逼近無(wú)理數指數冪)、數形結合的思想(用指數函數的圖象研究指數函數的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問(wèn)題的結合,體現數學(xué)的應用價(jià)值。

  根據本節內容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機創(chuàng )設教學(xué)情境,為學(xué)生的數學(xué)探究與數學(xué)思維提供支持。

  三維目標

  1、通過(guò)與初中所學(xué)的知識進(jìn)行類(lèi)比,理解分數指數冪的概念,進(jìn)而學(xué)習指數冪的性質(zhì)。掌握分數指數冪和根式之間的互化,掌握分數指數冪的運算性質(zhì)。培養學(xué)生觀(guān)察分析、抽象類(lèi)比的能力。

  2、掌握根式與分數指數冪的互化,滲透“轉化”的數學(xué)思想。通過(guò)運算訓練,養成學(xué)生嚴謹治學(xué),一絲不茍的學(xué)習習慣,讓學(xué)生了解數學(xué)來(lái)自生活,數學(xué)又服務(wù)于生活的哲理。

  3、能熟練地運用有理指數冪運算性質(zhì)進(jìn)行化簡(jiǎn)、求值,培養學(xué)生嚴謹的思維和科學(xué)正確的計算能力。

  4、通過(guò)訓練及點(diǎn)評,讓學(xué)生更能熟練掌握指數冪的運算性質(zhì)。展示函數圖象,讓學(xué)生通過(guò)觀(guān)察,進(jìn)而研究指數函數的性質(zhì),讓學(xué)生體驗數學(xué)的簡(jiǎn)潔美和統一美。

  重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn)

 。1)分數指數冪和根式概念的理解。

 。2)掌握并運用分數指數冪的運算性質(zhì)。

 。3)運用有理指數冪的性質(zhì)進(jìn)行化簡(jiǎn)、求值。

  教學(xué)難點(diǎn)

 。1)分數指數冪及根式概念的理解。

 。2)有理指數冪性質(zhì)的靈活應用。

  課時(shí)安排

  3課時(shí)

  教學(xué)過(guò)程

  第1課時(shí)

  作者:路致芳

  導入新課

  思路1.同學(xué)們在預習的過(guò)程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過(guò)對生物化石的研究來(lái)判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問(wèn)題我們不太清楚)考古學(xué)家是按照這樣一條規律推測生物所處的年代的。教師板書(shū)本節課題:指數函數——指數與指數冪的運算。

  思路2.同學(xué)們,我們在初中學(xué)習了平方根、立方根,那么有沒(méi)有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數函數——指數與指數冪的運算。

  推進(jìn)新課

  新知探究

  提出問(wèn)題

 。1)什么是平方根?什么是立方根?一個(gè)數的平方根有幾個(gè),立方根呢?

 。2)如x4=a,x5=a,x6=a,根據上面的結論我們又能得到什么呢?

 。3)根據上面的結論我們能得到一般性的結論嗎?

 。4)可否用一個(gè)式子表達呢?

  活動(dòng):教師提示,引導學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過(guò)的平方根、立方根是如何定義的,對照類(lèi)比平方根、立方根的定義解釋上面的式子,對問(wèn)題(2)的結論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問(wèn)題一般化,歸納類(lèi)比出n次方根的概念,評價(jià)學(xué)生的思維。

  討論結果:(1)若x2=a,則x叫做a的平方根,正實(shí)數的平方根有兩個(gè),它們互為相反數,如:4的平方根為±2,負數沒(méi)有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數的立方根只有一個(gè),如:-8的立方根為-2.

 。2)類(lèi)比平方根、立方根的定義,一個(gè)數的四次方等于a,則這個(gè)數叫a的四次方根。一個(gè)數的五次方等于a,則這個(gè)數叫a的五次方根。一個(gè)數的六次方等于a,則這個(gè)數叫a的六次方根。

 。3)類(lèi)比(2)得到一個(gè)數的n次方等于a,則這個(gè)數叫a的n次方根。

 。4)用一個(gè)式子表達是,若xn=a,則x叫a的n次方根。

  教師板書(shū)n次方根的意義:

  一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數集。

  可以看出數的平方根、立方根的概念是n次方根的概念的特例。

  提出問(wèn)題

 。1)你能根據n次方根的意義求出下列數的n次方根嗎?(多媒體顯示以下題目)。

 、4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

 。2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數是什么數,有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應什么性質(zhì)的數,有什么特點(diǎn)?

 。3)問(wèn)題(2)中,既然方根有奇次的也有偶次的,數a有正有負,還有零,結論有一個(gè)的,也有兩個(gè)的,你能否總結一般規律呢?

 。4)任何一個(gè)數a的偶次方根是否存在呢?

  活動(dòng):教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數a的n次方根,就是求出的那個(gè)數的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數的分類(lèi)考慮,可以把具體的數寫(xiě)出來(lái),觀(guān)察數的特點(diǎn),對問(wèn)題(2)中的結論,類(lèi)比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表?yè)P,對回答不準確的學(xué)生提示引導考慮問(wèn)題的思路。

  討論結果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

 。2)方根的指數是2,3,4,5,7…特點(diǎn)是有奇數和偶數?偟膩(lái)看,這些數包括正數,負數和零。

 。3)一個(gè)數a的奇次方根只有一個(gè),一個(gè)正數a的偶次方根有兩個(gè),是互為相反數。0的任何次方根都是0.

 。4)任何一個(gè)數a的偶次方根不一定存在,如負數的偶次方根就不存在,因為沒(méi)有一個(gè)數的偶次方是一個(gè)負數。

  類(lèi)比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):

 、佼攏為偶數時(shí),正數a的n次方根有兩個(gè),是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫(xiě)成±na(a>0)。

 、趎為奇數時(shí),正數的n次方根是一個(gè)正數,負數的n次方根是一個(gè)負數,這時(shí)a的n次方根用符號na表示。

 、圬摂禌](méi)有偶次方根;0的任何次方根都是零。

  上面的文字語(yǔ)言可用下面的式子表示:

  a為正數:n為奇數,a的n次方根有一個(gè)為na,n為偶數,a的n次方根有兩個(gè)為±na.

  a為負數:n為奇數,a的n次方根只有一個(gè)為na,n為偶數,a的n次方根不存在。

  零的n次方根為零,記為n0=0.

  可以看出數的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。

  思考

  根據n次方根的性質(zhì)能否舉例說(shuō)明上述幾種情況?

  活動(dòng):教師提示學(xué)生對方根的性質(zhì)要分類(lèi)掌握,即正數的奇偶次方根,負數的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機給出一個(gè)數,我們寫(xiě)出它的平方根,立方根,四次方根等,看是否有意義,注意觀(guān)察方根的形式,及時(shí)糾正學(xué)生在舉例過(guò)程中的問(wèn)題。

  解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類(lèi)似于na的形式,現在我們給式子na一個(gè)名稱(chēng)——根式。

  根式的概念:

  式子na叫做根式,其中a叫做被開(kāi)方數,n叫做根指數。

  如3-27中,3叫根指數,-27叫被開(kāi)方數。

  思考

  nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

  活動(dòng):教師讓學(xué)生注意討論n為奇偶數和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。

  〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

  解答:根據n次方根的意義,可得:(na)n=a.

  通過(guò)探究得到:n為奇數,nan=a.

  n為偶數,nan=|a|=a,-a,a≥0,a<0.

  因此我們得到n次方根的運算性質(zhì):

 、(na)n=a.先開(kāi)方,再乘方(同次),結果為被開(kāi)方數。

 、趎為奇數,nan=a.先奇次乘方,再開(kāi)方(同次),結果為被開(kāi)方數。

  n為偶數,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開(kāi)方(同次),結果為被開(kāi)方數的絕對值。

  應用示例

  思路1

  例求下列各式的值:

 。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

  活動(dòng):求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細分析。觀(guān)察學(xué)生的解題情況,讓學(xué)生展示結果,抓住學(xué)生在解題過(guò)程中出現的問(wèn)題并對癥下藥。求下列各式的值實(shí)際上是求數的方根,可按方根的運算性質(zhì)來(lái)解,首先要搞清楚運算順序,目的是把被開(kāi)方數的符號定準,然后看根指數是奇數還是偶數,如果是奇數,無(wú)需考慮符號,如果是偶數,開(kāi)方的結果必須是非負數。

  解:(1)3(-8)3=-8;

 。2)(-10)2=10;

 。3)4(3-π)4=π-3;

 。4)(a-b)2=a-b(a>b)。

  點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導致問(wèn)題出現的一個(gè)重要原因,要在理解的基礎上,記準,記熟,會(huì )用,活用。

  變式訓練

  求出下列各式的值:

  (1)7(-2)7;

  (2)3(3a-3)3(a≤1);

  (3)4(3a-3)4.

  解:(1)7(-2)7=-2,

  (2)3(3a-3)3(a≤1)=3a-3,

  (3)4(3a-3)4=

  點(diǎn)評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。

  思路2

  例1下列各式中正確的是()

  A.4a4=a

  B.6(-2)2=3-2

  C.a0=1

  D.10(2-1)5=2-1

  活動(dòng):教師提示,這是一道選擇題,本題考查n次方根的運算性質(zhì),應首先考慮根據方根的意義和運算性質(zhì)來(lái)解,既要考慮被開(kāi)方數,又要考慮根指數,嚴格按求方根的步驟,體會(huì )方根運算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯,再回答。

  解析:(1)4a4=a,考查n次方根的運算性質(zhì),當n為偶數時(shí),應先寫(xiě)nan=|a|,故A項錯。

  (2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數的偶次方根,根據運算順序也應如此,結論為6(-2)2=32,故B項錯。

  (3)a0=1是有條件的,即a≠0,故C項也錯。

  (4)D項是一個(gè)正數的偶次方根,根據運算順序也應如此,故D項正確。所以答案選D.

  答案:D

  點(diǎn)評:本題由于考查n次方根的運算性質(zhì)與運算順序,有時(shí)極易選錯,選四個(gè)答案的情況都會(huì )有,因此解題時(shí)千萬(wàn)要細心。

  例2 3+22+3-22=__________.

  活動(dòng):讓同學(xué)們積極思考,交流討論,本題乍一看內容與本節無(wú)關(guān),但仔細一想,我們學(xué)習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據方根的運算求出結果是解題的關(guān)鍵,因此將根號下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導學(xué)生解題的思路。

  解析:因為3+22=1+22+(2)2=(1+2)2=2+1,

  3-22=(2)2-22+1=(2-1)2=2-1,

  所以3+22+3-22=22.

  答案:22

  點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱(chēng)根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。

  思考

  上面的例2還有別的解法嗎?

  活動(dòng):教師引導,去根號常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀(guān)察兩個(gè)式子的特點(diǎn),具有對稱(chēng)性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號后,相加正好抵消。同時(shí)借助平方差,又可去掉根號,因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。

  另解:利用整體思想,x=3+22+3-22,

  兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

  點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個(gè)完全平方式,問(wèn)題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。

  變式訓練

  若a2-2a+1=a-1,求a的取值范圍。

  解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

  即a-1≥0,

  所以a≥1.

  點(diǎn)評:利用方根的運算性質(zhì)轉化為去絕對值符號,是解題的關(guān)鍵。

  知能訓練

 。ń處熡枚嗝襟w顯示在屏幕上)

  1、以下說(shuō)法正確的是()

  A.正數的n次方根是一個(gè)正數

  B.負數的n次方根是一個(gè)負數

  C.0的n次方根是零

  D.a的n次方根用na表示(以上n>1且n∈正整數集)

  答案:C

  2、化簡(jiǎn)下列各式:

  (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

  答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

  3、計算7+40+7-40=__________.

  解析:7+40+7-40

  =(5)2+25?2+(2)2+(5)2-25?2+(2)2

  =(5+2)2+(5-2)2

  =5+2+5-2

  =25.

  答案:25

  拓展提升

  問(wèn)題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請舉例說(shuō)明。

  活動(dòng):組織學(xué)生結合前面的例題及其解答,進(jìn)行分析討論,解決這一問(wèn)題要緊扣n次方根的定義。

  通過(guò)歸納,得出問(wèn)題結果,對a是正數和零,n為偶數時(shí),n為奇數時(shí)討論一下。再對a是負數,n為偶數時(shí),n為奇數時(shí)討論一下,就可得到相應的結論。

  解:(1)(na)n=a(n>1,n∈N)。

  如果xn=a(n>1,且n∈N)有意義,則無(wú)論n是奇數或偶數,x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。

  例如:(43)4=3,(3-5)3=-5.

  (2)nan=a,|a|,當n為奇數,當n為偶數。

  當n為奇數時(shí),a∈R,nan=a恒成立。

  例如:525=2,5(-2)5=-2.

  當n為偶數時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

  即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。

  點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運算性質(zhì)的深刻理解。

  課堂小結

  學(xué)生仔細交流討論后,在筆記上寫(xiě)出本節課的學(xué)習收獲,教師用多媒體顯示在屏幕上。

  1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數集。用式子na表示,式子na叫根式,其中a叫被開(kāi)方數,n叫根指數。

 。1)當n為偶數時(shí),a的n次方根有兩個(gè),是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫(xiě)成±na(a>0)。

  (2)n為奇數時(shí),正數的n次方根是一個(gè)正數,負數的n次方根是一個(gè)負數,這時(shí)a的n次方根用符號na表示。

 。3)負數沒(méi)有偶次方根。0的任何次方根都是零。

  2、掌握兩個(gè)公式:n為奇數時(shí),(na)n=a,n為偶數時(shí),nan=|a|=a,-a,a≥0,a<0.

  作業(yè)

  課本習題2.1A組1.

  補充作業(yè):

  1、化簡(jiǎn)下列各式:

  (1)681;(2)15-32;(3)6a2b4.

  解:(1)681=634=332=39;

  (2)15-32=-1525=-32;

  (3)6a2b4=6(|a|?b2)2=3|a|?b2.

  2、若5

  解析:因為5

  答案:2a-13

  3.5+26+5-26=__________.

  解析:對雙重二次根式,我們覺(jué)得難以下筆,我們考慮只有在開(kāi)方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

  不難看出5+26=(3+2)2=3+2.

  同理5-26=(3-2)2=3-2.

  所以5+26+5-26=23.

  答案:23

  設計感想

  學(xué)生已經(jīng)學(xué)習了數的平方根和立方根,根式的內容是這些內容的推廣,本節課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結合已學(xué)內容,列舉具體實(shí)例,根式na的講解要分n是奇數和偶數兩種情況來(lái)進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類(lèi)比和練習題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。

  第2課時(shí)

  作者:郝云靜

  導入新課

  思路1.碳14測年法。原來(lái)宇宙射線(xiàn)在大氣層中能夠產(chǎn)生放射性碳14,并與氧結合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動(dòng)物吸收,只要植物和動(dòng)物生存著(zhù),它們就會(huì )不斷地吸收碳14在機體內保持一定的水平。而當有機體死亡后,即會(huì )停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開(kāi)始衰變并消失。對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過(guò)一定的時(shí)間,變?yōu)樵瓉?lái)的一半)。引出本節課題:指數與指數冪的運算之分數指數冪。

  思路2.同學(xué)們,我們在初中學(xué)習了整數指數冪及其運算性質(zhì),那么整數指數冪是否可以推廣呢?答案是肯定的。這就是本節的主講內容,教師板書(shū)本節課題——指數與指數冪的運算之分數指數冪。

  推進(jìn)新課

  新知探究

  提出問(wèn)題

 。1)整數指數冪的運算性質(zhì)是什么?

 。2)觀(guān)察以下式子,并總結出規律:a>0,

 、;

 、赼8=(a4)2=a4=,;

 、4a12=4(a3)4=a3=;

 、2a10=2(a5)2=a5= 。

 。3)利用(2)的規律,你能表示下列式子嗎?

  ,,,(x>0,m,n∈正整數集,且n>1)。

 。4)你能用方根的意義來(lái)解釋(3)的式子嗎?

 。5)你能推廣到一般的情形嗎?

  活動(dòng):學(xué)生回顧初中學(xué)習的整數指數冪及運算性質(zhì),仔細觀(guān)察,特別是每題的開(kāi)始和最后兩步的指數之間的關(guān)系,教師引導學(xué)生體會(huì )方根的意義,用方根的意義加以解釋?zhuān)更c(diǎn)啟發(fā)學(xué)生類(lèi)比(2)的規律表示,借鑒(2)(3),我們把具體推廣到一般,對寫(xiě)正確的同學(xué)及時(shí)表?yè)P,其他學(xué)生鼓勵提示。

  討論結果:(1)整數指數冪的運算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無(wú)意義;

  a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

 。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結果的a的指數是2,4,3,5分別寫(xiě)成了105,82,124,105,形式上變了,本質(zhì)沒(méi)變。

  根據4個(gè)式子的最后結果可以總結:當根式的被開(kāi)方數的指數能被根指數整除時(shí),根式可以寫(xiě)成分數作為指數的形式(分數指數冪形式)。

 。3)利用(2)的規律,453=,375=,5a7=,nxm= 。

  (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

  結果表明方根的結果和分數指數冪是相通的。

 。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數集,n>1)。

  綜上所述,我們得到正數的正分數指數冪的意義,教師板書(shū):

  規定:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1)。

  提出問(wèn)題

 。1)負整數指數冪的意義是怎樣規定的?

 。2)你能得出負分數指數冪的意義嗎?

 。3)你認為應怎樣規定零的分數指數冪的意義?

 。4)綜合上述,如何規定分數指數冪的意義?

 。5)分數指數冪的意義中,為什么規定a>0,去掉這個(gè)規定會(huì )產(chǎn)生什么樣的后果?

 。6)既然指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)是否也適用于有理數指數冪呢?

  活動(dòng):學(xué)生回想初中學(xué)習的情形,結合自己的學(xué)習體會(huì )回答,根據零的整數指數冪的意義和負整數指數冪的意義來(lái)類(lèi)比,把正分數指數冪的意義與負分數指數冪的意義融合起來(lái),與整數指數冪的運算性質(zhì)類(lèi)比可得有理數指數冪的運算性質(zhì),教師在黑板上板書(shū),學(xué)生合作交流,以具體的實(shí)例說(shuō)明a>0的必要性,教師及時(shí)作出評價(jià)。

  討論結果:(1)負整數指數冪的意義是:a-n=1an(a≠0),n∈N+。

 。2)既然負整數指數冪的意義是這樣規定的,類(lèi)比正數的正分數指數冪的意義可得正數的負分數指數冪的意義。

  規定:正數的負分數指數冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。

 。3)規定:零的分數指數冪的意義是:零的正分數次冪等于零,零的負分數指數冪沒(méi)有意義。

 。4)教師板書(shū)分數指數冪的意義。分數指數冪的意義就是:

  正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒(méi)有意義。

 。5)若沒(méi)有a>0這個(gè)條件會(huì )怎樣呢?

  如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現了截然不同的結果,這只說(shuō)明分數指數冪在底數小于零時(shí)是無(wú)意義的。因此在把根式化成分數指數時(shí),切記要使底數大于零,如無(wú)a>0的條件,比如式子3a2=,同時(shí)負數開(kāi)奇次方是有意義的,負數開(kāi)奇次方時(shí),應把負號移到根式的外邊,然后再按規定化成分數指數冪,也就是說(shuō),負分數指數冪在有意義的情況下總表示正數,而不是負數,負數只是出現在指數上。

 。6)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

  有理數指數冪的運算性質(zhì):對任意的有理數r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈Q),

 、(ar)s=ars(a>0,r,s∈Q),

 、(a?b)r=arbr(a>0,b>0,r∈Q)。

  我們利用分數指數冪的意義和有理數指數冪的運算性質(zhì)可以解決一些問(wèn)題,來(lái)看下面的例題。

  應用示例

  例1求值:(1);(2);(3)12-5;(4) 。

  活動(dòng):教師引導學(xué)生考慮解題的方法,利用冪的運算性質(zhì)計算出數值或化成最簡(jiǎn)根式,根據題目要求,把底數寫(xiě)成冪的形式,8寫(xiě)成23,25寫(xiě)成52,12寫(xiě)成2-1,1681寫(xiě)成234,利用有理數冪的運算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來(lái)。

  解:(1) =22=4;

 。2)=5-1=15;

  (3)12-5=(2-1)-5=2-1×(-5)=32;

 。4)=23-3=278.

  點(diǎn)評:本例主要考查冪值運算,要按規定來(lái)解。在進(jìn)行冪值運算時(shí),要首先考慮轉化為指數運算,而不是首先轉化為熟悉的根式運算,如=382=364=4.

  例2用分數指數冪的形式表示下列各式。

  a3?a;a2?3a2;a3a(a>0)。

  活動(dòng):學(xué)生觀(guān)察、思考,根據解題的順序,把根式化為分數指數冪,再由冪的運算性質(zhì)來(lái)運算,根式化為分數指數冪時(shí),要由里往外依次進(jìn)行,把握好運算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價(jià)學(xué)生的解題情況,鼓勵學(xué)生注意總結。

  解:a3?a=a3? =;

  a2?3a2=a2? =;

  a3a= 。

  點(diǎn)評:利用分數指數冪的意義和有理數指數冪的運算性質(zhì)進(jìn)行根式運算時(shí),其順序是先把根式化為分數指數冪,再由冪的運算性質(zhì)來(lái)運算。對于計算的結果,不強求統一用什么形式來(lái)表示,沒(méi)有特別要求,就用分數指數冪的形式來(lái)表示,但結果不能既有分數指數又有根式,也不能既有分母又有負指數。

  例3計算下列各式(式中字母都是正數)。

 。1);

 。2)。

  活動(dòng):先由學(xué)生觀(guān)察以上兩個(gè)式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內的,整數冪的運算性質(zhì)及運算規律擴充到分數指數冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來(lái),相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進(jìn)行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進(jìn)行計算,熟悉后可以簡(jiǎn)化步驟。

  解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

 。2)=m2n-3=m2n3.

  點(diǎn)評:分數指數冪不表示相同因式的積,而是根式的另一種寫(xiě)法。有了分數指數冪,就可把根式轉化成分數指數冪的形式,用分數指數冪的運算法則進(jìn)行運算了。

  本例主要是指數冪的運算法則的綜合考查和應用。

  變式訓練

  求值:(1)33?33?63;

  (2)627m3125n64.

  解:(1)33?33?63= =32=9;

  (2)627m3125n64= =9m225n4=925m2n-4.

  例4計算下列各式:

 。1)(325-125)÷425;

  (2)a2a?3a2(a>0)。

  活動(dòng):先由學(xué)生觀(guān)察以上兩個(gè)式子的特征,然后分析,化為同底。利用分數指數冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數指數冪再計算,這樣就簡(jiǎn)便多了,第(2)小題也是先把根式轉化為分數指數冪后再由運算法則計算,最后寫(xiě)出解答。

  解:(1)原式=

  = =65-5;

  (2)a2a?3a2= =6a5.

  知能訓練

  課本本節練習1,2,3

  【補充練習】

  教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表?yè)P鼓勵。

  1、(1)下列運算中,正確的是()

  A.a2?a3=a6 B.(-a2)3=(-a3)2

  C.(a-1)0=0 D.(-a2)3=-a6

 。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()

  A.①② B.①③ C.①②③④ D.①③④

 。3)(34a6)2?(43a6)2等于()

  A.a B.a2 C.a3 D.a4

 。4)把根式-25(a-b)-2改寫(xiě)成分數指數冪的形式為()

  A. B.

  C. D.

 。5)化簡(jiǎn)的結果是()

  A.6a B.-a C.-9a D.9a

  2、計算:(1) --17-2+ -3-1+(2-1)0=__________.

 。2)設5x=4,5y=2,則52x-y=__________.

  3、已知x+y=12,xy=9且x

  答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

  3、解:。

  因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

  又因為x

  所以原式= =12-6-63=-33.

  拓展提升

  1、化簡(jiǎn):。

  活動(dòng):學(xué)生觀(guān)察式子特點(diǎn),考慮x的指數之間的關(guān)系可以得到解題思路,應對原式進(jìn)行因式分解,根據本題的特點(diǎn),注意到:

  x-1= -13=;

  x+1= +13=;

  。

  構建解題思路教師適時(shí)啟發(fā)提示。

  解:

  =

  =

  =

  = 。

  點(diǎn)撥:解這類(lèi)題目,要注意運用以下公式,

  =a-b,

  =a± +b,

  =a±b.

  2、已知,探究下列各式的值的求法。

  (1)a+a-1;(2)a2+a-2;(3) 。

  解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;

 。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

 。3)由于,

  所以有=a+a-1+1=8.

  點(diǎn)撥:對“條件求值”問(wèn)題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。

  課堂小結

  活動(dòng):教師,本節課同學(xué)們有哪些收獲?請把你的學(xué)習收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時(shí)教師用投影儀顯示本堂課的知識要點(diǎn):

 。1)分數指數冪的`意義就是:正數的正分數指數冪的意義是=nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是= =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒(méi)有意義。

 。2)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數。

 。3)有理數指數冪的運算性質(zhì):對任意的有理數r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈Q),

 、(ar)s=ars(a>0,r,s∈Q),

 、(a?b)r=arbr(a>0,b>0,r∈Q)。

 。4)說(shuō)明兩點(diǎn):

 、俜謹抵笖祪绲囊饬x是一種規定,我們前面所舉的例子只表明這種規定的合理性,其中沒(méi)有推出關(guān)系。

 、谡麛抵笖祪绲倪\算性質(zhì)對任意的有理數指數冪也同樣適用。因而分數指數冪與根式可以互化,也可以利用=am來(lái)計算。

  作業(yè)

  課本習題2.1A組2,4.

  設計感想

  本節課是分數指數冪的意義的引出及應用,分數指數是指數概念的又一次擴充,要讓學(xué)生反復理解分數指數冪的意義,教學(xué)中可以通過(guò)根式與分數指數冪的互化來(lái)鞏固加深對這一概念的理解,用觀(guān)察、歸納和類(lèi)比的方法完成,由于是硬性的規定,沒(méi)有合理的解釋?zhuān)虼硕喟才乓恍┚毩,強化訓練,鞏固知識,要輔助以信息技術(shù)的手段來(lái)完成大容量的課堂教學(xué)任務(wù)。

  第3課時(shí)

  作者:鄭芳鳴

  導入新課

  思路1.同學(xué)們,既然我們把指數從正整數推廣到整數,又從整數推廣到正分數到負分數,這樣指數就推廣到有理數,那么它是否也和數的推廣一樣,到底有沒(méi)有無(wú)理數指數冪呢?回顧數的擴充過(guò)程,自然數到整數,整數到分數(有理數),有理數到實(shí)數。并且知道,在有理數到實(shí)數的擴充過(guò)程中,增添的數是無(wú)理數。對無(wú)理數指數冪,也是這樣擴充而來(lái)。既然如此,我們這節課的主要內容是:教師板書(shū)本堂課的課題〔指數與指數冪的運算(3)〕之無(wú)理數指數冪。

  思路2.同學(xué)們,在初中我們學(xué)習了函數的知識,對函數有了一個(gè)初步的了解,到了高中,我們又對函數的概念進(jìn)行了進(jìn)一步的學(xué)習,有了更深的理解,我們僅僅學(xué)了幾種簡(jiǎn)單的函數,如一次函數、二次函數、正比例函數、反比例函數、三角函數等,這些遠遠不能滿(mǎn)足我們的需要,隨著(zhù)科學(xué)的發(fā)展,社會(huì )的進(jìn)步,我們還要學(xué)習許多函數,其中就有指數函數,為了學(xué)習指數函數的知識,我們必須學(xué)習實(shí)數指數冪的運算性質(zhì),為此,我們必須把指數冪從有理數指數冪擴充到實(shí)數指數冪,因此我們本節課學(xué)習:指數與指數冪的運算(3)之無(wú)理數指數冪,教師板書(shū)本節課的課題。

  推進(jìn)新課

  新知探究

  提出問(wèn)題

 。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

 。2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現什么樣的規律?

  2的過(guò)剩近似值

  的近似值

  1.5 11.180 339 89

  1.42 9.829 635 328

  1.415 9.750 851 808

  1.414 3 9.739 872 62

  1.414 22 9.738 618 643

  1.414 214 9.738 524 602

  1.414 213 6 9.738 518 332

  1.414 213 57 9.738 517 862

  1.414 213 563 9.738 517 752

  … …

  的近似值

  2的不足近似值

  9.518 269 694 1.4

  9.672 669 973 1.41

  9.735 171 039 1.414

  9.738 305 174 1.414 2

  9.738 461 907 1.414 21

  9.738 508 928 1.414 213

  9.738 516 765 1.414 213 5

  9.738 517 705 1.414 213 56

  9.738 517 736 1.414 213 562

  … …

 。3)你能給上述思想起個(gè)名字嗎?

 。4)一個(gè)正數的無(wú)理數次冪到底是一個(gè)什么性質(zhì)的數呢?如,根據你學(xué)過(guò)的知識,能作出判斷并合理地解釋嗎?

 。5)借助上面的結論你能說(shuō)出一般性的結論嗎?

  活動(dòng):教師引導,學(xué)生回憶,教師提問(wèn),學(xué)生回答,積極交流,及時(shí)評價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋?zhuān)捎枚嗝襟w顯示輔助內容:

  問(wèn)題(1)從近似值的分類(lèi)來(lái)考慮,一方面從大于2的方向,另一方面從小于2的方向。

  問(wèn)題(2)對圖表的觀(guān)察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。

  問(wèn)題(3)上述方法實(shí)際上是無(wú)限接近,最后是逼近。

  問(wèn)題(4)對問(wèn)題給予大膽猜測,從數軸的觀(guān)點(diǎn)加以解釋。

  問(wèn)題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般。

  討論結果:(1)1.41,1.414,1.414 2,1.414 21,…這些數都小于2,稱(chēng)2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數都大于2,稱(chēng)2的過(guò)剩近似值。

 。2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

  第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

  從另一角度來(lái)看這個(gè)問(wèn)題,在數軸上近似地表示這些點(diǎn),數軸上的數字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說(shuō)從兩個(gè)方向無(wú)限地接近,即逼近,所以是一串有理數指數冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數指數冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規律變化的結果,事實(shí)上表示這些數的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數軸上,由此我們可得到的結論是一定是一個(gè)實(shí)數,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

  充分表明是一個(gè)實(shí)數。

 。3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識。

 。4)根據(2)(3)我們可以推斷是一個(gè)實(shí)數,猜測一個(gè)正數的無(wú)理數次冪是一個(gè)實(shí)數。

 。5)無(wú)理數指數冪的意義:

  一般地,無(wú)理數指數冪aα(a>0,α是無(wú)理數)是一個(gè)確定的實(shí)數。

  也就是說(shuō)無(wú)理數可以作為指數,并且它的結果是一個(gè)實(shí)數,這樣指數概念又一次得到推廣,在數的擴充過(guò)程中,我們知道有理數和無(wú)理數統稱(chēng)為實(shí)數。我們規定了無(wú)理數指數冪的意義,知道它是一個(gè)確定的實(shí)數,結合前面的有理數指數冪,那么,指數冪就從有理數指數冪擴充到實(shí)數指數冪。

  提出問(wèn)題

 。1)為什么在規定無(wú)理數指數冪的意義時(shí),必須規定底數是正數?

 。2)無(wú)理數指數冪的運算法則是怎樣的?是否與有理數指數冪的運算法則相通呢?

 。3)你能給出實(shí)數指數冪的運算法則嗎?

  活動(dòng):教師組織學(xué)生互助合作,交流探討,引導他們用反例說(shuō)明問(wèn)題,注意類(lèi)比,歸納。

  對問(wèn)題(1)回顧我們學(xué)習分數指數冪的意義時(shí)對底數的規定,舉例說(shuō)明。

  對問(wèn)題(2)結合有理數指數冪的運算法則,既然無(wú)理數指數冪aα(a>0,α是無(wú)理數)是一個(gè)確定的實(shí)數,那么無(wú)理數指數冪的運算法則應當與有理數指數冪的運算法則類(lèi)似,并且相通。

  對問(wèn)題(3)有了有理數指數冪的運算法則和無(wú)理數指數冪的運算法則,實(shí)數的運算法則自然就得到了。

  討論結果:(1)底數大于零的必要性,若a=-1,那么aα是+1還是-1就無(wú)法確定了,這樣就造成混亂,規定了底數是正數后,無(wú)理數指數冪aα是一個(gè)確定的實(shí)數,就不會(huì )再造成混亂。

 。2)因為無(wú)理數指數冪是一個(gè)確定的實(shí)數,所以能進(jìn)行指數的運算,也能進(jìn)行冪的運算,有理數指數冪的運算性質(zhì),同樣也適用于無(wú)理數指數冪。類(lèi)比有理數指數冪的運算性質(zhì)可以得到無(wú)理數指數冪的運算法則:

 、賏r?as=ar+s(a>0,r,s都是無(wú)理數)。

 、冢╝r)s=ars(a>0,r,s都是無(wú)理數)。

 、郏╝?b)r=arbr(a>0,b>0,r是無(wú)理數)。

 。3)指數冪擴充到實(shí)數后,指數冪的運算性質(zhì)也就推廣到了實(shí)數指數冪。

  實(shí)數指數冪的運算性質(zhì):

  對任意的實(shí)數r,s,均有下面的運算性質(zhì):

 、賏r?as=ar+s(a>0,r,s∈R)。

 、(ar)s=ars(a>0,r,s∈R)。

 、(a?b)r=arbr(a>0,b>0,r∈R)。

  應用示例

  例1利用函數計算器計算。(精確到0.001)

  (1)0.32.1;(2)3.14-3;(3);(4) 。

  活動(dòng):教師教會(huì )學(xué)生利用函數計算器計算,熟悉計算器的各鍵的功能,正確輸入各類(lèi)數,算出數值,對于(1),可先按底數0.3,再按xy鍵,再按冪指數2.1,最后按=,即可求得它的值;

  對于(2),先按底數3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可;

  對于(3),先按底數3.1,再按xy鍵,再按3÷4,最后按=即可;

  對于(4),這種無(wú)理指數冪,可先按底數3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運算。

  學(xué)生可以相互交流,挖掘計算器的用途。

  解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

  點(diǎn)評:熟練掌握用計算器計算冪的值的方法與步驟,感受現代技術(shù)的威力,逐步把自己融入現代信息社會(huì );用四舍五入法求近似值,若保留小數點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。

  例2求值或化簡(jiǎn)。

  (1)a-4b23ab2(a>0,b>0);

 。2)(a>0,b>0);

  (3)5-26+7-43-6-42.

  活動(dòng):學(xué)生觀(guān)察,思考,所謂化簡(jiǎn),即若能化為常數則化為常數,若不能化為常數則應使所化式子達到最簡(jiǎn),對既有分數指數冪又有根式的式子,應該把根式統一化為分數指數冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數指數冪,要緊扣分數指數冪的意義和運算性質(zhì),對(2)既有分數指數冪又有根式,應當統一起來(lái),化為分數指數冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開(kāi)方數應湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時(shí)的評價(jià),注意總結解題的方法和規律。

  解:(1)a-4b23ab2= =3b46a11 。

  點(diǎn)評:根式的運算常;蓛绲倪\算進(jìn)行,計算結果如沒(méi)有特殊要求,就用根式的形式來(lái)表示。

高中數學(xué)教案14

  一、課程性質(zhì)與任務(wù)

  數學(xué)是研究空間形式和數量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎,是人類(lèi)文化的重要組成部分。數學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門(mén)公共基礎課。本課程的任務(wù)是:使學(xué)生掌握必要的數學(xué)基礎知識,具備必需的相關(guān)技能與能力,為學(xué)習專(zhuān)業(yè)知識、掌握職業(yè)技能、繼續學(xué)習和終身發(fā)展奠定基礎。二、課程教學(xué)目標

  1.在九年義務(wù)教育基礎上,使學(xué)生進(jìn)一步學(xué)習并掌握職業(yè)崗位和生活中所必要的數學(xué)基礎知識。2.培養學(xué)生的計算技能、計算工具使用技能和數據處理技能,培養學(xué)生的觀(guān)察能力、空間想象能力、分析與解決問(wèn)題能力和數學(xué)思維能力。

  3.引導學(xué)生逐步養成良好的學(xué)習習慣、實(shí)踐意識、創(chuàng )新意識和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng )業(yè)能力。三、教學(xué)內容結構

  本課程的教學(xué)內容由基礎模塊、職業(yè)模塊和拓展模塊三個(gè)部分構成。

  1.基礎模塊是各專(zhuān)業(yè)學(xué)生必修的基礎性?xún)热莺蛻_到的基本要求,教學(xué)時(shí)數為128學(xué)時(shí)。2.職業(yè)模塊是適應學(xué)生學(xué)習相關(guān)專(zhuān)業(yè)需要的限定選修內容,各學(xué)校根據實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數為32~64學(xué)時(shí)。

  3.拓展模塊是滿(mǎn)足學(xué)生個(gè)性發(fā)展和繼續學(xué)習需要的任意選修內容,教學(xué)時(shí)數不做統一規定。四、教學(xué)內容與要求

 。ㄒ唬┍敬缶V教學(xué)要求用語(yǔ)的表述1.認知要求(分為三個(gè)層次)

  了解:初步知道知識的含義及其簡(jiǎn)單應用。

  理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養要求(分為三項技能與四項能力)

  計算技能:根據法則、公式,或按照一定的操作步驟,正確地進(jìn)行運算求解。計算工具使用技能:正確使用科學(xué)型計算器及常用的數學(xué)工具軟件。數據處理技能:按要求對數據(數據表格)進(jìn)行處理并提取有關(guān)信息。觀(guān)察能力:根據數據趨勢,數量關(guān)系或圖形、圖示,描述其規律。

  空間想象能力:依據文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據條件畫(huà)出圖形。

  分析與解決問(wèn)題能力:能對工作和生活中的簡(jiǎn)單數學(xué)相關(guān)問(wèn)題,作出分析并運用適當的數學(xué)方法予以解決。

  數學(xué)思維能力:依據所學(xué)的數學(xué)知識,運用類(lèi)比、歸納、綜合等方法,對數學(xué)及其應用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問(wèn)題(或需求),會(huì )選擇合適的模型(模式)。

 。ǘ┙虒W(xué)內容與要求1.基礎模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

  第2單元不等式(8學(xué)時(shí))

  第3單元函數(12學(xué)時(shí))

  第4單元指數函數與對數函數(12學(xué)時(shí))

  第5單元三角函數(18學(xué)時(shí))

  第6單元數列(10學(xué)時(shí))

  第7單元平面向量(矢量)(10學(xué)時(shí))

  第8單元直線(xiàn)和圓的方程(18學(xué)時(shí))

  第9單元立體幾何(14學(xué)時(shí))

  第10單元概率與統計初步(16學(xué)時(shí))

  2.職業(yè)模塊

  第1單元三角計算及其應用(16學(xué)時(shí))

  第2單元坐標變換與參數方程(12學(xué)時(shí))

  第3單元復數及其應用(10學(xué)時(shí))

高中數學(xué)教案15

  一、什么是教學(xué)案例

  教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。

  這可以從以下幾個(gè)層次來(lái)理解:

  教學(xué)案例是事件:教學(xué)案例是對教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現象的動(dòng)態(tài)性的把握。

  教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內,并且也可能包含有解決問(wèn)題的方法在內。正因為這一點(diǎn),案例才成為一種獨特的研究成果的表現形式。

  案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì )。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現。是對“當前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。

  二、如何進(jìn)行教學(xué)案例研究

  教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認識到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(cháng)的過(guò)程。

  那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節:案例研究的準備及實(shí)施、案例研究報告的撰寫(xiě)與反思。

  (一)案例研究的準備與實(shí)施

  1.研究主題的選擇

  案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評價(jià)語(yǔ)言、課堂教學(xué)調控行為等;也可以從學(xué)生的學(xué)習方式確定主題——探究性學(xué)習、問(wèn)題解決學(xué)習、合作學(xué)習、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內容等都可以確定研究的主題。

  研究者要了解當前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過(guò)有關(guān)的調查,搜集詳盡的材料(如閱讀教師的教學(xué)設計,進(jìn)行訪(fǎng)談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。

  一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對于自我發(fā)現更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現了前人(或自己)過(guò)去成功的行為嗎?事件呈現的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學(xué)習、內省和深層次理解方面就可能更加富有成效。

  高中數學(xué)教學(xué)案例研究的主題內容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現:如數學(xué)思想方法的教學(xué)、數學(xué)思維品質(zhì)的培養、本質(zhì)屬性的抽象、數學(xué)結論的推廣等;(2)學(xué)生數學(xué)學(xué)習規律的探究:如數學(xué)學(xué)習習慣、解決問(wèn)題的思維方式、獨立思考與合作學(xué)習等;(3)教師專(zhuān)業(yè)知識的提升:如數學(xué)板書(shū)與電子屏幕的展示對學(xué)生思維的影響、數學(xué)語(yǔ)言的訓練對人們思維的影響、數學(xué)知識模式化教學(xué)的優(yōu)劣等。

  2.案例研究的基本方法

  (1)課堂觀(guān)察。觀(guān)察方法是指研究者按照一定的目的和計劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進(jìn)行觀(guān)察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀(guān)察,也可以由其他教師來(lái)實(shí)施觀(guān)察,這兩種觀(guān)察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀(guān)察方法不限于用肉眼觀(guān)察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀(guān)察的手段,以提高觀(guān)察的效果。對觀(guān)察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類(lèi)型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續分析案例提供翔實(shí)的原始材料。

  (2)訪(fǎng)談與調查。對一些課堂教學(xué)不能觀(guān)察到的師生內心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運用以及教學(xué)達標的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀(guān)察的材料;對學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調查;對學(xué)生達標的成度、效度,也可以作一些測試調查。從這些訪(fǎng)談、調查的材料中,再分析課堂教學(xué)的現象,不難發(fā)現造成各種課堂現象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節中出現問(wèn)題,從中提煉出解決問(wèn)題的對策。

  (3)文獻分析。文獻分析是通過(guò)查閱文獻資料,從過(guò)去和現在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現象的理論依據,從而增強案例分析的說(shuō)服力。當然,對廣大第一線(xiàn)教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀(guān)現象,而是通過(guò)有關(guān)教育理論文獻的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著(zhù)問(wèn)題,查閱、分析有關(guān)文獻資料,從學(xué)習中提高研究者自身的理論水平。

  (二)案例研究報告的撰寫(xiě)

  1.常見(jiàn)的案例報告格式

  撰寫(xiě)教學(xué)案例,結構可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當前,國內外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對案例的客觀(guān)描述;二是對案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。

  下面介紹兩種常用的案例編寫(xiě)的格式:

  (1)“描述+分析”式

  此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對話(huà),也可以概括式地敘述,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋?zhuān)鞔_正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。

  (2)“背景+描述+問(wèn)題+詮釋”式

  此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:

  A.主題與背景

  主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀(guān)點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當然,這部分的內容不宜很長(cháng),只需提綱挈領(lǐng)敘述清楚即可。

  B.情景描述

  與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。

  C.問(wèn)題討論

  這是根據主題要求與情景描述,進(jìn)行的分析、歸納、總結與提煉,包括學(xué)科知識的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項。這部分內容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認識水平與學(xué)生主動(dòng)學(xué)習的能力。不同的教學(xué)觀(guān)念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。

  D.詮釋與研究

  這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們?吹竭@樣的現象,課堂教學(xué)的效果高于預期的目標,反之教師期望的目標學(xué)生沒(méi)有達到或有所偏離,教學(xué)內容呈現的先后與學(xué)生理解的程度、教學(xué)方法運用與學(xué)生內在動(dòng)機的激發(fā)等環(huán)節存在著(zhù)矛盾,這些事件的背后,必然隱含著(zhù)豐富的教育思想。所以,通過(guò)詮釋?zhuān)诰蜻@些事件背后的內在思想,揭示其教育規律就顯得十分的必要。

  2.案例報告撰寫(xiě)的關(guān)鍵

  (1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習他人的案例作品以提高寫(xiě)作技巧外,還應把握以下四點(diǎn):

  A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數學(xué)教育方式、明確學(xué)生數學(xué)學(xué)習的難點(diǎn)和重點(diǎn),尋找數學(xué)教師專(zhuān)業(yè)發(fā)展的途徑與規律。報告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。

  案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨特見(jiàn)解、獨家發(fā)現。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對實(shí)踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng )意的題目《“導之有方”方能“導之有效”》、《跳出數學(xué)教數學(xué)》、《在數學(xué)的疑難處悟成長(cháng)》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。

  B.理論性原則:解決問(wèn)題的策略中應當蘊含一定的教育基本原理和教育思想。實(shí)際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現教師的教學(xué)思想和教育基本原理。

  C.敘事性原則:案例報告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節,可以?shī)A敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個(gè)主題的幾節課的情景片段。

  D.學(xué)科性原則:數學(xué)案例報告一定要體現學(xué)科的特征,要有較深刻的理性思考,要反映數學(xué)的基本思想與方法,要符合課程標準,滿(mǎn)足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現。

  (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:

  A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據操作程序作一點(diǎn)“簡(jiǎn)評”,最后作“總評”。

  B.以案說(shuō)理:對教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節,尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(cháng)篇幅的理性思考。

  C.圖表展示法:用圖表進(jìn)行統計的形式體現撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數,投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數張圖表上用百分比或個(gè)(次)數進(jìn)行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。

  D.分析討論法:在撰寫(xiě)時(shí),應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫(xiě)者還必須對討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。

  3.優(yōu)秀案例的特征

  (1)時(shí)代性:一個(gè)好的案例描述的是現實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應該以關(guān)注今天所面臨的疑難問(wèn)題為著(zhù)眼點(diǎn),至少應該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應該與整個(gè)時(shí)代及教學(xué)背景相照應,這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對案例所涉及的人產(chǎn)生移情作用。

  (2)真實(shí)性:一個(gè)好的案例應該包括從案例所反映的對象那里引述的材料——案例寫(xiě)作必須持一種客觀(guān)的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對話(huà)、筆記、信函等,以增強案例的真實(shí)感和可讀性。重要的事實(shí)性材料應注明資料來(lái)源。

  (3)適用性:一個(gè)好的案例需要針對面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著(zhù)解決問(wèn)題的詳細過(guò)程,這應該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話(huà),那么最為適宜的方案,就應該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。

  (4)反思性:一個(gè)好的案例需要有對已經(jīng)做出的解決問(wèn)題的決策的評價(jià)——評價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_(kāi)頭或結尾寫(xiě)下案例作者對自己解決問(wèn)題策略的評論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。

  三、案例研究過(guò)程中需注意的問(wèn)題

  1.選材面過(guò)窄。從內容上看,多數案例是關(guān)于課堂教學(xué)甚至局限于一節課的研究,往往不能說(shuō)明問(wèn)題,或者在一節課中,也只會(huì )從簡(jiǎn)單的對話(huà)分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對教學(xué)情境的豐富性、復雜性和聯(lián)系性認識不夠。

  2.缺乏典型性。有的案例對教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對某一事件現象的分析、處理、詮釋?zhuān)_到舉一反三的效果,這樣的案例對他人沒(méi)什么借鑒作用。

  3.主題不明確。主要體現為:

  (1)主題渙散。有的案例象記流水帳,沒(méi)有根據需要進(jìn)行恰當的取舍,看不出作者要反映、探討什么問(wèn)題,缺乏指導性、創(chuàng )新性和參考性。

  (2)定題過(guò)于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學(xué)案例》、《“拋物線(xiàn)”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

  4.結構不合理。案例作為一種文體,有它自己的寫(xiě)作結構,只有優(yōu)化案例的結構,才能增強案例的可讀性和指導性。如寫(xiě)成一般的教學(xué)設計,一般包括“備課思路、教學(xué)目標、教學(xué)重點(diǎn)、教學(xué)方法、課前準備、教學(xué)內容、教學(xué)過(guò)程”等內容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評析少等等。沒(méi)有創(chuàng )新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。

  5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀(guān)點(diǎn),分析闡明的是另一種觀(guān)點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。

【高中數學(xué)教案】相關(guān)文章:

高中數學(xué)教案07-11

高中數學(xué)教案12-29

高中數學(xué)教案07-20

高中數學(xué)教案模板11-18

高中數學(xué)教案范文07-20

【精】高中數學(xué)教案12-29

【熱】高中數學(xué)教案12-29

【薦】高中數學(xué)教案12-29

【熱門(mén)】高中數學(xué)教案12-29

高中數學(xué)教案【推薦】12-29